diff options
Diffstat (limited to 'backends/hol4/primitivesLib.sml')
-rw-r--r-- | backends/hol4/primitivesLib.sml | 552 |
1 files changed, 550 insertions, 2 deletions
diff --git a/backends/hol4/primitivesLib.sml b/backends/hol4/primitivesLib.sml index 5803c531..543ded23 100644 --- a/backends/hol4/primitivesLib.sml +++ b/backends/hol4/primitivesLib.sml @@ -1,9 +1,557 @@ (* Advanced tactics for the primitives library *) -structure primitivesBaseTacLib = +structure primitivesLib = struct open HolKernel boolLib bossLib Parse open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory -open primitivesBaseTacLib primitivesTheory + +open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory + +val primitives_theory_name = "primitives" + +(* Small utility: compute the set of assumptions in the context. + + We isolate this code in a utility in order to be able to improve it: + for now we simply put all the assumptions in a set, but in the future + we might want to split the assumptions which are conjunctions in order + to be more precise. + *) +fun compute_asms_set ((asms,g) : goal) : term Redblackset.set = + Redblackset.fromList Term.compare asms + +val integer_bounds_defs_list = [ + i8_min_def, + i8_max_def, + i16_min_def, + i16_max_def, + i32_min_def, + i32_max_def, + i64_min_def, + i64_max_def, + i128_min_def, + i128_max_def, + u8_max_def, + u16_max_def, + u32_max_def, + u64_max_def, + u128_max_def +] + +val integer_bounds_lemmas = + Redblackmap.fromList String.compare + [ + ("isize", isize_to_int_bounds), + ("i8", i8_to_int_bounds), + ("i16", i16_to_int_bounds), + ("i32", i32_to_int_bounds), + ("i64", i64_to_int_bounds), + ("i128", i128_to_int_bounds), + ("usize", usize_to_int_bounds), + ("u8", u8_to_int_bounds), + ("u16", u16_to_int_bounds), + ("u32", u32_to_int_bounds), + ("u64", u64_to_int_bounds), + ("u128", u128_to_int_bounds) + ] + +val integer_types_names = + Redblackset.fromList String.compare + (map fst (Redblackmap.listItems integer_bounds_lemmas)) + +(* See {!assume_bounds_for_all_int_vars}. + + This tactic is in charge of adding assumptions for one variable. + *) +fun assume_bounds_for_int_var + (asms_set: term Redblackset.set) (var : string) (ty : string) : + tactic = + let + (* Lookup the lemma to apply *) + val lemma = Redblackmap.find (integer_bounds_lemmas, ty); + (* Instantiate the lemma *) + val ty_t = mk_type (ty, []); + val var_t = mk_var (var, ty_t); + val lemma = SPEC var_t lemma; + (* Split the theorem into a list of conjuncts. + + The bounds are typically a conjunction: + {[ + ⊢ 0 ≤ u32_to_int x ∧ u32_to_int x ≤ u32_max: thm + ]} + *) + val lemmas = CONJUNCTS lemma; + (* Filter the conjuncts: some of them might already be in the context, + we don't want to introduce them again, as it would pollute it. + *) + val lemmas = filter (fn lem => not (Redblackset.member (asms_set, concl lem))) lemmas; + in + (* Introduce the assumptions in the context *) + assume_tacl lemmas + end + +(* Introduce bound assumptions for all the machine integers in the context. + + Exemple: + ======== + If there is “x : u32” in the input set, then we introduce: + {[ + 0 <= u32_to_int x + u32_to_int x <= u32_max + ]} + *) +fun assume_bounds_for_all_int_vars (asms, g) = + let + (* Compute the set of integer variables in the context *) + val vars = free_varsl (g :: asms); + (* Compute the set of assumptions already present in the context *) + val asms_set = compute_asms_set (asms, g); + val vartys_set = ref (Redblackset.empty String.compare); + (* Filter the variables to keep only the ones with type machine integer, + decompose the types at the same time *) + fun decompose_var (v : term) : (string * string) = + let + val (v, ty) = dest_var v; + val {Args=args, Thy=thy, Tyop=ty} = dest_thy_type ty; + val _ = assert null args; + val _ = assert (fn thy => thy = primitives_theory_name) thy; + val _ = assert (fn ty => Redblackset.member (integer_types_names, ty)) ty; + val _ = vartys_set := Redblackset.add (!vartys_set, ty); + in (v, ty) end; + val vars = mapfilter decompose_var vars; + (* Add assumptions for one variable *) + fun add_var_asm (v, ty) : tactic = + assume_bounds_for_int_var asms_set v ty; + (* Add the bounds for isize, usize *) + val size_bounds = + append + (if Redblackset.member (!vartys_set, "usize") then CONJUNCTS usize_bounds else []) + (if Redblackset.member (!vartys_set, "isize") then CONJUNCTS isize_bounds else []); + val size_bounds = + filter (fn th => not (Redblackset.member (asms_set, concl th))) size_bounds; + in + ((* Add assumptions for all the variables *) + map_every_tac add_var_asm vars >> + (* Add assumptions about the size bounds *) + assume_tacl size_bounds) (asms, g) + end + +val integer_conversion_lemmas_list = [ + isize_to_int_int_to_isize, + i8_to_int_int_to_i8, + i16_to_int_int_to_i16, + i32_to_int_int_to_i32, + i64_to_int_int_to_i64, + i128_to_int_int_to_i128, + usize_to_int_int_to_usize, + u8_to_int_int_to_u8, + u16_to_int_int_to_u16, + u32_to_int_int_to_u32, + u64_to_int_int_to_u64, + u128_to_int_int_to_u128 +] + +(* Look for conversions from integers to machine integers and back. + {[ + u32_to_int (int_to_u32 x) + ]} + + Attempts to prove and apply equalities of the form: + {[ + u32_to_int (int_to_u32 x) = x + ]} + *) +val rewrite_with_dep_int_lemmas : tactic = + (* We're not trying to be smart: we just try to rewrite with each theorem at + a time *) + let + val prove_premise = full_simp_tac simpLib.empty_ss integer_bounds_defs_list >> int_tac; + val then_tac1 = (fn th => full_simp_tac simpLib.empty_ss [th]); + val rewr_tac1 = apply_dep_rewrites_match_concl_with_all_tac prove_premise then_tac1; + val then_tac2 = (fn th => full_simp_tac simpLib.empty_ss [th]); + val rewr_tac2 = apply_dep_rewrites_match_first_premise_with_all_tac (fn _ => true) prove_premise then_tac2; + in + map_every_tac rewr_tac1 integer_conversion_lemmas_list >> + map_every_tac rewr_tac2 [] + end + +(* Massage a bit the goal, for instance by introducing integer bounds in the + assumptions. +*) +val massage : tactic = + assume_bounds_for_all_int_vars >> + rewrite_with_dep_int_lemmas + +(* Lexicographic order over pairs *) +fun pair_compare (comp1 : 'a * 'a -> order) (comp2 : 'b * 'b -> order) + ((p1, p2) : (('a * 'b) * ('a * 'b))) : order = + let + val (x1, y1) = p1; + val (x2, y2) = p2; + in + case comp1 (x1, x2) of + LESS => LESS + | GREATER => GREATER + | EQUAL => comp2 (y1, y2) + end + +(* A constant name (theory, constant name) *) +type const_name = string * string + +val const_name_compare = pair_compare String.compare String.compare + +(* The registered spec theorems, that {!progress} will automatically apply. + + The keys are the function names (it is a pair, because constant names + are made of the theory name and the name of the constant itself). + + Also note that we can store several specs per definition (in practice, when + looking up specs, we will try them all one by one, in a LIFO order). + + We store theorems where all the premises are in the goal, with implications + (i.e.: [⊢ H0 ==> ... ==> Hn ==> H], not [H0, ..., Hn ⊢ H]). + + We do this because, when doing proofs by induction, {!progress} might have to + handle *unregistered* theorems coming the current goal assumptions and of the shape + (the conclusion of the theorem is an assumption, and we want to ignore this assumption): + {[ + [∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒ + case nth ls i of + Return x => ... + | ... => ...] + ⊢ ∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒ + case nth ls i of + Return x => ... + | ... => ... + ]} + *) +val reg_spec_thms: (const_name, thm) Redblackmap.dict ref = + ref (Redblackmap.mkDict const_name_compare) + +(* Retrieve the specified application in a spec theorem. + + A spec theorem for a function [f] typically has the shape: + {[ + !x0 ... xn. + H0 ==> ... Hm ==> + (exists ... + (exists ... . f y0 ... yp = ... /\ ...) \/ + (exists ... . f y0 ... yp = ... /\ ...) \/ + ... + ]} + + Or: + {[ + !x0 ... xn. + H0 ==> ... Hm ==> + case f y0 ... yp of + ... => ... + | ... => ... + ]} + + We return: [f y0 ... yp] +*) +fun get_spec_app (t : term) : term = + let + (* Remove the universally quantified variables, the premises and + the existentially quantified variables *) + val t = (snd o strip_exists o snd o strip_imp o snd o strip_forall) t; + (* Remove the exists, take the first disjunct *) + val t = (hd o strip_disj o snd o strip_exists) t; + (* Split the conjunctions and take the first conjunct *) + val t = (hd o strip_conj) t; + (* Remove the case if there is, otherwise destruct the equality *) + val t = + if TypeBase.is_case t then let val (_, t, _) = TypeBase.dest_case t in t end + else (fst o dest_eq) t; + in t end + +(* Given a function call [f y0 ... yn] return the name of the function *) +fun get_fun_name_from_app (t : term) : const_name = + let + val f = (fst o strip_comb) t; + val {Name=name, Thy=thy, Ty=_} = dest_thy_const f; + val cn = (thy, name); + in cn end + +(* Register a spec theorem in the spec database. + + For the shape of spec theorems, see {!get_spec_thm_app}. + *) +fun register_spec_thm (th: thm) : unit = + let + (* Transform the theroem a bit before storing it *) + val th = SPEC_ALL th; + (* Retrieve the app ([f x0 ... xn]) *) + val f = get_spec_app (concl th); + (* Retrieve the function name *) + val cn = get_fun_name_from_app f; + in + (* Store *) + reg_spec_thms := Redblackmap.insert (!reg_spec_thms, cn, th) + end + +val all_add_eqs = [ + isize_add_eq, + i8_add_eq, + i16_add_eq, + i32_add_eq, + i64_add_eq, + i128_add_eq, + usize_add_eq, + u8_add_eq, + u16_add_eq, + u32_add_eq, + u64_add_eq, + u128_add_eq +] +val _ = app register_spec_thm all_add_eqs + +val all_sub_eqs = [ + isize_sub_eq, + i8_sub_eq, + i16_sub_eq, + i32_sub_eq, + i64_sub_eq, + i128_sub_eq, + usize_sub_eq, + u8_sub_eq, + u16_sub_eq, + u32_sub_eq, + u64_sub_eq, + u128_sub_eq +] +val _ = app register_spec_thm all_sub_eqs + +val all_mul_eqs = [ + isize_mul_eq, + i8_mul_eq, + i16_mul_eq, + i32_mul_eq, + i64_mul_eq, + i128_mul_eq, + usize_mul_eq, + u8_mul_eq, + u16_mul_eq, + u32_mul_eq, + u64_mul_eq, + u128_mul_eq +] +val _ = app register_spec_thm all_mul_eqs + +val all_div_eqs = [ + isize_div_eq, + i8_div_eq, + i16_div_eq, + i32_div_eq, + i64_div_eq, + i128_div_eq, + usize_div_eq, + u8_div_eq, + u16_div_eq, + u32_div_eq, + u64_div_eq, + u128_div_eq +] +val _ = app register_spec_thm all_div_eqs + +val all_rem_eqs = [ + isize_rem_eq, + i8_rem_eq, + i16_rem_eq, + i32_rem_eq, + i64_rem_eq, + i128_rem_eq, + usize_rem_eq, + u8_rem_eq, + u16_rem_eq, + u32_rem_eq, + u64_rem_eq, + u128_rem_eq +] +val _ = app register_spec_thm all_rem_eqs + +val all_vec_lems = [ + vec_len_spec, + vec_insert_back_spec +] +val _ = app register_spec_thm all_vec_lems + +(* Repeatedly destruct cases and return the last scrutinee we get *) +fun strip_all_cases_get_scrutinee (t : term) : term = + if TypeBase.is_case t + then (strip_all_cases_get_scrutinee o fst o TypeBase.strip_case) t + else t + +(* +TypeBase.dest_case “case ls of [] => T | _ => F” +TypeBase.strip_case “case ls of [] => T | _ => F” +TypeBase.strip_case “case (if b then [] else [0, 1]) of [] => T | _ => F” +TypeBase.strip_case “3” +TypeBase.dest_case “3” + +strip_all_cases_get_scrutinee “case ls of [] => T | _ => F” +strip_all_cases_get_scrutinee “case (if b then [] else [0, 1]) of [] => T | _ => F” +strip_all_cases_get_scrutinee “3” +*) + + +(* Provided the goal contains a call to a monadic function, return this function call. + + The goal should be of the shape: + 1. + {[ + case (* potentially expanded function body *) of + ... => ... + | ... => ... + ]} + + 2. Or: + {[ + exists ... . + ... (* potentially expanded function body *) = Return ... /\ + ... (* Various properties *) + ]} + + 3. Or a disjunction of cases like the one above, below existential binders + (actually: note sure this last case exists in practice): + {[ + exists ... . + (exists ... . (* body *) = Return ... /\ ...) \/ + ... + ]} + + The function body should be of the shape: + {[ + x <- f y0 ... yn; + ... + ]} + + Or (typically if we expanded the monadic binds): + {[ + case f y0 ... yn of + ... + ]} + + Or simply (typically if we reached the end of the function we're analyzing): + {[ + f y0 ... yn + ]} + + For all the above cases we would return [f y0 ... yn]. + *) +fun get_monadic_app_call (t : term) : term = + (* We do something slightly imprecise but hopefully general and robut *) + let + (* Case 3.: strip the existential binders, and take the first disjuntion *) + val t = (hd o strip_disj o snd o strip_exists) t; + (* Case 2.: strip the existential binders, and take the first conjunction *) + val t = (hd o strip_conj o snd o strip_exists) t; + (* If it is an equality, take the lhs *) + val t = if is_eq t then lhs t else t; + (* Expand the binders to transform them to cases *) + val t = + (rhs o concl) (REWRITE_CONV [bind_def] t) + handle UNCHANGED => t; + (* Strip all the cases *) + val t = strip_all_cases_get_scrutinee t; + in t end + +(* Use the given theorem to progress by one step (we use this when + analyzing a function body: this goes forward by one call to a monadic function). + + We transform the goal by: + - pushing the theorem premises to a subgoal + - adding the theorem conclusion in the assumptions in another goal, and + getting rid of the monadic call + + Then [then_tac] receives as paramter the monadic call on which we applied + the lemma. This can be useful, for instance, to make a case disjunction. + + This function is the most primitive of the [progress...] functions. + *) +fun pure_progress_with (premise_tac : tactic) + (then_tac : term -> thm_tactic) (th : thm) : tactic = + fn (asms,g) => + let + (* Remove all the universally quantified variables from the theorem *) + val th = SPEC_ALL th; + (* Retrieve the monadic call from the goal *) + val fgoal = get_monadic_app_call g; + (* Retrieve the app call from the theroem *) + val gth = get_spec_app (concl th); + (* Match and instantiate *) + val (var_s, ty_s) = match_term gth fgoal; + (* Instantiate the theorem *) + val th = INST var_s (INST_TYPE ty_s th); + (* Retrieve the premises of the theorem *) + val th = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] th; + in + (* Apply the theorem *) + sg_premise_then premise_tac (then_tac fgoal) th (asms, g) + end + +(* +val (asms, g) = top_goal () +val t = g + +val th = U32_SUB_EQ + +val premise_tac = massage >> TRY COOPER_TAC +fun then_tac fgoal = + fn thm => ASSUME_TAC thm >> Cases_on ‘^fgoal’ >> + rw [] >> fs [st_ex_bind_def] >> massage >> fs [] + +pure_progress_with premise_tac then_tac th +*) + +fun progress_with (th : thm) : tactic = + let + val premise_tac = massage >> fs [] >> rw [] >> TRY COOPER_TAC; + fun then_tac fgoal thm = + mp_tac thm >> strip_tac >> Cases_on ‘^fgoal’ >> + fs [bind_def] >> massage >> fs []; + in + pure_progress_with premise_tac then_tac th + end + +(* +progress_with U32_SUB_EQ +*) + +(* This function lookups the theorem to use to make progress *) +val progress : tactic = + fn (asms, g) => + let + (* Retrieve the monadic call from the goal *) + val fgoal = get_monadic_app_call g; + val fname = get_fun_name_from_app fgoal; + (* Lookup the theorem: first look in the assumptions (we might want to + use the inductive hypothesis for instance) *) + fun asm_to_spec asm = + let + (* Fail if there are no universal quantifiers *) + val _ = + if is_forall asm then asm + else assert is_forall ((snd o strip_imp) asm); + val asm_fname = (get_fun_name_from_app o get_spec_app) asm; + (* Fail if the name is not the one we're looking for *) + val _ = assert (fn n => fname = n) asm_fname; + in + ASSUME asm + end + val asms_thl = mapfilter asm_to_spec asms; + (* Lookup a spec in the database *) + val thl = + case Redblackmap.peek (!reg_spec_thms, fname) of + NONE => asms_thl + | SOME spec => spec :: asms_thl; + val _ = + if null thl then + raise (failwith "progress: could not find a suitable theorem to apply") + else (); + in + (* Attempt to use the theorems one by one *) + map_first_tac progress_with thl (asms, g) + end end |