summaryrefslogtreecommitdiff
path: root/backends/hol4/testTheory.sig
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/testTheory.sig839
1 files changed, 839 insertions, 0 deletions
diff --git a/backends/hol4/testTheory.sig b/backends/hol4/testTheory.sig
new file mode 100644
index 00000000..c1034394
--- /dev/null
+++ b/backends/hol4/testTheory.sig
@@ -0,0 +1,839 @@
+signature testTheory =
+sig
+ type thm = Thm.thm
+
+ (* Axioms *)
+ val VEC_TO_LIST_BOUNDS : thm
+ val i32_to_int_bounds : thm
+ val insert_def : thm
+ val int_to_i32_id : thm
+ val int_to_u32_id : thm
+ val u32_to_int_bounds : thm
+
+ (* Definitions *)
+ val distinct_keys_def : thm
+ val error_BIJ : thm
+ val error_CASE : thm
+ val error_TY_DEF : thm
+ val error_size_def : thm
+ val i32_add_def : thm
+ val i32_max_def : thm
+ val i32_min_def : thm
+ val int1_def : thm
+ val int2_def : thm
+ val is_loop_def : thm
+ val is_true_def : thm
+ val list_t_TY_DEF : thm
+ val list_t_case_def : thm
+ val list_t_size_def : thm
+ val list_t_v_def : thm
+ val lookup_def : thm
+ val mk_i32_def : thm
+ val mk_u32_def : thm
+ val nth_expand_def : thm
+ val nth_fuel_P_def : thm
+ val result_TY_DEF : thm
+ val result_case_def : thm
+ val result_size_def : thm
+ val st_ex_bind_def : thm
+ val st_ex_return_def : thm
+ val test1_def : thm
+ val test2_TY_DEF : thm
+ val test2_case_def : thm
+ val test2_size_def : thm
+ val test_TY_DEF : thm
+ val test_case_def : thm
+ val test_monad2_def : thm
+ val test_monad3_def : thm
+ val test_monad_def : thm
+ val test_size_def : thm
+ val u32_add_def : thm
+ val u32_max_def : thm
+ val u32_sub_def : thm
+ val usize_max_def : thm
+ val vec_len_def : thm
+
+ (* Theorems *)
+ val I32_ADD_EQ : thm
+ val INT_OF_NUM_INJ : thm
+ val INT_THM1 : thm
+ val INT_THM2 : thm
+ val MK_I32_SUCCESS : thm
+ val MK_U32_SUCCESS : thm
+ val NAT_THM1 : thm
+ val NAT_THM2 : thm
+ val NUM_SUB_1_EQ : thm
+ val NUM_SUB_1_EQ1 : thm
+ val NUM_SUB_EQ : thm
+ val U32_ADD_EQ : thm
+ val U32_SUB_EQ : thm
+ val VEC_TO_LIST_INT_BOUNDS : thm
+ val datatype_error : thm
+ val datatype_list_t : thm
+ val datatype_result : thm
+ val datatype_test : thm
+ val datatype_test2 : thm
+ val error2num_11 : thm
+ val error2num_ONTO : thm
+ val error2num_num2error : thm
+ val error2num_thm : thm
+ val error_Axiom : thm
+ val error_EQ_error : thm
+ val error_case_cong : thm
+ val error_case_def : thm
+ val error_case_eq : thm
+ val error_induction : thm
+ val error_nchotomy : thm
+ val insert_lem : thm
+ val list_nth_mut_loop_loop_fwd_def : thm
+ val list_nth_mut_loop_loop_fwd_ind : thm
+ val list_t_11 : thm
+ val list_t_Axiom : thm
+ val list_t_case_cong : thm
+ val list_t_case_eq : thm
+ val list_t_distinct : thm
+ val list_t_induction : thm
+ val list_t_nchotomy : thm
+ val lookup_raw_def : thm
+ val lookup_raw_ind : thm
+ val nth_def : thm
+ val nth_def_loop : thm
+ val nth_def_terminates : thm
+ val nth_fuel_P_mono : thm
+ val nth_fuel_def : thm
+ val nth_fuel_ind : thm
+ val nth_fuel_least_fail_mono : thm
+ val nth_fuel_least_success_mono : thm
+ val nth_fuel_mono : thm
+ val num2error_11 : thm
+ val num2error_ONTO : thm
+ val num2error_error2num : thm
+ val num2error_thm : thm
+ val result_11 : thm
+ val result_Axiom : thm
+ val result_case_cong : thm
+ val result_case_eq : thm
+ val result_distinct : thm
+ val result_induction : thm
+ val result_nchotomy : thm
+ val test2_11 : thm
+ val test2_Axiom : thm
+ val test2_case_cong : thm
+ val test2_case_eq : thm
+ val test2_distinct : thm
+ val test2_induction : thm
+ val test2_nchotomy : thm
+ val test_11 : thm
+ val test_Axiom : thm
+ val test_case_cong : thm
+ val test_case_eq : thm
+ val test_distinct : thm
+ val test_induction : thm
+ val test_nchotomy : thm
+
+ val test_grammars : type_grammar.grammar * term_grammar.grammar
+(*
+ [Omega] Parent theory of "test"
+
+ [int_arith] Parent theory of "test"
+
+ [words] Parent theory of "test"
+
+ [insert_def] Axiom
+
+ [oracles: ] [axioms: insert_def] []
+ ⊢ insert key value ls =
+ case ls of
+ ListCons (ckey,cvalue) tl =>
+ if ckey = key then Return (ListCons (ckey,value) tl)
+ else
+ do
+ tl0 <- insert key value tl;
+ Return (ListCons (ckey,cvalue) tl0)
+ od
+ | ListNil => Return (ListCons (key,value) ListNil)
+
+ [u32_to_int_bounds] Axiom
+
+ [oracles: ] [axioms: u32_to_int_bounds] []
+ ⊢ ∀n. 0 ≤ u32_to_int n ∧ u32_to_int n ≤ u32_max
+
+ [i32_to_int_bounds] Axiom
+
+ [oracles: ] [axioms: i32_to_int_bounds] []
+ ⊢ ∀n. i32_min ≤ i32_to_int n ∧ i32_to_int n ≤ i32_max
+
+ [int_to_u32_id] Axiom
+
+ [oracles: ] [axioms: int_to_u32_id] []
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ u32_to_int (int_to_u32 n) = n
+
+ [int_to_i32_id] Axiom
+
+ [oracles: ] [axioms: int_to_i32_id] []
+ ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ i32_to_int (int_to_i32 n) = n
+
+ [VEC_TO_LIST_BOUNDS] Axiom
+
+ [oracles: ] [axioms: VEC_TO_LIST_BOUNDS] []
+ ⊢ ∀v. (let l = LENGTH (vec_to_list v) in 0 ≤ l ∧ l ≤ 4294967295)
+
+ [distinct_keys_def] Definition
+
+ ⊢ ∀ls.
+ distinct_keys ls ⇔
+ ∀i j.
+ i < LENGTH ls ⇒
+ j < LENGTH ls ⇒
+ FST (EL i ls) = FST (EL j ls) ⇒
+ i = j
+
+ [error_BIJ] Definition
+
+ ⊢ (∀a. num2error (error2num a) = a) ∧
+ ∀r. (λn. n < 1) r ⇔ error2num (num2error r) = r
+
+ [error_CASE] Definition
+
+ ⊢ ∀x v0. (case x of Failure => v0) = (λm. v0) (error2num x)
+
+ [error_TY_DEF] Definition
+
+ ⊢ ∃rep. TYPE_DEFINITION (λn. n < 1) rep
+
+ [error_size_def] Definition
+
+ ⊢ ∀x. error_size x = 0
+
+ [i32_add_def] Definition
+
+ ⊢ ∀x y. i32_add x y = mk_i32 (i32_to_int x + i32_to_int y)
+
+ [i32_max_def] Definition
+
+ ⊢ i32_max = 2147483647
+
+ [i32_min_def] Definition
+
+ ⊢ i32_min = -2147483648
+
+ [int1_def] Definition
+
+ ⊢ int1 = 32
+
+ [int2_def] Definition
+
+ ⊢ int2 = -32
+
+ [is_loop_def] Definition
+
+ ⊢ ∀r. is_loop r ⇔ case r of Return v2 => F | Fail v3 => F | Loop => T
+
+ [is_true_def] Definition
+
+ ⊢ ∀x. is_true x = if x then Return () else Fail Failure
+
+ [list_t_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0'.
+ ∀ $var$('list_t').
+ (∀a0'.
+ (∃a0 a1.
+ a0' =
+ (λa0 a1.
+ ind_type$CONSTR 0 a0
+ (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
+ a0 a1 ∧ $var$('list_t') a1) ∨
+ a0' =
+ ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
+ $var$('list_t') a0') ⇒
+ $var$('list_t') a0') rep
+
+ [list_t_case_def] Definition
+
+ ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
+ ∀f v. list_t_CASE ListNil f v = v
+
+ [list_t_size_def] Definition
+
+ ⊢ (∀f a0 a1.
+ list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
+ ∀f. list_t_size f ListNil = 0
+
+ [list_t_v_def] Definition
+
+ ⊢ list_t_v ListNil = [] ∧
+ ∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl
+
+ [lookup_def] Definition
+
+ ⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls)
+
+ [mk_i32_def] Definition
+
+ ⊢ ∀n. mk_i32 n =
+ if i32_min ≤ n ∧ n ≤ i32_max then Return (int_to_i32 n)
+ else Fail Failure
+
+ [mk_u32_def] Definition
+
+ ⊢ ∀n. mk_u32 n =
+ if 0 ≤ n ∧ n ≤ u32_max then Return (int_to_u32 n)
+ else Fail Failure
+
+ [nth_expand_def] Definition
+
+ ⊢ ∀nth ls i.
+ nth_expand nth ls i =
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od
+ | ListNil => Fail Failure
+
+ [nth_fuel_P_def] Definition
+
+ ⊢ ∀ls i n. nth_fuel_P ls i n ⇔ ¬is_loop (nth_fuel n ls i)
+
+ [result_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0.
+ ∀ $var$('result').
+ (∀a0.
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR 0 (a,ARB)
+ (λn. ind_type$BOTTOM)) a) ∨
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR (SUC 0) (ARB,a)
+ (λn. ind_type$BOTTOM)) a) ∨
+ a0 =
+ ind_type$CONSTR (SUC (SUC 0)) (ARB,ARB)
+ (λn. ind_type$BOTTOM) ⇒
+ $var$('result') a0) ⇒
+ $var$('result') a0) rep
+
+ [result_case_def] Definition
+
+ ⊢ (∀a f f1 v. result_CASE (Return a) f f1 v = f a) ∧
+ (∀a f f1 v. result_CASE (Fail a) f f1 v = f1 a) ∧
+ ∀f f1 v. result_CASE Loop f f1 v = v
+
+ [result_size_def] Definition
+
+ ⊢ (∀f a. result_size f (Return a) = 1 + f a) ∧
+ (∀f a. result_size f (Fail a) = 1 + error_size a) ∧
+ ∀f. result_size f Loop = 0
+
+ [st_ex_bind_def] Definition
+
+ ⊢ ∀x f.
+ monad_bind x f =
+ case x of Return y => f y | Fail e => Fail e | Loop => Loop
+
+ [st_ex_return_def] Definition
+
+ ⊢ ∀x. st_ex_return x = Return x
+
+ [test1_def] Definition
+
+ ⊢ ∀x. test1 x = Return x
+
+ [test2_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0.
+ ∀ $var$('test2').
+ (∀a0.
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR 0 (a,ARB)
+ (λn. ind_type$BOTTOM)) a) ∨
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR (SUC 0) (ARB,a)
+ (λn. ind_type$BOTTOM)) a) ⇒
+ $var$('test2') a0) ⇒
+ $var$('test2') a0) rep
+
+ [test2_case_def] Definition
+
+ ⊢ (∀a f f1. test2_CASE (Variant1_2 a) f f1 = f a) ∧
+ ∀a f f1. test2_CASE (Variant2_2 a) f f1 = f1 a
+
+ [test2_size_def] Definition
+
+ ⊢ (∀f f1 a. test2_size f f1 (Variant1_2 a) = 1 + f a) ∧
+ ∀f f1 a. test2_size f f1 (Variant2_2 a) = 1 + f1 a
+
+ [test_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0.
+ ∀ $var$('test').
+ (∀a0.
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR 0 (a,ARB)
+ (λn. ind_type$BOTTOM)) a) ∨
+ (∃a. a0 =
+ (λa.
+ ind_type$CONSTR (SUC 0) (ARB,a)
+ (λn. ind_type$BOTTOM)) a) ⇒
+ $var$('test') a0) ⇒
+ $var$('test') a0) rep
+
+ [test_case_def] Definition
+
+ ⊢ (∀a f f1. test_CASE (Variant1 a) f f1 = f a) ∧
+ ∀a f f1. test_CASE (Variant2 a) f f1 = f1 a
+
+ [test_monad2_def] Definition
+
+ ⊢ test_monad2 = do x <- Return T; Return x od
+
+ [test_monad3_def] Definition
+
+ ⊢ ∀x. test_monad3 x = monad_ignore_bind (is_true x) (Return x)
+
+ [test_monad_def] Definition
+
+ ⊢ ∀v. test_monad v = do x <- Return v; Return x od
+
+ [test_size_def] Definition
+
+ ⊢ (∀f f1 a. test_size f f1 (Variant1 a) = 1 + f1 a) ∧
+ ∀f f1 a. test_size f f1 (Variant2 a) = 1 + f a
+
+ [u32_add_def] Definition
+
+ ⊢ ∀x y. u32_add x y = mk_u32 (u32_to_int x + u32_to_int y)
+
+ [u32_max_def] Definition
+
+ ⊢ u32_max = 4294967295
+
+ [u32_sub_def] Definition
+
+ ⊢ ∀x y. u32_sub x y = mk_u32 (u32_to_int x − u32_to_int y)
+
+ [usize_max_def] Definition
+
+ ⊢ usize_max = 4294967295
+
+ [vec_len_def] Definition
+
+ ⊢ ∀v. vec_len v = int_to_u32 (&LENGTH (vec_to_list v))
+
+ [I32_ADD_EQ] Theorem
+
+ [oracles: DISK_THM] [axioms: int_to_i32_id] []
+ ⊢ ∀x y.
+ i32_min ≤ i32_to_int x + i32_to_int y ⇒
+ i32_to_int x + i32_to_int y ≤ i32_max ⇒
+ ∃z. i32_add x y = Return z ∧
+ i32_to_int z = i32_to_int x + i32_to_int y
+
+ [INT_OF_NUM_INJ] Theorem
+
+ ⊢ ∀n m. &n = &m ⇒ n = m
+
+ [INT_THM1] Theorem
+
+ ⊢ ∀x y. x > 0 ⇒ y > 0 ⇒ x + y > 0
+
+ [INT_THM2] Theorem
+
+ ⊢ ∀x. T
+
+ [MK_I32_SUCCESS] Theorem
+
+ ⊢ ∀n. i32_min ≤ n ∧ n ≤ i32_max ⇒ mk_i32 n = Return (int_to_i32 n)
+
+ [MK_U32_SUCCESS] Theorem
+
+ ⊢ ∀n. 0 ≤ n ∧ n ≤ u32_max ⇒ mk_u32 n = Return (int_to_u32 n)
+
+ [NAT_THM1] Theorem
+
+ ⊢ ∀n. n < n + 1
+
+ [NAT_THM2] Theorem
+
+ ⊢ ∀n. n < n + 1
+
+ [NUM_SUB_1_EQ] Theorem
+
+ ⊢ ∀x y. x = y − 1 ⇒ 0 ≤ x ⇒ Num y = SUC (Num x)
+
+ [NUM_SUB_1_EQ1] Theorem
+
+ ⊢ ∀i. 0 ≤ i − 1 ⇒ Num i = SUC (Num (i − 1))
+
+ [NUM_SUB_EQ] Theorem
+
+ ⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x
+
+ [U32_ADD_EQ] Theorem
+
+ [oracles: DISK_THM] [axioms: int_to_u32_id, u32_to_int_bounds] []
+ ⊢ ∀x y.
+ u32_to_int x + u32_to_int y ≤ u32_max ⇒
+ ∃z. u32_add x y = Return z ∧
+ u32_to_int z = u32_to_int x + u32_to_int y
+
+ [U32_SUB_EQ] Theorem
+
+ [oracles: DISK_THM] [axioms: int_to_u32_id, u32_to_int_bounds] []
+ ⊢ ∀x y.
+ 0 ≤ u32_to_int x − u32_to_int y ⇒
+ ∃z. u32_sub x y = Return z ∧
+ u32_to_int z = u32_to_int x − u32_to_int y
+
+ [VEC_TO_LIST_INT_BOUNDS] Theorem
+
+ [oracles: DISK_THM] [axioms: VEC_TO_LIST_BOUNDS] []
+ ⊢ ∀v. (let l = &LENGTH (vec_to_list v) in 0 ≤ l ∧ l ≤ u32_max)
+
+ [datatype_error] Theorem
+
+ ⊢ DATATYPE (error Failure)
+
+ [datatype_list_t] Theorem
+
+ ⊢ DATATYPE (list_t ListCons ListNil)
+
+ [datatype_result] Theorem
+
+ ⊢ DATATYPE (result Return Fail Loop)
+
+ [datatype_test] Theorem
+
+ ⊢ DATATYPE (test Variant1 Variant2)
+
+ [datatype_test2] Theorem
+
+ ⊢ DATATYPE (test2 Variant1_2 Variant2_2)
+
+ [error2num_11] Theorem
+
+ ⊢ ∀a a'. error2num a = error2num a' ⇔ a = a'
+
+ [error2num_ONTO] Theorem
+
+ ⊢ ∀r. r < 1 ⇔ ∃a. r = error2num a
+
+ [error2num_num2error] Theorem
+
+ ⊢ ∀r. r < 1 ⇔ error2num (num2error r) = r
+
+ [error2num_thm] Theorem
+
+ ⊢ error2num Failure = 0
+
+ [error_Axiom] Theorem
+
+ ⊢ ∀x0. ∃f. f Failure = x0
+
+ [error_EQ_error] Theorem
+
+ ⊢ ∀a a'. a = a' ⇔ error2num a = error2num a'
+
+ [error_case_cong] Theorem
+
+ ⊢ ∀M M' v0.
+ M = M' ∧ (M' = Failure ⇒ v0 = v0') ⇒
+ (case M of Failure => v0) = case M' of Failure => v0'
+
+ [error_case_def] Theorem
+
+ ⊢ ∀v0. (case Failure of Failure => v0) = v0
+
+ [error_case_eq] Theorem
+
+ ⊢ (case x of Failure => v0) = v ⇔ x = Failure ∧ v0 = v
+
+ [error_induction] Theorem
+
+ ⊢ ∀P. P Failure ⇒ ∀a. P a
+
+ [error_nchotomy] Theorem
+
+ ⊢ ∀a. a = Failure
+
+ [insert_lem] Theorem
+
+ [oracles: DISK_THM] [axioms: u32_to_int_bounds, insert_def] []
+ ⊢ ∀ls key value.
+ distinct_keys (list_t_v ls) ⇒
+ case insert key value ls of
+ Return ls1 =>
+ lookup key ls1 = SOME value ∧
+ ∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
+ | Fail v1 => F
+ | Loop => F
+
+ [list_nth_mut_loop_loop_fwd_def] Theorem
+
+ ⊢ ∀ls i.
+ list_nth_mut_loop_loop_fwd ls i =
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else
+ do
+ i0 <- u32_sub i (int_to_u32 1);
+ list_nth_mut_loop_loop_fwd tl i0
+ od
+ | ListNil => Fail Failure
+
+ [list_nth_mut_loop_loop_fwd_ind] Theorem
+
+ ⊢ ∀P. (∀ls i.
+ (∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒
+ P ls i) ⇒
+ ∀v v1. P v v1
+
+ [list_t_11] Theorem
+
+ ⊢ ∀a0 a1 a0' a1'.
+ ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
+
+ [list_t_Axiom] Theorem
+
+ ⊢ ∀f0 f1. ∃fn.
+ (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
+ fn ListNil = f1
+
+ [list_t_case_cong] Theorem
+
+ ⊢ ∀M M' f v.
+ M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
+ (M' = ListNil ⇒ v = v') ⇒
+ list_t_CASE M f v = list_t_CASE M' f' v'
+
+ [list_t_case_eq] Theorem
+
+ ⊢ list_t_CASE x f v = v' ⇔
+ (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
+
+ [list_t_distinct] Theorem
+
+ ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
+
+ [list_t_induction] Theorem
+
+ ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
+
+ [list_t_nchotomy] Theorem
+
+ ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
+
+ [lookup_raw_def] Theorem
+
+ ⊢ (∀key. lookup_raw key [] = NONE) ∧
+ ∀v ls key k.
+ lookup_raw key ((k,v)::ls) =
+ if k = key then SOME v else lookup_raw key ls
+
+ [lookup_raw_ind] Theorem
+
+ ⊢ ∀P. (∀key. P key []) ∧
+ (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒
+ ∀v v1. P v v1
+
+ [nth_def] Theorem
+
+ ⊢ ∀ls i.
+ nth ls i =
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else do i0 <- u32_sub i (int_to_u32 1); nth tl i0 od
+ | ListNil => Fail Failure
+
+ [nth_def_loop] Theorem
+
+ ⊢ ∀ls i. (∀n. ¬nth_fuel_P ls i n) ⇒ nth ls i = nth_expand nth ls i
+
+ [nth_def_terminates] Theorem
+
+ ⊢ ∀ls i. (∃n. nth_fuel_P ls i n) ⇒ nth ls i = nth_expand nth ls i
+
+ [nth_fuel_P_mono] Theorem
+
+ ⊢ ∀n m ls i.
+ n ≤ m ⇒ nth_fuel_P ls i n ⇒ nth_fuel n ls i = nth_fuel m ls i
+
+ [nth_fuel_def] Theorem
+
+ ⊢ ∀n ls i.
+ nth_fuel n ls i =
+ case n of
+ 0 => Loop
+ | SUC n' =>
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else
+ do i0 <- u32_sub i (int_to_u32 1); nth_fuel n' tl i0 od
+ | ListNil => Fail Failure
+
+ [nth_fuel_ind] Theorem
+
+ ⊢ ∀P. (∀n ls i.
+ (∀n' x tl i0.
+ n = SUC n' ∧ ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒
+ P n' tl i0) ⇒
+ P n ls i) ⇒
+ ∀v v1 v2. P v v1 v2
+
+ [nth_fuel_least_fail_mono] Theorem
+
+ ⊢ ∀n ls i. n < $LEAST (nth_fuel_P ls i) ⇒ nth_fuel n ls i = Loop
+
+ [nth_fuel_least_success_mono] Theorem
+
+ ⊢ ∀n ls i.
+ $LEAST (nth_fuel_P ls i) ≤ n ⇒
+ nth_fuel n ls i = nth_fuel ($LEAST (nth_fuel_P ls i)) ls i
+
+ [nth_fuel_mono] Theorem
+
+ ⊢ ∀n m ls i.
+ n ≤ m ⇒
+ if is_loop (nth_fuel n ls i) then T
+ else nth_fuel n ls i = nth_fuel m ls i
+
+ [num2error_11] Theorem
+
+ ⊢ ∀r r'. r < 1 ⇒ r' < 1 ⇒ (num2error r = num2error r' ⇔ r = r')
+
+ [num2error_ONTO] Theorem
+
+ ⊢ ∀a. ∃r. a = num2error r ∧ r < 1
+
+ [num2error_error2num] Theorem
+
+ ⊢ ∀a. num2error (error2num a) = a
+
+ [num2error_thm] Theorem
+
+ ⊢ num2error 0 = Failure
+
+ [result_11] Theorem
+
+ ⊢ (∀a a'. Return a = Return a' ⇔ a = a') ∧
+ ∀a a'. Fail a = Fail a' ⇔ a = a'
+
+ [result_Axiom] Theorem
+
+ ⊢ ∀f0 f1 f2. ∃fn.
+ (∀a. fn (Return a) = f0 a) ∧ (∀a. fn (Fail a) = f1 a) ∧
+ fn Loop = f2
+
+ [result_case_cong] Theorem
+
+ ⊢ ∀M M' f f1 v.
+ M = M' ∧ (∀a. M' = Return a ⇒ f a = f' a) ∧
+ (∀a. M' = Fail a ⇒ f1 a = f1' a) ∧ (M' = Loop ⇒ v = v') ⇒
+ result_CASE M f f1 v = result_CASE M' f' f1' v'
+
+ [result_case_eq] Theorem
+
+ ⊢ result_CASE x f f1 v = v' ⇔
+ (∃a. x = Return a ∧ f a = v') ∨ (∃e. x = Fail e ∧ f1 e = v') ∨
+ x = Loop ∧ v = v'
+
+ [result_distinct] Theorem
+
+ ⊢ (∀a' a. Return a ≠ Fail a') ∧ (∀a. Return a ≠ Loop) ∧
+ ∀a. Fail a ≠ Loop
+
+ [result_induction] Theorem
+
+ ⊢ ∀P. (∀a. P (Return a)) ∧ (∀e. P (Fail e)) ∧ P Loop ⇒ ∀r. P r
+
+ [result_nchotomy] Theorem
+
+ ⊢ ∀rr. (∃a. rr = Return a) ∨ (∃e. rr = Fail e) ∨ rr = Loop
+
+ [test2_11] Theorem
+
+ ⊢ (∀a a'. Variant1_2 a = Variant1_2 a' ⇔ a = a') ∧
+ ∀a a'. Variant2_2 a = Variant2_2 a' ⇔ a = a'
+
+ [test2_Axiom] Theorem
+
+ ⊢ ∀f0 f1. ∃fn.
+ (∀a. fn (Variant1_2 a) = f0 a) ∧ ∀a. fn (Variant2_2 a) = f1 a
+
+ [test2_case_cong] Theorem
+
+ ⊢ ∀M M' f f1.
+ M = M' ∧ (∀a. M' = Variant1_2 a ⇒ f a = f' a) ∧
+ (∀a. M' = Variant2_2 a ⇒ f1 a = f1' a) ⇒
+ test2_CASE M f f1 = test2_CASE M' f' f1'
+
+ [test2_case_eq] Theorem
+
+ ⊢ test2_CASE x f f1 = v ⇔
+ (∃T'. x = Variant1_2 T' ∧ f T' = v) ∨
+ ∃T'. x = Variant2_2 T' ∧ f1 T' = v
+
+ [test2_distinct] Theorem
+
+ ⊢ ∀a' a. Variant1_2 a ≠ Variant2_2 a'
+
+ [test2_induction] Theorem
+
+ ⊢ ∀P. (∀T. P (Variant1_2 T)) ∧ (∀T. P (Variant2_2 T)) ⇒ ∀t. P t
+
+ [test2_nchotomy] Theorem
+
+ ⊢ ∀tt. (∃T. tt = Variant1_2 T) ∨ ∃T. tt = Variant2_2 T
+
+ [test_11] Theorem
+
+ ⊢ (∀a a'. Variant1 a = Variant1 a' ⇔ a = a') ∧
+ ∀a a'. Variant2 a = Variant2 a' ⇔ a = a'
+
+ [test_Axiom] Theorem
+
+ ⊢ ∀f0 f1. ∃fn.
+ (∀a. fn (Variant1 a) = f0 a) ∧ ∀a. fn (Variant2 a) = f1 a
+
+ [test_case_cong] Theorem
+
+ ⊢ ∀M M' f f1.
+ M = M' ∧ (∀a. M' = Variant1 a ⇒ f a = f' a) ∧
+ (∀a. M' = Variant2 a ⇒ f1 a = f1' a) ⇒
+ test_CASE M f f1 = test_CASE M' f' f1'
+
+ [test_case_eq] Theorem
+
+ ⊢ test_CASE x f f1 = v ⇔
+ (∃b. x = Variant1 b ∧ f b = v) ∨ ∃a. x = Variant2 a ∧ f1 a = v
+
+ [test_distinct] Theorem
+
+ ⊢ ∀a' a. Variant1 a ≠ Variant2 a'
+
+ [test_induction] Theorem
+
+ ⊢ ∀P. (∀b. P (Variant1 b)) ∧ (∀a. P (Variant2 a)) ⇒ ∀t. P t
+
+ [test_nchotomy] Theorem
+
+ ⊢ ∀tt. (∃b. tt = Variant1 b) ∨ ∃a. tt = Variant2 a
+
+
+*)
+end