diff options
Diffstat (limited to 'backends/hol4')
-rw-r--r-- | backends/hol4/divDefLibTestScript.sml | 7 | ||||
-rw-r--r-- | backends/hol4/primitivesScript.sml | 521 | ||||
-rw-r--r-- | backends/hol4/primitivesTheory.sig | 331 |
3 files changed, 736 insertions, 123 deletions
diff --git a/backends/hol4/divDefLibTestScript.sml b/backends/hol4/divDefLibTestScript.sml index 80170b24..f5df6139 100644 --- a/backends/hol4/divDefLibTestScript.sml +++ b/backends/hol4/divDefLibTestScript.sml @@ -1,11 +1,6 @@ (* Examples which use divDefLib.DefineDiv *) -open HolKernel boolLib bossLib Parse -open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory - -open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory -open primitivesLib -open divDefTheory divDefLib +open primitivesLib divDefLib val _ = new_theory "divDefLibTest" diff --git a/backends/hol4/primitivesScript.sml b/backends/hol4/primitivesScript.sml index 00511f00..5ef51f2e 100644 --- a/backends/hol4/primitivesScript.sml +++ b/backends/hol4/primitivesScript.sml @@ -17,37 +17,52 @@ End Type M = ``: 'a result`` -val bind_def = Define ` +Definition bind_def: (bind : 'a M -> ('a -> 'b M) -> 'b M) x f = case x of Return y => f y | Fail e => Fail e - | Diverge => Diverge`; + | Diverge => Diverge +End val bind_name = fst (dest_const “bind”) -val return_def = Define ` +Definition return_def: (return : 'a -> 'a M) x = - Return x`; + Return x +End -val massert_def = Define ‘massert b = if b then Return () else Fail Failure’ +Definition massert_def: + massert b = if b then Return () else Fail Failure +End Overload monad_bind = ``bind`` Overload monad_unitbind = ``\x y. bind x (\z. y)`` Overload monad_ignore_bind = ``\x y. bind x (\z. y)`` -val is_diverge_def = Define ‘ - is_diverge (r: 'a result) : bool = case r of Diverge => T | _ => F’ +Definition is_diverge_def: + is_diverge (r: 'a result) : bool = case r of Diverge => T | _ => F +End (* Allow the use of monadic syntax *) val _ = monadsyntax.enable_monadsyntax () +(*** For the globals *) +Definition get_return_value_def: + get_return_value (Return x) = x +End + (*** Misc *) Type char = “:char” Type string = “:string” -val mem_replace_fwd_def = Define ‘mem_replace_fwd (x : 'a) (y :'a) : 'a = x’ -val mem_replace_back_def = Define ‘mem_replace_back (x : 'a) (y :'a) : 'a = y’ +Definition mem_replace_fwd_def: + mem_replace_fwd (x : 'a) (y :'a) : 'a = x +End + +Definition mem_replace_back_def: + mem_replace_back (x : 'a) (y :'a) : 'a = y +End (*** Scalars *) (* Remark: most of the following code was partially generated *) @@ -343,6 +358,21 @@ val all_mk_int_defs = [ mk_u128_def ] +val isize_neg_def = Define ‘isize_neg x = mk_isize (- (isize_to_int x))’ +val i8_neg_def = Define ‘i8_neg x = mk_i8 (- (i8_to_int x))’ +val i16_neg_def = Define ‘i16_neg x = mk_i16 (- (i16_to_int x))’ +val i32_neg_def = Define ‘i32_neg x = mk_i32 (- (i32_to_int x))’ +val i64_neg_def = Define ‘i64_neg x = mk_i64 (- (i64_to_int x))’ +val i128_neg_def = Define ‘i128_neg x = mk_i128 (- (i128_to_int x))’ + +val all_neg_defs = [ + isize_neg_def, + i8_neg_def, + i16_neg_def, + i32_neg_def, + i64_neg_def, + i128_neg_def +] val isize_add_def = Define ‘isize_add x y = mk_isize ((isize_to_int x) + (isize_to_int y))’ val i8_add_def = Define ‘i8_add x y = mk_i8 ((i8_to_int x) + (i8_to_int y))’ @@ -526,6 +556,71 @@ val all_rem_defs = [ val (asms,g) = top_goal () *) +fun prove_arith_unop_eq (asms, g) = + let + val rw_thms = List.concat [all_neg_defs, all_mk_int_defs, all_conversion_id_lemmas] + in + (rpt gen_tac >> + rpt disch_tac >> + assume_tac isize_bounds >> (* Only useful for isize of course *) + rw rw_thms) (asms, g) + end + +Theorem isize_neg_eq: + !x y. + isize_min ≤ - isize_to_int x ⇒ + - isize_to_int x ≤ isize_max ⇒ + ?y. isize_neg x = Return y /\ isize_to_int y = - isize_to_int x +Proof + prove_arith_unop_eq +QED + +Theorem i8_neg_eq: + !x y. + i8_min ≤ - i8_to_int x ⇒ + - i8_to_int x ≤ i8_max ⇒ + ?y. i8_neg x = Return y /\ i8_to_int y = - i8_to_int x +Proof + prove_arith_unop_eq +QED + +Theorem i16_neg_eq: + !x y. + i16_min ≤ - i16_to_int x ⇒ + - i16_to_int x ≤ i16_max ⇒ + ?y. i16_neg x = Return y /\ i16_to_int y = - i16_to_int x +Proof + prove_arith_unop_eq +QED + +Theorem i32_neg_eq: + !x y. + i32_min ≤ - i32_to_int x ⇒ + - i32_to_int x ≤ i32_max ⇒ + ?y. i32_neg x = Return y /\ i32_to_int y = - i32_to_int x +Proof + prove_arith_unop_eq +QED + +Theorem i64_neg_eq: + !x y. + i64_min ≤ - i64_to_int x ⇒ + - i64_to_int x ≤ i64_max ⇒ + ?y. i64_neg x = Return y /\ i64_to_int y = - i64_to_int x +Proof + prove_arith_unop_eq +QED + +Theorem i128_neg_eq: + !x y. + i128_min ≤ - i128_to_int x ⇒ + - i128_to_int x ≤ i128_max ⇒ + ?y. i128_neg x = Return y /\ i128_to_int y = - i128_to_int x +Proof + prove_arith_unop_eq +QED + + fun prove_arith_op_eq (asms, g) = let val (_, t) = (dest_exists o snd o strip_imp o snd o strip_forall) g; @@ -565,7 +660,7 @@ fun prove_arith_op_eq (asms, g) = Theorem u8_add_eq: !x y. - u8_to_int x + u8_to_int y <= u8_max ==> + u8_to_int x + u8_to_int y <= u8_max ⇒ ?z. u8_add x y = Return z /\ u8_to_int z = u8_to_int x + u8_to_int y Proof prove_arith_op_eq @@ -573,7 +668,7 @@ QED Theorem u16_add_eq: !(x y). - u16_to_int x + u16_to_int y <= u16_max ==> + u16_to_int x + u16_to_int y <= u16_max ⇒ ?(z). u16_add x y = Return z /\ u16_to_int z = u16_to_int x + u16_to_int y Proof prove_arith_op_eq @@ -581,7 +676,7 @@ QED Theorem u32_add_eq: !x y. - u32_to_int x + u32_to_int y <= u32_max ==> + u32_to_int x + u32_to_int y <= u32_max ⇒ ?z. u32_add x y = Return z /\ u32_to_int z = u32_to_int x + u32_to_int y Proof prove_arith_op_eq @@ -589,7 +684,7 @@ QED Theorem u64_add_eq: !x y. - u64_to_int x + u64_to_int y <= u64_max ==> + u64_to_int x + u64_to_int y <= u64_max ⇒ ?z. u64_add x y = Return z /\ u64_to_int z = u64_to_int x + u64_to_int y Proof prove_arith_op_eq @@ -597,7 +692,7 @@ QED Theorem u128_add_eq: !x y. - u128_to_int x + u128_to_int y <= u128_max ==> + u128_to_int x + u128_to_int y <= u128_max ⇒ ?z. u128_add x y = Return z /\ u128_to_int z = u128_to_int x + u128_to_int y Proof prove_arith_op_eq @@ -605,7 +700,7 @@ QED Theorem usize_add_eq: !x y. - (usize_to_int x + usize_to_int y <= u16_max) \/ (usize_to_int x + usize_to_int y <= usize_max) ==> + (usize_to_int x + usize_to_int y <= u16_max) \/ (usize_to_int x + usize_to_int y <= usize_max) ⇒ ?z. usize_add x y = Return z /\ usize_to_int z = usize_to_int x + usize_to_int y Proof prove_arith_op_eq @@ -613,8 +708,8 @@ QED Theorem i8_add_eq: !x y. - i8_min <= i8_to_int x + i8_to_int y ==> - i8_to_int x + i8_to_int y <= i8_max ==> + i8_min <= i8_to_int x + i8_to_int y ⇒ + i8_to_int x + i8_to_int y <= i8_max ⇒ ?z. i8_add x y = Return z /\ i8_to_int z = i8_to_int x + i8_to_int y Proof prove_arith_op_eq @@ -622,8 +717,8 @@ QED Theorem i16_add_eq: !x y. - i16_min <= i16_to_int x + i16_to_int y ==> - i16_to_int x + i16_to_int y <= i16_max ==> + i16_min <= i16_to_int x + i16_to_int y ⇒ + i16_to_int x + i16_to_int y <= i16_max ⇒ ?z. i16_add x y = Return z /\ i16_to_int z = i16_to_int x + i16_to_int y Proof prove_arith_op_eq @@ -631,8 +726,8 @@ QED Theorem i32_add_eq: !x y. - i32_min <= i32_to_int x + i32_to_int y ==> - i32_to_int x + i32_to_int y <= i32_max ==> + i32_min <= i32_to_int x + i32_to_int y ⇒ + i32_to_int x + i32_to_int y <= i32_max ⇒ ?z. i32_add x y = Return z /\ i32_to_int z = i32_to_int x + i32_to_int y Proof prove_arith_op_eq @@ -640,8 +735,8 @@ QED Theorem i64_add_eq: !x y. - i64_min <= i64_to_int x + i64_to_int y ==> - i64_to_int x + i64_to_int y <= i64_max ==> + i64_min <= i64_to_int x + i64_to_int y ⇒ + i64_to_int x + i64_to_int y <= i64_max ⇒ ?z. i64_add x y = Return z /\ i64_to_int z = i64_to_int x + i64_to_int y Proof prove_arith_op_eq @@ -649,8 +744,8 @@ QED Theorem i128_add_eq: !x y. - i128_min <= i128_to_int x + i128_to_int y ==> - i128_to_int x + i128_to_int y <= i128_max ==> + i128_min <= i128_to_int x + i128_to_int y ⇒ + i128_to_int x + i128_to_int y <= i128_max ⇒ ?z. i128_add x y = Return z /\ i128_to_int z = i128_to_int x + i128_to_int y Proof prove_arith_op_eq @@ -658,8 +753,8 @@ QED Theorem isize_add_eq: !x y. - (i16_min <= isize_to_int x + isize_to_int y \/ isize_min <= isize_to_int x + isize_to_int y) ==> - (isize_to_int x + isize_to_int y <= i16_max \/ isize_to_int x + isize_to_int y <= isize_max) ==> + (i16_min <= isize_to_int x + isize_to_int y \/ isize_min <= isize_to_int x + isize_to_int y) ⇒ + (isize_to_int x + isize_to_int y <= i16_max \/ isize_to_int x + isize_to_int y <= isize_max) ⇒ ?z. isize_add x y = Return z /\ isize_to_int z = isize_to_int x + isize_to_int y Proof prove_arith_op_eq @@ -667,7 +762,7 @@ QED Theorem u8_sub_eq: !x y. - 0 <= u8_to_int x - u8_to_int y ==> + 0 <= u8_to_int x - u8_to_int y ⇒ ?z. u8_sub x y = Return z /\ u8_to_int z = u8_to_int x - u8_to_int y Proof prove_arith_op_eq @@ -675,7 +770,7 @@ QED Theorem u16_sub_eq: !x y. - 0 <= u16_to_int x - u16_to_int y ==> + 0 <= u16_to_int x - u16_to_int y ⇒ ?z. u16_sub x y = Return z /\ u16_to_int z = u16_to_int x - u16_to_int y Proof prove_arith_op_eq @@ -683,7 +778,7 @@ QED Theorem u32_sub_eq: !x y. - 0 <= u32_to_int x - u32_to_int y ==> + 0 <= u32_to_int x - u32_to_int y ⇒ ?z. u32_sub x y = Return z /\ u32_to_int z = u32_to_int x - u32_to_int y Proof prove_arith_op_eq @@ -691,7 +786,7 @@ QED Theorem u64_sub_eq: !x y. - 0 <= u64_to_int x - u64_to_int y ==> + 0 <= u64_to_int x - u64_to_int y ⇒ ?z. u64_sub x y = Return z /\ u64_to_int z = u64_to_int x - u64_to_int y Proof prove_arith_op_eq @@ -699,7 +794,7 @@ QED Theorem u128_sub_eq: !x y. - 0 <= u128_to_int x - u128_to_int y ==> + 0 <= u128_to_int x - u128_to_int y ⇒ ?z. u128_sub x y = Return z /\ u128_to_int z = u128_to_int x - u128_to_int y Proof prove_arith_op_eq @@ -707,7 +802,7 @@ QED Theorem usize_sub_eq: !x y. - 0 <= usize_to_int x - usize_to_int y ==> + 0 <= usize_to_int x - usize_to_int y ⇒ ?z. usize_sub x y = Return z /\ usize_to_int z = usize_to_int x - usize_to_int y Proof prove_arith_op_eq @@ -715,8 +810,8 @@ QED Theorem i8_sub_eq: !x y. - i8_min <= i8_to_int x - i8_to_int y ==> - i8_to_int x - i8_to_int y <= i8_max ==> + i8_min <= i8_to_int x - i8_to_int y ⇒ + i8_to_int x - i8_to_int y <= i8_max ⇒ ?z. i8_sub x y = Return z /\ i8_to_int z = i8_to_int x - i8_to_int y Proof prove_arith_op_eq @@ -724,8 +819,8 @@ QED Theorem i16_sub_eq: !x y. - i16_min <= i16_to_int x - i16_to_int y ==> - i16_to_int x - i16_to_int y <= i16_max ==> + i16_min <= i16_to_int x - i16_to_int y ⇒ + i16_to_int x - i16_to_int y <= i16_max ⇒ ?z. i16_sub x y = Return z /\ i16_to_int z = i16_to_int x - i16_to_int y Proof prove_arith_op_eq @@ -733,8 +828,8 @@ QED Theorem i32_sub_eq: !x y. - i32_min <= i32_to_int x - i32_to_int y ==> - i32_to_int x - i32_to_int y <= i32_max ==> + i32_min <= i32_to_int x - i32_to_int y ⇒ + i32_to_int x - i32_to_int y <= i32_max ⇒ ?z. i32_sub x y = Return z /\ i32_to_int z = i32_to_int x - i32_to_int y Proof prove_arith_op_eq @@ -742,8 +837,8 @@ QED Theorem i64_sub_eq: !x y. - i64_min <= i64_to_int x - i64_to_int y ==> - i64_to_int x - i64_to_int y <= i64_max ==> + i64_min <= i64_to_int x - i64_to_int y ⇒ + i64_to_int x - i64_to_int y <= i64_max ⇒ ?z. i64_sub x y = Return z /\ i64_to_int z = i64_to_int x - i64_to_int y Proof prove_arith_op_eq @@ -751,8 +846,8 @@ QED Theorem i128_sub_eq: !x y. - i128_min <= i128_to_int x - i128_to_int y ==> - i128_to_int x - i128_to_int y <= i128_max ==> + i128_min <= i128_to_int x - i128_to_int y ⇒ + i128_to_int x - i128_to_int y <= i128_max ⇒ ?z. i128_sub x y = Return z /\ i128_to_int z = i128_to_int x - i128_to_int y Proof prove_arith_op_eq @@ -760,8 +855,8 @@ QED Theorem isize_sub_eq: !x y. - (i16_min <= isize_to_int x - isize_to_int y \/ isize_min <= isize_to_int x - isize_to_int y) ==> - (isize_to_int x - isize_to_int y <= i16_max \/ isize_to_int x - isize_to_int y <= isize_max) ==> + (i16_min <= isize_to_int x - isize_to_int y \/ isize_min <= isize_to_int x - isize_to_int y) ⇒ + (isize_to_int x - isize_to_int y <= i16_max \/ isize_to_int x - isize_to_int y <= isize_max) ⇒ ?z. isize_sub x y = Return z /\ isize_to_int z = isize_to_int x - isize_to_int y Proof prove_arith_op_eq @@ -769,7 +864,7 @@ QED Theorem u8_mul_eq: !x y. - u8_to_int x * u8_to_int y <= u8_max ==> + u8_to_int x * u8_to_int y <= u8_max ⇒ ?z. u8_mul x y = Return z /\ u8_to_int z = u8_to_int x * u8_to_int y Proof prove_arith_op_eq @@ -777,7 +872,7 @@ QED Theorem u16_mul_eq: !x y. - u16_to_int x * u16_to_int y <= u16_max ==> + u16_to_int x * u16_to_int y <= u16_max ⇒ ?z. u16_mul x y = Return z /\ u16_to_int z = u16_to_int x * u16_to_int y Proof prove_arith_op_eq @@ -785,7 +880,7 @@ QED Theorem u32_mul_eq: !x y. - u32_to_int x * u32_to_int y <= u32_max ==> + u32_to_int x * u32_to_int y <= u32_max ⇒ ?z. u32_mul x y = Return z /\ u32_to_int z = u32_to_int x * u32_to_int y Proof prove_arith_op_eq @@ -793,7 +888,7 @@ QED Theorem u64_mul_eq: !x y. - u64_to_int x * u64_to_int y <= u64_max ==> + u64_to_int x * u64_to_int y <= u64_max ⇒ ?z. u64_mul x y = Return z /\ u64_to_int z = u64_to_int x * u64_to_int y Proof prove_arith_op_eq @@ -801,7 +896,7 @@ QED Theorem u128_mul_eq: !x y. - u128_to_int x * u128_to_int y <= u128_max ==> + u128_to_int x * u128_to_int y <= u128_max ⇒ ?z. u128_mul x y = Return z /\ u128_to_int z = u128_to_int x * u128_to_int y Proof prove_arith_op_eq @@ -809,7 +904,7 @@ QED Theorem usize_mul_eq: !x y. - (usize_to_int x * usize_to_int y <= u16_max) \/ (usize_to_int x * usize_to_int y <= usize_max) ==> + (usize_to_int x * usize_to_int y <= u16_max) \/ (usize_to_int x * usize_to_int y <= usize_max) ⇒ ?z. usize_mul x y = Return z /\ usize_to_int z = usize_to_int x * usize_to_int y Proof prove_arith_op_eq @@ -817,8 +912,8 @@ QED Theorem i8_mul_eq: !x y. - i8_min <= i8_to_int x * i8_to_int y ==> - i8_to_int x * i8_to_int y <= i8_max ==> + i8_min <= i8_to_int x * i8_to_int y ⇒ + i8_to_int x * i8_to_int y <= i8_max ⇒ ?z. i8_mul x y = Return z /\ i8_to_int z = i8_to_int x * i8_to_int y Proof prove_arith_op_eq @@ -826,8 +921,8 @@ QED Theorem i16_mul_eq: !x y. - i16_min <= i16_to_int x * i16_to_int y ==> - i16_to_int x * i16_to_int y <= i16_max ==> + i16_min <= i16_to_int x * i16_to_int y ⇒ + i16_to_int x * i16_to_int y <= i16_max ⇒ ?z. i16_mul x y = Return z /\ i16_to_int z = i16_to_int x * i16_to_int y Proof prove_arith_op_eq @@ -835,8 +930,8 @@ QED Theorem i32_mul_eq: !x y. - i32_min <= i32_to_int x * i32_to_int y ==> - i32_to_int x * i32_to_int y <= i32_max ==> + i32_min <= i32_to_int x * i32_to_int y ⇒ + i32_to_int x * i32_to_int y <= i32_max ⇒ ?z. i32_mul x y = Return z /\ i32_to_int z = i32_to_int x * i32_to_int y Proof prove_arith_op_eq @@ -844,8 +939,8 @@ QED Theorem i64_mul_eq: !x y. - i64_min <= i64_to_int x * i64_to_int y ==> - i64_to_int x * i64_to_int y <= i64_max ==> + i64_min <= i64_to_int x * i64_to_int y ⇒ + i64_to_int x * i64_to_int y <= i64_max ⇒ ?z. i64_mul x y = Return z /\ i64_to_int z = i64_to_int x * i64_to_int y Proof prove_arith_op_eq @@ -853,8 +948,8 @@ QED Theorem i128_mul_eq: !x y. - i128_min <= i128_to_int x * i128_to_int y ==> - i128_to_int x * i128_to_int y <= i128_max ==> + i128_min <= i128_to_int x * i128_to_int y ⇒ + i128_to_int x * i128_to_int y <= i128_max ⇒ ?z. i128_mul x y = Return z /\ i128_to_int z = i128_to_int x * i128_to_int y Proof prove_arith_op_eq @@ -862,8 +957,8 @@ QED Theorem isize_mul_eq: !x y. - (i16_min <= isize_to_int x * isize_to_int y \/ isize_min <= isize_to_int x * isize_to_int y) ==> - (isize_to_int x * isize_to_int y <= i16_max \/ isize_to_int x * isize_to_int y <= isize_max) ==> + (i16_min <= isize_to_int x * isize_to_int y \/ isize_min <= isize_to_int x * isize_to_int y) ⇒ + (isize_to_int x * isize_to_int y <= i16_max \/ isize_to_int x * isize_to_int y <= isize_max) ⇒ ?z. isize_mul x y = Return z /\ isize_to_int z = isize_to_int x * isize_to_int y Proof prove_arith_op_eq @@ -871,7 +966,7 @@ QED Theorem u8_div_eq: !x y. - u8_to_int y <> 0 ==> + u8_to_int y <> 0 ⇒ ?z. u8_div x y = Return z /\ u8_to_int z = u8_to_int x / u8_to_int y Proof prove_arith_op_eq @@ -879,7 +974,7 @@ QED Theorem u16_div_eq: !x y. - u16_to_int y <> 0 ==> + u16_to_int y <> 0 ⇒ ?z. u16_div x y = Return z /\ u16_to_int z = u16_to_int x / u16_to_int y Proof prove_arith_op_eq @@ -887,7 +982,7 @@ QED Theorem u32_div_eq: !x y. - u32_to_int y <> 0 ==> + u32_to_int y <> 0 ⇒ ?z. u32_div x y = Return z /\ u32_to_int z = u32_to_int x / u32_to_int y Proof prove_arith_op_eq @@ -895,7 +990,7 @@ QED Theorem u64_div_eq: !x y. - u64_to_int y <> 0 ==> + u64_to_int y <> 0 ⇒ ?z. u64_div x y = Return z /\ u64_to_int z = u64_to_int x / u64_to_int y Proof prove_arith_op_eq @@ -903,7 +998,7 @@ QED Theorem u128_div_eq: !x y. - u128_to_int y <> 0 ==> + u128_to_int y <> 0 ⇒ ?z. u128_div x y = Return z /\ u128_to_int z = u128_to_int x / u128_to_int y Proof prove_arith_op_eq @@ -911,7 +1006,7 @@ QED Theorem usize_div_eq: !x y. - usize_to_int y <> 0 ==> + usize_to_int y <> 0 ⇒ ?z. usize_div x y = Return z /\ usize_to_int z = usize_to_int x / usize_to_int y Proof prove_arith_op_eq @@ -919,9 +1014,9 @@ QED Theorem i8_div_eq: !x y. - i8_to_int y <> 0 ==> - i8_min <= i8_to_int x / i8_to_int y ==> - i8_to_int x / i8_to_int y <= i8_max ==> + i8_to_int y <> 0 ⇒ + i8_min <= i8_to_int x / i8_to_int y ⇒ + i8_to_int x / i8_to_int y <= i8_max ⇒ ?z. i8_div x y = Return z /\ i8_to_int z = i8_to_int x / i8_to_int y Proof prove_arith_op_eq @@ -929,9 +1024,9 @@ QED Theorem i16_div_eq: !x y. - i16_to_int y <> 0 ==> - i16_min <= i16_to_int x / i16_to_int y ==> - i16_to_int x / i16_to_int y <= i16_max ==> + i16_to_int y <> 0 ⇒ + i16_min <= i16_to_int x / i16_to_int y ⇒ + i16_to_int x / i16_to_int y <= i16_max ⇒ ?z. i16_div x y = Return z /\ i16_to_int z = i16_to_int x / i16_to_int y Proof prove_arith_op_eq @@ -939,9 +1034,9 @@ QED Theorem i32_div_eq: !x y. - i32_to_int y <> 0 ==> - i32_min <= i32_to_int x / i32_to_int y ==> - i32_to_int x / i32_to_int y <= i32_max ==> + i32_to_int y <> 0 ⇒ + i32_min <= i32_to_int x / i32_to_int y ⇒ + i32_to_int x / i32_to_int y <= i32_max ⇒ ?z. i32_div x y = Return z /\ i32_to_int z = i32_to_int x / i32_to_int y Proof prove_arith_op_eq @@ -949,9 +1044,9 @@ QED Theorem i64_div_eq: !x y. - i64_to_int y <> 0 ==> - i64_min <= i64_to_int x / i64_to_int y ==> - i64_to_int x / i64_to_int y <= i64_max ==> + i64_to_int y <> 0 ⇒ + i64_min <= i64_to_int x / i64_to_int y ⇒ + i64_to_int x / i64_to_int y <= i64_max ⇒ ?z. i64_div x y = Return z /\ i64_to_int z = i64_to_int x / i64_to_int y Proof prove_arith_op_eq @@ -959,9 +1054,9 @@ QED Theorem i128_div_eq: !x y. - i128_to_int y <> 0 ==> - i128_min <= i128_to_int x / i128_to_int y ==> - i128_to_int x / i128_to_int y <= i128_max ==> + i128_to_int y <> 0 ⇒ + i128_min <= i128_to_int x / i128_to_int y ⇒ + i128_to_int x / i128_to_int y <= i128_max ⇒ ?z. i128_div x y = Return z /\ i128_to_int z = i128_to_int x / i128_to_int y Proof prove_arith_op_eq @@ -969,9 +1064,9 @@ QED Theorem isize_div_eq: !x y. - isize_to_int y <> 0 ==> - (i16_min <= isize_to_int x / isize_to_int y \/ isize_min <= isize_to_int x / isize_to_int y) ==> - (isize_to_int x / isize_to_int y <= i16_max \/ isize_to_int x / isize_to_int y <= isize_max) ==> + isize_to_int y <> 0 ⇒ + (i16_min <= isize_to_int x / isize_to_int y \/ isize_min <= isize_to_int x / isize_to_int y) ⇒ + (isize_to_int x / isize_to_int y <= i16_max \/ isize_to_int x / isize_to_int y <= isize_max) ⇒ ?z. isize_div x y = Return z /\ isize_to_int z = isize_to_int x / isize_to_int y Proof prove_arith_op_eq @@ -979,7 +1074,7 @@ QED Theorem u8_rem_eq: !x y. - u8_to_int y <> 0 ==> + u8_to_int y <> 0 ⇒ ?z. u8_rem x y = Return z /\ u8_to_int z = int_rem (u8_to_int x) (u8_to_int y) Proof prove_arith_op_eq @@ -987,7 +1082,7 @@ QED Theorem u16_rem_eq: !x y. - u16_to_int y <> 0 ==> + u16_to_int y <> 0 ⇒ ?z. u16_rem x y = Return z /\ u16_to_int z = int_rem (u16_to_int x) (u16_to_int y) Proof prove_arith_op_eq @@ -995,7 +1090,7 @@ QED Theorem u32_rem_eq: !x y. - u32_to_int y <> 0 ==> + u32_to_int y <> 0 ⇒ ?z. u32_rem x y = Return z /\ u32_to_int z = int_rem (u32_to_int x) (u32_to_int y) Proof prove_arith_op_eq @@ -1003,7 +1098,7 @@ QED Theorem u64_rem_eq: !x y. - u64_to_int y <> 0 ==> + u64_to_int y <> 0 ⇒ ?z. u64_rem x y = Return z /\ u64_to_int z = int_rem (u64_to_int x) (u64_to_int y) Proof prove_arith_op_eq @@ -1011,7 +1106,7 @@ QED Theorem u128_rem_eq: !x y. - u128_to_int y <> 0 ==> + u128_to_int y <> 0 ⇒ ?z. u128_rem x y = Return z /\ u128_to_int z = int_rem (u128_to_int x) (u128_to_int y) Proof prove_arith_op_eq @@ -1019,7 +1114,7 @@ QED Theorem usize_rem_eq: !x y. - usize_to_int y <> 0 ==> + usize_to_int y <> 0 ⇒ ?z. usize_rem x y = Return z /\ usize_to_int z = int_rem (usize_to_int x) (usize_to_int y) Proof prove_arith_op_eq @@ -1027,9 +1122,9 @@ QED Theorem i8_rem_eq: !x y. - i8_to_int y <> 0 ==> - i8_min <= int_rem (i8_to_int x) (i8_to_int y) ==> - int_rem (i8_to_int x) (i8_to_int y) <= i8_max ==> + i8_to_int y <> 0 ⇒ + i8_min <= int_rem (i8_to_int x) (i8_to_int y) ⇒ + int_rem (i8_to_int x) (i8_to_int y) <= i8_max ⇒ ?z. i8_rem x y = Return z /\ i8_to_int z = int_rem (i8_to_int x) (i8_to_int y) Proof prove_arith_op_eq @@ -1037,9 +1132,9 @@ QED Theorem i16_rem_eq: !x y. - i16_to_int y <> 0 ==> - i16_min <= int_rem (i16_to_int x) (i16_to_int y) ==> - int_rem (i16_to_int x) (i16_to_int y) <= i16_max ==> + i16_to_int y <> 0 ⇒ + i16_min <= int_rem (i16_to_int x) (i16_to_int y) ⇒ + int_rem (i16_to_int x) (i16_to_int y) <= i16_max ⇒ ?z. i16_rem x y = Return z /\ i16_to_int z = int_rem (i16_to_int x) (i16_to_int y) Proof prove_arith_op_eq @@ -1047,9 +1142,9 @@ QED Theorem i32_rem_eq: !x y. - i32_to_int y <> 0 ==> - i32_min <= int_rem (i32_to_int x) (i32_to_int y) ==> - int_rem (i32_to_int x) (i32_to_int y) <= i32_max ==> + i32_to_int y <> 0 ⇒ + i32_min <= int_rem (i32_to_int x) (i32_to_int y) ⇒ + int_rem (i32_to_int x) (i32_to_int y) <= i32_max ⇒ ?z. i32_rem x y = Return z /\ i32_to_int z = int_rem (i32_to_int x) (i32_to_int y) Proof prove_arith_op_eq @@ -1057,9 +1152,9 @@ QED Theorem i64_rem_eq: !x y. - i64_to_int y <> 0 ==> - i64_min <= int_rem (i64_to_int x) (i64_to_int y) ==> - int_rem (i64_to_int x) (i64_to_int y) <= i64_max ==> + i64_to_int y <> 0 ⇒ + i64_min <= int_rem (i64_to_int x) (i64_to_int y) ⇒ + int_rem (i64_to_int x) (i64_to_int y) <= i64_max ⇒ ?z. i64_rem x y = Return z /\ i64_to_int z = int_rem (i64_to_int x) (i64_to_int y) Proof prove_arith_op_eq @@ -1067,9 +1162,9 @@ QED Theorem i128_rem_eq: !x y. - i128_to_int y <> 0 ==> - i128_min <= int_rem (i128_to_int x) (i128_to_int y) ==> - int_rem (i128_to_int x) (i128_to_int y) <= i128_max ==> + i128_to_int y <> 0 ⇒ + i128_min <= int_rem (i128_to_int x) (i128_to_int y) ⇒ + int_rem (i128_to_int x) (i128_to_int y) <= i128_max ⇒ ?z. i128_rem x y = Return z /\ i128_to_int z = int_rem (i128_to_int x) (i128_to_int y) Proof prove_arith_op_eq @@ -1077,16 +1172,208 @@ QED Theorem isize_rem_eq: !x y. - isize_to_int y <> 0 ==> + isize_to_int y <> 0 ⇒ (i16_min <= int_rem (isize_to_int x) (isize_to_int y) \/ - isize_min <= int_rem (isize_to_int x) (isize_to_int y)) ==> + isize_min <= int_rem (isize_to_int x) (isize_to_int y)) ⇒ (int_rem (isize_to_int x) (isize_to_int y) <= i16_max \/ - int_rem (isize_to_int x) (isize_to_int y) <= isize_max) ==> + int_rem (isize_to_int x) (isize_to_int y) <= isize_max) ⇒ ?z. isize_rem x y = Return z /\ isize_to_int z = int_rem (isize_to_int x) (isize_to_int y) Proof prove_arith_op_eq QED +Definition u8_lt_def: + u8_lt x y = (u8_to_int x < u8_to_int y) +End + +Definition u16_lt_def: + u16_lt x y = (u16_to_int x < u16_to_int y) +End + +Definition u32_lt_def: + u32_lt x y = (u32_to_int x < u32_to_int y) +End + +Definition u64_lt_def: + u64_lt x y = (u64_to_int x < u64_to_int y) +End + +Definition u128_lt_def: + u128_lt x y = (u128_to_int x < u128_to_int y) +End + +Definition usize_lt_def: + usize_lt x y = (usize_to_int x < usize_to_int y) +End + +Definition i8_lt_def: + i8_lt x y = (i8_to_int x < i8_to_int y) +End + +Definition i16_lt_def: + i16_lt x y = (i16_to_int x < i16_to_int y) +End + +Definition i32_lt_def: + i32_lt x y = (i32_to_int x < i32_to_int y) +End + +Definition i64_lt_def: + i64_lt x y = (i64_to_int x < i64_to_int y) +End + +Definition i128_lt_def: + i128_lt x y = (i128_to_int x < i128_to_int y) +End + +Definition isize_lt_def: + isize_lt x y = (isize_to_int x < isize_to_int y) +End + +Definition u8_le_def: + u8_le x y = (u8_to_int x ≤ u8_to_int y) +End + +Definition u16_le_def: + u16_le x y = (u16_to_int x ≤ u16_to_int y) +End + +Definition u32_le_def: + u32_le x y = (u32_to_int x ≤ u32_to_int y) +End + +Definition u64_le_def: + u64_le x y = (u64_to_int x ≤ u64_to_int y) +End + +Definition u128_le_def: + u128_le x y = (u128_to_int x ≤ u128_to_int y) +End + +Definition usize_le_def: + usize_le x y = (usize_to_int x ≤ usize_to_int y) +End + +Definition i8_le_def: + i8_le x y = (i8_to_int x ≤ i8_to_int y) +End + +Definition i16_le_def: + i16_le x y = (i16_to_int x ≤ i16_to_int y) +End + +Definition i32_le_def: + i32_le x y = (i32_to_int x ≤ i32_to_int y) +End + +Definition i64_le_def: + i64_le x y = (i64_to_int x ≤ i64_to_int y) +End + +Definition i128_le_def: + i128_le x y = (i128_to_int x ≤ i128_to_int y) +End + +Definition isize_le_def: + isize_le x y = (isize_to_int x ≤ isize_to_int y) +End + +Definition u8_gt_def: + u8_gt x y = (u8_to_int x > u8_to_int y) +End + +Definition u16_gt_def: + u16_gt x y = (u16_to_int x > u16_to_int y) +End + +Definition u32_gt_def: + u32_gt x y = (u32_to_int x > u32_to_int y) +End + +Definition u64_gt_def: + u64_gt x y = (u64_to_int x > u64_to_int y) +End + +Definition u128_gt_def: + u128_gt x y = (u128_to_int x > u128_to_int y) +End + +Definition usize_gt_def: + usize_gt x y = (usize_to_int x > usize_to_int y) +End + +Definition i8_gt_def: + i8_gt x y = (i8_to_int x > i8_to_int y) +End + +Definition i16_gt_def: + i16_gt x y = (i16_to_int x > i16_to_int y) +End + +Definition i32_gt_def: + i32_gt x y = (i32_to_int x > i32_to_int y) +End + +Definition i64_gt_def: + i64_gt x y = (i64_to_int x > i64_to_int y) +End + +Definition i128_gt_def: + i128_gt x y = (i128_to_int x > i128_to_int y) +End + +Definition isize_gt_def: + isize_gt x y = (isize_to_int x > isize_to_int y) +End + +Definition u8_ge_def: + u8_ge x y = (u8_to_int x >= u8_to_int y) +End + +Definition u16_ge_def: + u16_ge x y = (u16_to_int x >= u16_to_int y) +End + +Definition u32_ge_def: + u32_ge x y = (u32_to_int x >= u32_to_int y) +End + +Definition u64_ge_def: + u64_ge x y = (u64_to_int x >= u64_to_int y) +End + +Definition u128_ge_def: + u128_ge x y = (u128_to_int x >= u128_to_int y) +End + +Definition usize_ge_def: + usize_ge x y = (usize_to_int x >= usize_to_int y) +End + +Definition i8_ge_def: + i8_ge x y = (i8_to_int x >= i8_to_int y) +End + +Definition i16_ge_def: + i16_ge x y = (i16_to_int x >= i16_to_int y) +End + +Definition i32_ge_def: + i32_ge x y = (i32_to_int x >= i32_to_int y) +End + +Definition i64_ge_def: + i64_ge x y = (i64_to_int x >= i64_to_int y) +End + +Definition i128_ge_def: + i128_ge x y = (i128_to_int x >= i128_to_int y) +End + +Definition isize_ge_def: + isize_ge x y = (isize_to_int x >= isize_to_int y) +End + (*** * Vectors @@ -1109,8 +1396,8 @@ QED Theorem update_spec: ∀ls i y. - 0 <= i ==> - i < len ls ==> + 0 <= i ⇒ + i < len ls ⇒ len (update ls i y) = len ls ∧ index i (update ls i y) = y ∧ ∀j. j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls @@ -1131,8 +1418,8 @@ QED Theorem index_update_same: ∀ls i j y. - 0 <= i ==> - i < len ls ==> + 0 <= i ⇒ + i < len ls ⇒ j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls Proof rpt strip_tac >> @@ -1142,8 +1429,8 @@ QED Theorem index_update_diff: ∀ls i j y. - 0 <= i ==> - i < len ls ==> + 0 <= i ⇒ + i < len ls ⇒ index i (update ls i y) = y Proof rpt strip_tac >> diff --git a/backends/hol4/primitivesTheory.sig b/backends/hol4/primitivesTheory.sig index fdf28172..3b029c05 100644 --- a/backends/hol4/primitivesTheory.sig +++ b/backends/hol4/primitivesTheory.sig @@ -50,46 +50,77 @@ sig val error_CASE : thm val error_TY_DEF : thm val error_size_def : thm + val get_return_value_def : thm val i128_add_def : thm val i128_div_def : thm + val i128_ge_def : thm + val i128_gt_def : thm + val i128_le_def : thm + val i128_lt_def : thm val i128_max_def : thm val i128_min_def : thm val i128_mul_def : thm + val i128_neg_def : thm val i128_rem_def : thm val i128_sub_def : thm val i16_add_def : thm val i16_div_def : thm + val i16_ge_def : thm + val i16_gt_def : thm + val i16_le_def : thm + val i16_lt_def : thm val i16_max_def : thm val i16_min_def : thm val i16_mul_def : thm + val i16_neg_def : thm val i16_rem_def : thm val i16_sub_def : thm val i32_add_def : thm val i32_div_def : thm + val i32_ge_def : thm + val i32_gt_def : thm + val i32_le_def : thm + val i32_lt_def : thm val i32_max_def : thm val i32_min_def : thm val i32_mul_def : thm + val i32_neg_def : thm val i32_rem_def : thm val i32_sub_def : thm val i64_add_def : thm val i64_div_def : thm + val i64_ge_def : thm + val i64_gt_def : thm + val i64_le_def : thm + val i64_lt_def : thm val i64_max_def : thm val i64_min_def : thm val i64_mul_def : thm + val i64_neg_def : thm val i64_rem_def : thm val i64_sub_def : thm val i8_add_def : thm val i8_div_def : thm + val i8_ge_def : thm + val i8_gt_def : thm + val i8_le_def : thm + val i8_lt_def : thm val i8_max_def : thm val i8_min_def : thm val i8_mul_def : thm + val i8_neg_def : thm val i8_rem_def : thm val i8_sub_def : thm val int_rem_def : thm val is_diverge_def : thm val isize_add_def : thm val isize_div_def : thm + val isize_ge_def : thm + val isize_gt_def : thm + val isize_le_def : thm + val isize_lt_def : thm val isize_mul_def : thm + val isize_neg_def : thm val isize_rem_def : thm val isize_sub_def : thm val massert_def : thm @@ -113,36 +144,60 @@ sig val return_def : thm val u128_add_def : thm val u128_div_def : thm + val u128_ge_def : thm + val u128_gt_def : thm + val u128_le_def : thm + val u128_lt_def : thm val u128_max_def : thm val u128_mul_def : thm val u128_rem_def : thm val u128_sub_def : thm val u16_add_def : thm val u16_div_def : thm + val u16_ge_def : thm + val u16_gt_def : thm + val u16_le_def : thm + val u16_lt_def : thm val u16_max_def : thm val u16_mul_def : thm val u16_rem_def : thm val u16_sub_def : thm val u32_add_def : thm val u32_div_def : thm + val u32_ge_def : thm + val u32_gt_def : thm + val u32_le_def : thm + val u32_lt_def : thm val u32_max_def : thm val u32_mul_def : thm val u32_rem_def : thm val u32_sub_def : thm val u64_add_def : thm val u64_div_def : thm + val u64_ge_def : thm + val u64_gt_def : thm + val u64_le_def : thm + val u64_lt_def : thm val u64_max_def : thm val u64_mul_def : thm val u64_rem_def : thm val u64_sub_def : thm val u8_add_def : thm val u8_div_def : thm + val u8_ge_def : thm + val u8_gt_def : thm + val u8_le_def : thm + val u8_lt_def : thm val u8_max_def : thm val u8_mul_def : thm val u8_rem_def : thm val u8_sub_def : thm val usize_add_def : thm val usize_div_def : thm + val usize_ge_def : thm + val usize_gt_def : thm + val usize_le_def : thm + val usize_lt_def : thm val usize_mul_def : thm val usize_rem_def : thm val usize_sub_def : thm @@ -167,26 +222,31 @@ sig val i128_add_eq : thm val i128_div_eq : thm val i128_mul_eq : thm + val i128_neg_eq : thm val i128_rem_eq : thm val i128_sub_eq : thm val i16_add_eq : thm val i16_div_eq : thm val i16_mul_eq : thm + val i16_neg_eq : thm val i16_rem_eq : thm val i16_sub_eq : thm val i32_add_eq : thm val i32_div_eq : thm val i32_mul_eq : thm + val i32_neg_eq : thm val i32_rem_eq : thm val i32_sub_eq : thm val i64_add_eq : thm val i64_div_eq : thm val i64_mul_eq : thm + val i64_neg_eq : thm val i64_rem_eq : thm val i64_sub_eq : thm val i8_add_eq : thm val i8_div_eq : thm val i8_mul_eq : thm + val i8_neg_eq : thm val i8_rem_eq : thm val i8_sub_eq : thm val index_update_diff : thm @@ -194,6 +254,7 @@ sig val isize_add_eq : thm val isize_div_eq : thm val isize_mul_eq : thm + val isize_neg_eq : thm val isize_rem_eq : thm val isize_sub_eq : thm val num2error_11 : thm @@ -471,6 +532,10 @@ sig ⊢ ∀x. error_size x = 0 + [get_return_value_def] Definition + + ⊢ ∀x. get_return_value (Return x) = x + [i128_add_def] Definition ⊢ ∀x y. i128_add x y = mk_i128 (i128_to_int x + i128_to_int y) @@ -482,6 +547,22 @@ sig if i128_to_int y = 0 then Fail Failure else mk_i128 (i128_to_int x / i128_to_int y) + [i128_ge_def] Definition + + ⊢ ∀x y. i128_ge x y ⇔ i128_to_int x ≥ i128_to_int y + + [i128_gt_def] Definition + + ⊢ ∀x y. i128_gt x y ⇔ i128_to_int x > i128_to_int y + + [i128_le_def] Definition + + ⊢ ∀x y. i128_le x y ⇔ i128_to_int x ≤ i128_to_int y + + [i128_lt_def] Definition + + ⊢ ∀x y. i128_lt x y ⇔ i128_to_int x < i128_to_int y + [i128_max_def] Definition ⊢ i128_max = 170141183460469231731687303715884105727 @@ -494,6 +575,10 @@ sig ⊢ ∀x y. i128_mul x y = mk_i128 (i128_to_int x * i128_to_int y) + [i128_neg_def] Definition + + ⊢ ∀x. i128_neg x = mk_i128 (-i128_to_int x) + [i128_rem_def] Definition ⊢ ∀x y. @@ -516,6 +601,22 @@ sig if i16_to_int y = 0 then Fail Failure else mk_i16 (i16_to_int x / i16_to_int y) + [i16_ge_def] Definition + + ⊢ ∀x y. i16_ge x y ⇔ i16_to_int x ≥ i16_to_int y + + [i16_gt_def] Definition + + ⊢ ∀x y. i16_gt x y ⇔ i16_to_int x > i16_to_int y + + [i16_le_def] Definition + + ⊢ ∀x y. i16_le x y ⇔ i16_to_int x ≤ i16_to_int y + + [i16_lt_def] Definition + + ⊢ ∀x y. i16_lt x y ⇔ i16_to_int x < i16_to_int y + [i16_max_def] Definition ⊢ i16_max = 32767 @@ -528,6 +629,10 @@ sig ⊢ ∀x y. i16_mul x y = mk_i16 (i16_to_int x * i16_to_int y) + [i16_neg_def] Definition + + ⊢ ∀x. i16_neg x = mk_i16 (-i16_to_int x) + [i16_rem_def] Definition ⊢ ∀x y. @@ -550,6 +655,22 @@ sig if i32_to_int y = 0 then Fail Failure else mk_i32 (i32_to_int x / i32_to_int y) + [i32_ge_def] Definition + + ⊢ ∀x y. i32_ge x y ⇔ i32_to_int x ≥ i32_to_int y + + [i32_gt_def] Definition + + ⊢ ∀x y. i32_gt x y ⇔ i32_to_int x > i32_to_int y + + [i32_le_def] Definition + + ⊢ ∀x y. i32_le x y ⇔ i32_to_int x ≤ i32_to_int y + + [i32_lt_def] Definition + + ⊢ ∀x y. i32_lt x y ⇔ i32_to_int x < i32_to_int y + [i32_max_def] Definition ⊢ i32_max = 2147483647 @@ -562,6 +683,10 @@ sig ⊢ ∀x y. i32_mul x y = mk_i32 (i32_to_int x * i32_to_int y) + [i32_neg_def] Definition + + ⊢ ∀x. i32_neg x = mk_i32 (-i32_to_int x) + [i32_rem_def] Definition ⊢ ∀x y. @@ -584,6 +709,22 @@ sig if i64_to_int y = 0 then Fail Failure else mk_i64 (i64_to_int x / i64_to_int y) + [i64_ge_def] Definition + + ⊢ ∀x y. i64_ge x y ⇔ i64_to_int x ≥ i64_to_int y + + [i64_gt_def] Definition + + ⊢ ∀x y. i64_gt x y ⇔ i64_to_int x > i64_to_int y + + [i64_le_def] Definition + + ⊢ ∀x y. i64_le x y ⇔ i64_to_int x ≤ i64_to_int y + + [i64_lt_def] Definition + + ⊢ ∀x y. i64_lt x y ⇔ i64_to_int x < i64_to_int y + [i64_max_def] Definition ⊢ i64_max = 9223372036854775807 @@ -596,6 +737,10 @@ sig ⊢ ∀x y. i64_mul x y = mk_i64 (i64_to_int x * i64_to_int y) + [i64_neg_def] Definition + + ⊢ ∀x. i64_neg x = mk_i64 (-i64_to_int x) + [i64_rem_def] Definition ⊢ ∀x y. @@ -618,6 +763,22 @@ sig if i8_to_int y = 0 then Fail Failure else mk_i8 (i8_to_int x / i8_to_int y) + [i8_ge_def] Definition + + ⊢ ∀x y. i8_ge x y ⇔ i8_to_int x ≥ i8_to_int y + + [i8_gt_def] Definition + + ⊢ ∀x y. i8_gt x y ⇔ i8_to_int x > i8_to_int y + + [i8_le_def] Definition + + ⊢ ∀x y. i8_le x y ⇔ i8_to_int x ≤ i8_to_int y + + [i8_lt_def] Definition + + ⊢ ∀x y. i8_lt x y ⇔ i8_to_int x < i8_to_int y + [i8_max_def] Definition ⊢ i8_max = 127 @@ -630,6 +791,10 @@ sig ⊢ ∀x y. i8_mul x y = mk_i8 (i8_to_int x * i8_to_int y) + [i8_neg_def] Definition + + ⊢ ∀x. i8_neg x = mk_i8 (-i8_to_int x) + [i8_rem_def] Definition ⊢ ∀x y. @@ -663,10 +828,30 @@ sig if isize_to_int y = 0 then Fail Failure else mk_isize (isize_to_int x / isize_to_int y) + [isize_ge_def] Definition + + ⊢ ∀x y. isize_ge x y ⇔ isize_to_int x ≥ isize_to_int y + + [isize_gt_def] Definition + + ⊢ ∀x y. isize_gt x y ⇔ isize_to_int x > isize_to_int y + + [isize_le_def] Definition + + ⊢ ∀x y. isize_le x y ⇔ isize_to_int x ≤ isize_to_int y + + [isize_lt_def] Definition + + ⊢ ∀x y. isize_lt x y ⇔ isize_to_int x < isize_to_int y + [isize_mul_def] Definition ⊢ ∀x y. isize_mul x y = mk_isize (isize_to_int x * isize_to_int y) + [isize_neg_def] Definition + + ⊢ ∀x. isize_neg x = mk_isize (-isize_to_int x) + [isize_rem_def] Definition ⊢ ∀x y. @@ -810,6 +995,22 @@ sig if u128_to_int y = 0 then Fail Failure else mk_u128 (u128_to_int x / u128_to_int y) + [u128_ge_def] Definition + + ⊢ ∀x y. u128_ge x y ⇔ u128_to_int x ≥ u128_to_int y + + [u128_gt_def] Definition + + ⊢ ∀x y. u128_gt x y ⇔ u128_to_int x > u128_to_int y + + [u128_le_def] Definition + + ⊢ ∀x y. u128_le x y ⇔ u128_to_int x ≤ u128_to_int y + + [u128_lt_def] Definition + + ⊢ ∀x y. u128_lt x y ⇔ u128_to_int x < u128_to_int y + [u128_max_def] Definition ⊢ u128_max = 340282366920938463463374607431768211455 @@ -840,6 +1041,22 @@ sig if u16_to_int y = 0 then Fail Failure else mk_u16 (u16_to_int x / u16_to_int y) + [u16_ge_def] Definition + + ⊢ ∀x y. u16_ge x y ⇔ u16_to_int x ≥ u16_to_int y + + [u16_gt_def] Definition + + ⊢ ∀x y. u16_gt x y ⇔ u16_to_int x > u16_to_int y + + [u16_le_def] Definition + + ⊢ ∀x y. u16_le x y ⇔ u16_to_int x ≤ u16_to_int y + + [u16_lt_def] Definition + + ⊢ ∀x y. u16_lt x y ⇔ u16_to_int x < u16_to_int y + [u16_max_def] Definition ⊢ u16_max = 65535 @@ -870,6 +1087,22 @@ sig if u32_to_int y = 0 then Fail Failure else mk_u32 (u32_to_int x / u32_to_int y) + [u32_ge_def] Definition + + ⊢ ∀x y. u32_ge x y ⇔ u32_to_int x ≥ u32_to_int y + + [u32_gt_def] Definition + + ⊢ ∀x y. u32_gt x y ⇔ u32_to_int x > u32_to_int y + + [u32_le_def] Definition + + ⊢ ∀x y. u32_le x y ⇔ u32_to_int x ≤ u32_to_int y + + [u32_lt_def] Definition + + ⊢ ∀x y. u32_lt x y ⇔ u32_to_int x < u32_to_int y + [u32_max_def] Definition ⊢ u32_max = 4294967295 @@ -900,6 +1133,22 @@ sig if u64_to_int y = 0 then Fail Failure else mk_u64 (u64_to_int x / u64_to_int y) + [u64_ge_def] Definition + + ⊢ ∀x y. u64_ge x y ⇔ u64_to_int x ≥ u64_to_int y + + [u64_gt_def] Definition + + ⊢ ∀x y. u64_gt x y ⇔ u64_to_int x > u64_to_int y + + [u64_le_def] Definition + + ⊢ ∀x y. u64_le x y ⇔ u64_to_int x ≤ u64_to_int y + + [u64_lt_def] Definition + + ⊢ ∀x y. u64_lt x y ⇔ u64_to_int x < u64_to_int y + [u64_max_def] Definition ⊢ u64_max = 18446744073709551615 @@ -930,6 +1179,22 @@ sig if u8_to_int y = 0 then Fail Failure else mk_u8 (u8_to_int x / u8_to_int y) + [u8_ge_def] Definition + + ⊢ ∀x y. u8_ge x y ⇔ u8_to_int x ≥ u8_to_int y + + [u8_gt_def] Definition + + ⊢ ∀x y. u8_gt x y ⇔ u8_to_int x > u8_to_int y + + [u8_le_def] Definition + + ⊢ ∀x y. u8_le x y ⇔ u8_to_int x ≤ u8_to_int y + + [u8_lt_def] Definition + + ⊢ ∀x y. u8_lt x y ⇔ u8_to_int x < u8_to_int y + [u8_max_def] Definition ⊢ u8_max = 255 @@ -960,6 +1225,22 @@ sig if usize_to_int y = 0 then Fail Failure else mk_usize (usize_to_int x / usize_to_int y) + [usize_ge_def] Definition + + ⊢ ∀x y. usize_ge x y ⇔ usize_to_int x ≥ usize_to_int y + + [usize_gt_def] Definition + + ⊢ ∀x y. usize_gt x y ⇔ usize_to_int x > usize_to_int y + + [usize_le_def] Definition + + ⊢ ∀x y. usize_le x y ⇔ usize_to_int x ≤ usize_to_int y + + [usize_lt_def] Definition + + ⊢ ∀x y. usize_lt x y ⇔ usize_to_int x < usize_to_int y + [usize_mul_def] Definition ⊢ ∀x y. usize_mul x y = mk_usize (usize_to_int x * usize_to_int y) @@ -1078,6 +1359,15 @@ sig ∃z. i128_mul x y = Return z ∧ i128_to_int z = i128_to_int x * i128_to_int y + [i128_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: i128_to_int_int_to_i128, isize_bounds] + [] + ⊢ ∀x y. + i128_min ≤ -i128_to_int x ⇒ + -i128_to_int x ≤ i128_max ⇒ + ∃y. i128_neg x = Return y ∧ i128_to_int y = -i128_to_int x + [i128_rem_eq] Theorem [oracles: DISK_THM] @@ -1131,6 +1421,14 @@ sig ∃z. i16_mul x y = Return z ∧ i16_to_int z = i16_to_int x * i16_to_int y + [i16_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: i16_to_int_int_to_i16, isize_bounds] [] + ⊢ ∀x y. + i16_min ≤ -i16_to_int x ⇒ + -i16_to_int x ≤ i16_max ⇒ + ∃y. i16_neg x = Return y ∧ i16_to_int y = -i16_to_int x + [i16_rem_eq] Theorem [oracles: DISK_THM] @@ -1184,6 +1482,14 @@ sig ∃z. i32_mul x y = Return z ∧ i32_to_int z = i32_to_int x * i32_to_int y + [i32_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: i32_to_int_int_to_i32, isize_bounds] [] + ⊢ ∀x y. + i32_min ≤ -i32_to_int x ⇒ + -i32_to_int x ≤ i32_max ⇒ + ∃y. i32_neg x = Return y ∧ i32_to_int y = -i32_to_int x + [i32_rem_eq] Theorem [oracles: DISK_THM] @@ -1237,6 +1543,14 @@ sig ∃z. i64_mul x y = Return z ∧ i64_to_int z = i64_to_int x * i64_to_int y + [i64_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: i64_to_int_int_to_i64, isize_bounds] [] + ⊢ ∀x y. + i64_min ≤ -i64_to_int x ⇒ + -i64_to_int x ≤ i64_max ⇒ + ∃y. i64_neg x = Return y ∧ i64_to_int y = -i64_to_int x + [i64_rem_eq] Theorem [oracles: DISK_THM] @@ -1290,6 +1604,14 @@ sig ∃z. i8_mul x y = Return z ∧ i8_to_int z = i8_to_int x * i8_to_int y + [i8_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: i8_to_int_int_to_i8, isize_bounds] [] + ⊢ ∀x y. + i8_min ≤ -i8_to_int x ⇒ + -i8_to_int x ≤ i8_max ⇒ + ∃y. i8_neg x = Return y ∧ i8_to_int y = -i8_to_int x + [i8_rem_eq] Theorem [oracles: DISK_THM] @@ -1365,6 +1687,15 @@ sig ∃z. isize_mul x y = Return z ∧ isize_to_int z = isize_to_int x * isize_to_int y + [isize_neg_eq] Theorem + + [oracles: DISK_THM] [axioms: isize_to_int_int_to_isize, isize_bounds] + [] + ⊢ ∀x y. + isize_min ≤ -isize_to_int x ⇒ + -isize_to_int x ≤ isize_max ⇒ + ∃y. isize_neg x = Return y ∧ isize_to_int y = -isize_to_int x + [isize_rem_eq] Theorem [oracles: DISK_THM] |