diff options
Diffstat (limited to '')
-rw-r--r-- | backends/hol4/testTheory.sig | 839 |
1 files changed, 839 insertions, 0 deletions
diff --git a/backends/hol4/testTheory.sig b/backends/hol4/testTheory.sig new file mode 100644 index 00000000..c1034394 --- /dev/null +++ b/backends/hol4/testTheory.sig @@ -0,0 +1,839 @@ +signature testTheory = +sig + type thm = Thm.thm + + (* Axioms *) + val VEC_TO_LIST_BOUNDS : thm + val i32_to_int_bounds : thm + val insert_def : thm + val int_to_i32_id : thm + val int_to_u32_id : thm + val u32_to_int_bounds : thm + + (* Definitions *) + val distinct_keys_def : thm + val error_BIJ : thm + val error_CASE : thm + val error_TY_DEF : thm + val error_size_def : thm + val i32_add_def : thm + val i32_max_def : thm + val i32_min_def : thm + val int1_def : thm + val int2_def : thm + val is_loop_def : thm + val is_true_def : thm + val list_t_TY_DEF : thm + val list_t_case_def : thm + val list_t_size_def : thm + val list_t_v_def : thm + val lookup_def : thm + val mk_i32_def : thm + val mk_u32_def : thm + val nth_expand_def : thm + val nth_fuel_P_def : thm + val result_TY_DEF : thm + val result_case_def : thm + val result_size_def : thm + val st_ex_bind_def : thm + val st_ex_return_def : thm + val test1_def : thm + val test2_TY_DEF : thm + val test2_case_def : thm + val test2_size_def : thm + val test_TY_DEF : thm + val test_case_def : thm + val test_monad2_def : thm + val test_monad3_def : thm + val test_monad_def : thm + val test_size_def : thm + val u32_add_def : thm + val u32_max_def : thm + val u32_sub_def : thm + val usize_max_def : thm + val vec_len_def : thm + + (* Theorems *) + val I32_ADD_EQ : thm + val INT_OF_NUM_INJ : thm + val INT_THM1 : thm + val INT_THM2 : thm + val MK_I32_SUCCESS : thm + val MK_U32_SUCCESS : thm + val NAT_THM1 : thm + val NAT_THM2 : thm + val NUM_SUB_1_EQ : thm + val NUM_SUB_1_EQ1 : thm + val NUM_SUB_EQ : thm + val U32_ADD_EQ : thm + val U32_SUB_EQ : thm + val VEC_TO_LIST_INT_BOUNDS : thm + val datatype_error : thm + val datatype_list_t : thm + val datatype_result : thm + val datatype_test : thm + val datatype_test2 : thm + val error2num_11 : thm + val error2num_ONTO : thm + val error2num_num2error : thm + val error2num_thm : thm + val error_Axiom : thm + val error_EQ_error : thm + val error_case_cong : thm + val error_case_def : thm + val error_case_eq : thm + val error_induction : thm + val error_nchotomy : thm + val insert_lem : thm + val list_nth_mut_loop_loop_fwd_def : thm + val list_nth_mut_loop_loop_fwd_ind : thm + val list_t_11 : thm + val list_t_Axiom : thm + val list_t_case_cong : thm + val list_t_case_eq : thm + val list_t_distinct : thm + val list_t_induction : thm + val list_t_nchotomy : thm + val lookup_raw_def : thm + val lookup_raw_ind : thm + val nth_def : thm + val nth_def_loop : thm + val nth_def_terminates : thm + val nth_fuel_P_mono : thm + val nth_fuel_def : thm + val nth_fuel_ind : thm + val nth_fuel_least_fail_mono : thm + val nth_fuel_least_success_mono : thm + val nth_fuel_mono : thm + val num2error_11 : thm + val num2error_ONTO : thm + val num2error_error2num : thm + val num2error_thm : thm + val result_11 : thm + val result_Axiom : thm + val result_case_cong : thm + val result_case_eq : thm + val result_distinct : thm + val result_induction : thm + val result_nchotomy : thm + val test2_11 : thm + val test2_Axiom : thm + val test2_case_cong : thm + val test2_case_eq : thm + val test2_distinct : thm + val test2_induction : thm + val test2_nchotomy : thm + val test_11 : thm + val test_Axiom : thm + val test_case_cong : thm + val test_case_eq : thm + val test_distinct : thm + val test_induction : thm + val test_nchotomy : thm + + val test_grammars : type_grammar.grammar * term_grammar.grammar +(* + [Omega] Parent theory of "test" + + [int_arith] Parent theory of "test" + + [words] Parent theory of "test" + + [insert_def] Axiom + + [oracles: ] [axioms: insert_def] [] + ⊢ insert key value ls = + case ls of + ListCons (ckey,cvalue) tl => + if ckey = key then Return (ListCons (ckey,value) tl) + else + do + tl0 <- insert key value tl; + Return (ListCons (ckey,cvalue) tl0) + od + | ListNil => Return (ListCons (key,value) ListNil) + + [u32_to_int_bounds] Axiom + + [oracles: ] [axioms: u32_to_int_bounds] [] + ⊢ ∀n. 0 ≤ u32_to_int n ∧ u32_to_int n ≤ u32_max + + [i32_to_int_bounds] Axiom + + [oracles: ] [axioms: i32_to_int_bounds] [] + ⊢ ∀n. i32_min ≤ i32_to_int n ∧ i32_to_int n ≤ i32_max + + [int_to_u32_id] Axiom + + [oracles: ] [axioms: int_to_u32_id] [] + ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ u32_to_int (int_to_u32 n) = n + + [int_to_i32_id] Axiom + + [oracles: ] [axioms: int_to_i32_id] [] + ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ i32_to_int (int_to_i32 n) = n + + [VEC_TO_LIST_BOUNDS] Axiom + + [oracles: ] [axioms: VEC_TO_LIST_BOUNDS] [] + ⊢ ∀v. (let l = LENGTH (vec_to_list v) in 0 ≤ l ∧ l ≤ 4294967295) + + [distinct_keys_def] Definition + + ⊢ ∀ls. + distinct_keys ls ⇔ + ∀i j. + i < LENGTH ls ⇒ + j < LENGTH ls ⇒ + FST (EL i ls) = FST (EL j ls) ⇒ + i = j + + [error_BIJ] Definition + + ⊢ (∀a. num2error (error2num a) = a) ∧ + ∀r. (λn. n < 1) r ⇔ error2num (num2error r) = r + + [error_CASE] Definition + + ⊢ ∀x v0. (case x of Failure => v0) = (λm. v0) (error2num x) + + [error_TY_DEF] Definition + + ⊢ ∃rep. TYPE_DEFINITION (λn. n < 1) rep + + [error_size_def] Definition + + ⊢ ∀x. error_size x = 0 + + [i32_add_def] Definition + + ⊢ ∀x y. i32_add x y = mk_i32 (i32_to_int x + i32_to_int y) + + [i32_max_def] Definition + + ⊢ i32_max = 2147483647 + + [i32_min_def] Definition + + ⊢ i32_min = -2147483648 + + [int1_def] Definition + + ⊢ int1 = 32 + + [int2_def] Definition + + ⊢ int2 = -32 + + [is_loop_def] Definition + + ⊢ ∀r. is_loop r ⇔ case r of Return v2 => F | Fail v3 => F | Loop => T + + [is_true_def] Definition + + ⊢ ∀x. is_true x = if x then Return () else Fail Failure + + [list_t_TY_DEF] Definition + + ⊢ ∃rep. + TYPE_DEFINITION + (λa0'. + ∀ $var$('list_t'). + (∀a0'. + (∃a0 a1. + a0' = + (λa0 a1. + ind_type$CONSTR 0 a0 + (ind_type$FCONS a1 (λn. ind_type$BOTTOM))) + a0 a1 ∧ $var$('list_t') a1) ∨ + a0' = + ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒ + $var$('list_t') a0') ⇒ + $var$('list_t') a0') rep + + [list_t_case_def] Definition + + ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧ + ∀f v. list_t_CASE ListNil f v = v + + [list_t_size_def] Definition + + ⊢ (∀f a0 a1. + list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧ + ∀f. list_t_size f ListNil = 0 + + [list_t_v_def] Definition + + ⊢ list_t_v ListNil = [] ∧ + ∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl + + [lookup_def] Definition + + ⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls) + + [mk_i32_def] Definition + + ⊢ ∀n. mk_i32 n = + if i32_min ≤ n ∧ n ≤ i32_max then Return (int_to_i32 n) + else Fail Failure + + [mk_u32_def] Definition + + ⊢ ∀n. mk_u32 n = + if 0 ≤ n ∧ n ≤ u32_max then Return (int_to_u32 n) + else Fail Failure + + [nth_expand_def] Definition + + ⊢ ∀nth ls i. + nth_expand nth ls i = + case ls of + ListCons x tl => + if u32_to_int i = 0 then Return x + else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od + | ListNil => Fail Failure + + [nth_fuel_P_def] Definition + + ⊢ ∀ls i n. nth_fuel_P ls i n ⇔ ¬is_loop (nth_fuel n ls i) + + [result_TY_DEF] Definition + + ⊢ ∃rep. + TYPE_DEFINITION + (λa0. + ∀ $var$('result'). + (∀a0. + (∃a. a0 = + (λa. + ind_type$CONSTR 0 (a,ARB) + (λn. ind_type$BOTTOM)) a) ∨ + (∃a. a0 = + (λa. + ind_type$CONSTR (SUC 0) (ARB,a) + (λn. ind_type$BOTTOM)) a) ∨ + a0 = + ind_type$CONSTR (SUC (SUC 0)) (ARB,ARB) + (λn. ind_type$BOTTOM) ⇒ + $var$('result') a0) ⇒ + $var$('result') a0) rep + + [result_case_def] Definition + + ⊢ (∀a f f1 v. result_CASE (Return a) f f1 v = f a) ∧ + (∀a f f1 v. result_CASE (Fail a) f f1 v = f1 a) ∧ + ∀f f1 v. result_CASE Loop f f1 v = v + + [result_size_def] Definition + + ⊢ (∀f a. result_size f (Return a) = 1 + f a) ∧ + (∀f a. result_size f (Fail a) = 1 + error_size a) ∧ + ∀f. result_size f Loop = 0 + + [st_ex_bind_def] Definition + + ⊢ ∀x f. + monad_bind x f = + case x of Return y => f y | Fail e => Fail e | Loop => Loop + + [st_ex_return_def] Definition + + ⊢ ∀x. st_ex_return x = Return x + + [test1_def] Definition + + ⊢ ∀x. test1 x = Return x + + [test2_TY_DEF] Definition + + ⊢ ∃rep. + TYPE_DEFINITION + (λa0. + ∀ $var$('test2'). + (∀a0. + (∃a. a0 = + (λa. + ind_type$CONSTR 0 (a,ARB) + (λn. ind_type$BOTTOM)) a) ∨ + (∃a. a0 = + (λa. + ind_type$CONSTR (SUC 0) (ARB,a) + (λn. ind_type$BOTTOM)) a) ⇒ + $var$('test2') a0) ⇒ + $var$('test2') a0) rep + + [test2_case_def] Definition + + ⊢ (∀a f f1. test2_CASE (Variant1_2 a) f f1 = f a) ∧ + ∀a f f1. test2_CASE (Variant2_2 a) f f1 = f1 a + + [test2_size_def] Definition + + ⊢ (∀f f1 a. test2_size f f1 (Variant1_2 a) = 1 + f a) ∧ + ∀f f1 a. test2_size f f1 (Variant2_2 a) = 1 + f1 a + + [test_TY_DEF] Definition + + ⊢ ∃rep. + TYPE_DEFINITION + (λa0. + ∀ $var$('test'). + (∀a0. + (∃a. a0 = + (λa. + ind_type$CONSTR 0 (a,ARB) + (λn. ind_type$BOTTOM)) a) ∨ + (∃a. a0 = + (λa. + ind_type$CONSTR (SUC 0) (ARB,a) + (λn. ind_type$BOTTOM)) a) ⇒ + $var$('test') a0) ⇒ + $var$('test') a0) rep + + [test_case_def] Definition + + ⊢ (∀a f f1. test_CASE (Variant1 a) f f1 = f a) ∧ + ∀a f f1. test_CASE (Variant2 a) f f1 = f1 a + + [test_monad2_def] Definition + + ⊢ test_monad2 = do x <- Return T; Return x od + + [test_monad3_def] Definition + + ⊢ ∀x. test_monad3 x = monad_ignore_bind (is_true x) (Return x) + + [test_monad_def] Definition + + ⊢ ∀v. test_monad v = do x <- Return v; Return x od + + [test_size_def] Definition + + ⊢ (∀f f1 a. test_size f f1 (Variant1 a) = 1 + f1 a) ∧ + ∀f f1 a. test_size f f1 (Variant2 a) = 1 + f a + + [u32_add_def] Definition + + ⊢ ∀x y. u32_add x y = mk_u32 (u32_to_int x + u32_to_int y) + + [u32_max_def] Definition + + ⊢ u32_max = 4294967295 + + [u32_sub_def] Definition + + ⊢ ∀x y. u32_sub x y = mk_u32 (u32_to_int x − u32_to_int y) + + [usize_max_def] Definition + + ⊢ usize_max = 4294967295 + + [vec_len_def] Definition + + ⊢ ∀v. vec_len v = int_to_u32 (&LENGTH (vec_to_list v)) + + [I32_ADD_EQ] Theorem + + [oracles: DISK_THM] [axioms: int_to_i32_id] [] + ⊢ ∀x y. + i32_min ≤ i32_to_int x + i32_to_int y ⇒ + i32_to_int x + i32_to_int y ≤ i32_max ⇒ + ∃z. i32_add x y = Return z ∧ + i32_to_int z = i32_to_int x + i32_to_int y + + [INT_OF_NUM_INJ] Theorem + + ⊢ ∀n m. &n = &m ⇒ n = m + + [INT_THM1] Theorem + + ⊢ ∀x y. x > 0 ⇒ y > 0 ⇒ x + y > 0 + + [INT_THM2] Theorem + + ⊢ ∀x. T + + [MK_I32_SUCCESS] Theorem + + ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ mk_i32 n = Return (int_to_i32 n) + + [MK_U32_SUCCESS] Theorem + + ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ mk_u32 n = Return (int_to_u32 n) + + [NAT_THM1] Theorem + + ⊢ ∀n. n < n + 1 + + [NAT_THM2] Theorem + + ⊢ ∀n. n < n + 1 + + [NUM_SUB_1_EQ] Theorem + + ⊢ ∀x y. x = y − 1 ⇒ 0 ≤ x ⇒ Num y = SUC (Num x) + + [NUM_SUB_1_EQ1] Theorem + + ⊢ ∀i. 0 ≤ i − 1 ⇒ Num i = SUC (Num (i − 1)) + + [NUM_SUB_EQ] Theorem + + ⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x + + [U32_ADD_EQ] Theorem + + [oracles: DISK_THM] [axioms: int_to_u32_id, u32_to_int_bounds] [] + ⊢ ∀x y. + u32_to_int x + u32_to_int y ≤ u32_max ⇒ + ∃z. u32_add x y = Return z ∧ + u32_to_int z = u32_to_int x + u32_to_int y + + [U32_SUB_EQ] Theorem + + [oracles: DISK_THM] [axioms: int_to_u32_id, u32_to_int_bounds] [] + ⊢ ∀x y. + 0 ≤ u32_to_int x − u32_to_int y ⇒ + ∃z. u32_sub x y = Return z ∧ + u32_to_int z = u32_to_int x − u32_to_int y + + [VEC_TO_LIST_INT_BOUNDS] Theorem + + [oracles: DISK_THM] [axioms: VEC_TO_LIST_BOUNDS] [] + ⊢ ∀v. (let l = &LENGTH (vec_to_list v) in 0 ≤ l ∧ l ≤ u32_max) + + [datatype_error] Theorem + + ⊢ DATATYPE (error Failure) + + [datatype_list_t] Theorem + + ⊢ DATATYPE (list_t ListCons ListNil) + + [datatype_result] Theorem + + ⊢ DATATYPE (result Return Fail Loop) + + [datatype_test] Theorem + + ⊢ DATATYPE (test Variant1 Variant2) + + [datatype_test2] Theorem + + ⊢ DATATYPE (test2 Variant1_2 Variant2_2) + + [error2num_11] Theorem + + ⊢ ∀a a'. error2num a = error2num a' ⇔ a = a' + + [error2num_ONTO] Theorem + + ⊢ ∀r. r < 1 ⇔ ∃a. r = error2num a + + [error2num_num2error] Theorem + + ⊢ ∀r. r < 1 ⇔ error2num (num2error r) = r + + [error2num_thm] Theorem + + ⊢ error2num Failure = 0 + + [error_Axiom] Theorem + + ⊢ ∀x0. ∃f. f Failure = x0 + + [error_EQ_error] Theorem + + ⊢ ∀a a'. a = a' ⇔ error2num a = error2num a' + + [error_case_cong] Theorem + + ⊢ ∀M M' v0. + M = M' ∧ (M' = Failure ⇒ v0 = v0') ⇒ + (case M of Failure => v0) = case M' of Failure => v0' + + [error_case_def] Theorem + + ⊢ ∀v0. (case Failure of Failure => v0) = v0 + + [error_case_eq] Theorem + + ⊢ (case x of Failure => v0) = v ⇔ x = Failure ∧ v0 = v + + [error_induction] Theorem + + ⊢ ∀P. P Failure ⇒ ∀a. P a + + [error_nchotomy] Theorem + + ⊢ ∀a. a = Failure + + [insert_lem] Theorem + + [oracles: DISK_THM] [axioms: u32_to_int_bounds, insert_def] [] + ⊢ ∀ls key value. + distinct_keys (list_t_v ls) ⇒ + case insert key value ls of + Return ls1 => + lookup key ls1 = SOME value ∧ + ∀k. k ≠ key ⇒ lookup k ls = lookup k ls1 + | Fail v1 => F + | Loop => F + + [list_nth_mut_loop_loop_fwd_def] Theorem + + ⊢ ∀ls i. + list_nth_mut_loop_loop_fwd ls i = + case ls of + ListCons x tl => + if u32_to_int i = 0 then Return x + else + do + i0 <- u32_sub i (int_to_u32 1); + list_nth_mut_loop_loop_fwd tl i0 + od + | ListNil => Fail Failure + + [list_nth_mut_loop_loop_fwd_ind] Theorem + + ⊢ ∀P. (∀ls i. + (∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒ + P ls i) ⇒ + ∀v v1. P v v1 + + [list_t_11] Theorem + + ⊢ ∀a0 a1 a0' a1'. + ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1' + + [list_t_Axiom] Theorem + + ⊢ ∀f0 f1. ∃fn. + (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧ + fn ListNil = f1 + + [list_t_case_cong] Theorem + + ⊢ ∀M M' f v. + M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧ + (M' = ListNil ⇒ v = v') ⇒ + list_t_CASE M f v = list_t_CASE M' f' v' + + [list_t_case_eq] Theorem + + ⊢ list_t_CASE x f v = v' ⇔ + (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v' + + [list_t_distinct] Theorem + + ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil + + [list_t_induction] Theorem + + ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l + + [list_t_nchotomy] Theorem + + ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil + + [lookup_raw_def] Theorem + + ⊢ (∀key. lookup_raw key [] = NONE) ∧ + ∀v ls key k. + lookup_raw key ((k,v)::ls) = + if k = key then SOME v else lookup_raw key ls + + [lookup_raw_ind] Theorem + + ⊢ ∀P. (∀key. P key []) ∧ + (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒ + ∀v v1. P v v1 + + [nth_def] Theorem + + ⊢ ∀ls i. + nth ls i = + case ls of + ListCons x tl => + if u32_to_int i = 0 then Return x + else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od + | ListNil => Fail Failure + + [nth_def_loop] Theorem + + ⊢ ∀ls i. (∀n. ¬nth_fuel_P ls i n) ⇒ nth ls i = nth_expand nth ls i + + [nth_def_terminates] Theorem + + ⊢ ∀ls i. (∃n. nth_fuel_P ls i n) ⇒ nth ls i = nth_expand nth ls i + + [nth_fuel_P_mono] Theorem + + ⊢ ∀n m ls i. + n ≤ m ⇒ nth_fuel_P ls i n ⇒ nth_fuel n ls i = nth_fuel m ls i + + [nth_fuel_def] Theorem + + ⊢ ∀n ls i. + nth_fuel n ls i = + case n of + 0 => Loop + | SUC n' => + case ls of + ListCons x tl => + if u32_to_int i = 0 then Return x + else + do i0 <- u32_sub i (int_to_u32 1); nth_fuel n' tl i0 od + | ListNil => Fail Failure + + [nth_fuel_ind] Theorem + + ⊢ ∀P. (∀n ls i. + (∀n' x tl i0. + n = SUC n' ∧ ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ + P n' tl i0) ⇒ + P n ls i) ⇒ + ∀v v1 v2. P v v1 v2 + + [nth_fuel_least_fail_mono] Theorem + + ⊢ ∀n ls i. n < $LEAST (nth_fuel_P ls i) ⇒ nth_fuel n ls i = Loop + + [nth_fuel_least_success_mono] Theorem + + ⊢ ∀n ls i. + $LEAST (nth_fuel_P ls i) ≤ n ⇒ + nth_fuel n ls i = nth_fuel ($LEAST (nth_fuel_P ls i)) ls i + + [nth_fuel_mono] Theorem + + ⊢ ∀n m ls i. + n ≤ m ⇒ + if is_loop (nth_fuel n ls i) then T + else nth_fuel n ls i = nth_fuel m ls i + + [num2error_11] Theorem + + ⊢ ∀r r'. r < 1 ⇒ r' < 1 ⇒ (num2error r = num2error r' ⇔ r = r') + + [num2error_ONTO] Theorem + + ⊢ ∀a. ∃r. a = num2error r ∧ r < 1 + + [num2error_error2num] Theorem + + ⊢ ∀a. num2error (error2num a) = a + + [num2error_thm] Theorem + + ⊢ num2error 0 = Failure + + [result_11] Theorem + + ⊢ (∀a a'. Return a = Return a' ⇔ a = a') ∧ + ∀a a'. Fail a = Fail a' ⇔ a = a' + + [result_Axiom] Theorem + + ⊢ ∀f0 f1 f2. ∃fn. + (∀a. fn (Return a) = f0 a) ∧ (∀a. fn (Fail a) = f1 a) ∧ + fn Loop = f2 + + [result_case_cong] Theorem + + ⊢ ∀M M' f f1 v. + M = M' ∧ (∀a. M' = Return a ⇒ f a = f' a) ∧ + (∀a. M' = Fail a ⇒ f1 a = f1' a) ∧ (M' = Loop ⇒ v = v') ⇒ + result_CASE M f f1 v = result_CASE M' f' f1' v' + + [result_case_eq] Theorem + + ⊢ result_CASE x f f1 v = v' ⇔ + (∃a. x = Return a ∧ f a = v') ∨ (∃e. x = Fail e ∧ f1 e = v') ∨ + x = Loop ∧ v = v' + + [result_distinct] Theorem + + ⊢ (∀a' a. Return a ≠ Fail a') ∧ (∀a. Return a ≠ Loop) ∧ + ∀a. Fail a ≠ Loop + + [result_induction] Theorem + + ⊢ ∀P. (∀a. P (Return a)) ∧ (∀e. P (Fail e)) ∧ P Loop ⇒ ∀r. P r + + [result_nchotomy] Theorem + + ⊢ ∀rr. (∃a. rr = Return a) ∨ (∃e. rr = Fail e) ∨ rr = Loop + + [test2_11] Theorem + + ⊢ (∀a a'. Variant1_2 a = Variant1_2 a' ⇔ a = a') ∧ + ∀a a'. Variant2_2 a = Variant2_2 a' ⇔ a = a' + + [test2_Axiom] Theorem + + ⊢ ∀f0 f1. ∃fn. + (∀a. fn (Variant1_2 a) = f0 a) ∧ ∀a. fn (Variant2_2 a) = f1 a + + [test2_case_cong] Theorem + + ⊢ ∀M M' f f1. + M = M' ∧ (∀a. M' = Variant1_2 a ⇒ f a = f' a) ∧ + (∀a. M' = Variant2_2 a ⇒ f1 a = f1' a) ⇒ + test2_CASE M f f1 = test2_CASE M' f' f1' + + [test2_case_eq] Theorem + + ⊢ test2_CASE x f f1 = v ⇔ + (∃T'. x = Variant1_2 T' ∧ f T' = v) ∨ + ∃T'. x = Variant2_2 T' ∧ f1 T' = v + + [test2_distinct] Theorem + + ⊢ ∀a' a. Variant1_2 a ≠ Variant2_2 a' + + [test2_induction] Theorem + + ⊢ ∀P. (∀T. P (Variant1_2 T)) ∧ (∀T. P (Variant2_2 T)) ⇒ ∀t. P t + + [test2_nchotomy] Theorem + + ⊢ ∀tt. (∃T. tt = Variant1_2 T) ∨ ∃T. tt = Variant2_2 T + + [test_11] Theorem + + ⊢ (∀a a'. Variant1 a = Variant1 a' ⇔ a = a') ∧ + ∀a a'. Variant2 a = Variant2 a' ⇔ a = a' + + [test_Axiom] Theorem + + ⊢ ∀f0 f1. ∃fn. + (∀a. fn (Variant1 a) = f0 a) ∧ ∀a. fn (Variant2 a) = f1 a + + [test_case_cong] Theorem + + ⊢ ∀M M' f f1. + M = M' ∧ (∀a. M' = Variant1 a ⇒ f a = f' a) ∧ + (∀a. M' = Variant2 a ⇒ f1 a = f1' a) ⇒ + test_CASE M f f1 = test_CASE M' f' f1' + + [test_case_eq] Theorem + + ⊢ test_CASE x f f1 = v ⇔ + (∃b. x = Variant1 b ∧ f b = v) ∨ ∃a. x = Variant2 a ∧ f1 a = v + + [test_distinct] Theorem + + ⊢ ∀a' a. Variant1 a ≠ Variant2 a' + + [test_induction] Theorem + + ⊢ ∀P. (∀b. P (Variant1 b)) ∧ (∀a. P (Variant2 a)) ⇒ ∀t. P t + + [test_nchotomy] Theorem + + ⊢ ∀tt. (∃b. tt = Variant1 b) ∨ ∃a. tt = Variant2 a + + +*) +end |