summaryrefslogtreecommitdiff
path: root/backends/hol4/primitivesLib.sml
diff options
context:
space:
mode:
Diffstat (limited to 'backends/hol4/primitivesLib.sml')
-rw-r--r--backends/hol4/primitivesLib.sml552
1 files changed, 550 insertions, 2 deletions
diff --git a/backends/hol4/primitivesLib.sml b/backends/hol4/primitivesLib.sml
index 5803c531..543ded23 100644
--- a/backends/hol4/primitivesLib.sml
+++ b/backends/hol4/primitivesLib.sml
@@ -1,9 +1,557 @@
(* Advanced tactics for the primitives library *)
-structure primitivesBaseTacLib =
+structure primitivesLib =
struct
open HolKernel boolLib bossLib Parse
open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory
-open primitivesBaseTacLib primitivesTheory
+
+open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory
+
+val primitives_theory_name = "primitives"
+
+(* Small utility: compute the set of assumptions in the context.
+
+ We isolate this code in a utility in order to be able to improve it:
+ for now we simply put all the assumptions in a set, but in the future
+ we might want to split the assumptions which are conjunctions in order
+ to be more precise.
+ *)
+fun compute_asms_set ((asms,g) : goal) : term Redblackset.set =
+ Redblackset.fromList Term.compare asms
+
+val integer_bounds_defs_list = [
+ i8_min_def,
+ i8_max_def,
+ i16_min_def,
+ i16_max_def,
+ i32_min_def,
+ i32_max_def,
+ i64_min_def,
+ i64_max_def,
+ i128_min_def,
+ i128_max_def,
+ u8_max_def,
+ u16_max_def,
+ u32_max_def,
+ u64_max_def,
+ u128_max_def
+]
+
+val integer_bounds_lemmas =
+ Redblackmap.fromList String.compare
+ [
+ ("isize", isize_to_int_bounds),
+ ("i8", i8_to_int_bounds),
+ ("i16", i16_to_int_bounds),
+ ("i32", i32_to_int_bounds),
+ ("i64", i64_to_int_bounds),
+ ("i128", i128_to_int_bounds),
+ ("usize", usize_to_int_bounds),
+ ("u8", u8_to_int_bounds),
+ ("u16", u16_to_int_bounds),
+ ("u32", u32_to_int_bounds),
+ ("u64", u64_to_int_bounds),
+ ("u128", u128_to_int_bounds)
+ ]
+
+val integer_types_names =
+ Redblackset.fromList String.compare
+ (map fst (Redblackmap.listItems integer_bounds_lemmas))
+
+(* See {!assume_bounds_for_all_int_vars}.
+
+ This tactic is in charge of adding assumptions for one variable.
+ *)
+fun assume_bounds_for_int_var
+ (asms_set: term Redblackset.set) (var : string) (ty : string) :
+ tactic =
+ let
+ (* Lookup the lemma to apply *)
+ val lemma = Redblackmap.find (integer_bounds_lemmas, ty);
+ (* Instantiate the lemma *)
+ val ty_t = mk_type (ty, []);
+ val var_t = mk_var (var, ty_t);
+ val lemma = SPEC var_t lemma;
+ (* Split the theorem into a list of conjuncts.
+
+ The bounds are typically a conjunction:
+ {[
+ ⊢ 0 ≤ u32_to_int x ∧ u32_to_int x ≤ u32_max: thm
+ ]}
+ *)
+ val lemmas = CONJUNCTS lemma;
+ (* Filter the conjuncts: some of them might already be in the context,
+ we don't want to introduce them again, as it would pollute it.
+ *)
+ val lemmas = filter (fn lem => not (Redblackset.member (asms_set, concl lem))) lemmas;
+ in
+ (* Introduce the assumptions in the context *)
+ assume_tacl lemmas
+ end
+
+(* Introduce bound assumptions for all the machine integers in the context.
+
+ Exemple:
+ ========
+ If there is “x : u32” in the input set, then we introduce:
+ {[
+ 0 <= u32_to_int x
+ u32_to_int x <= u32_max
+ ]}
+ *)
+fun assume_bounds_for_all_int_vars (asms, g) =
+ let
+ (* Compute the set of integer variables in the context *)
+ val vars = free_varsl (g :: asms);
+ (* Compute the set of assumptions already present in the context *)
+ val asms_set = compute_asms_set (asms, g);
+ val vartys_set = ref (Redblackset.empty String.compare);
+ (* Filter the variables to keep only the ones with type machine integer,
+ decompose the types at the same time *)
+ fun decompose_var (v : term) : (string * string) =
+ let
+ val (v, ty) = dest_var v;
+ val {Args=args, Thy=thy, Tyop=ty} = dest_thy_type ty;
+ val _ = assert null args;
+ val _ = assert (fn thy => thy = primitives_theory_name) thy;
+ val _ = assert (fn ty => Redblackset.member (integer_types_names, ty)) ty;
+ val _ = vartys_set := Redblackset.add (!vartys_set, ty);
+ in (v, ty) end;
+ val vars = mapfilter decompose_var vars;
+ (* Add assumptions for one variable *)
+ fun add_var_asm (v, ty) : tactic =
+ assume_bounds_for_int_var asms_set v ty;
+ (* Add the bounds for isize, usize *)
+ val size_bounds =
+ append
+ (if Redblackset.member (!vartys_set, "usize") then CONJUNCTS usize_bounds else [])
+ (if Redblackset.member (!vartys_set, "isize") then CONJUNCTS isize_bounds else []);
+ val size_bounds =
+ filter (fn th => not (Redblackset.member (asms_set, concl th))) size_bounds;
+ in
+ ((* Add assumptions for all the variables *)
+ map_every_tac add_var_asm vars >>
+ (* Add assumptions about the size bounds *)
+ assume_tacl size_bounds) (asms, g)
+ end
+
+val integer_conversion_lemmas_list = [
+ isize_to_int_int_to_isize,
+ i8_to_int_int_to_i8,
+ i16_to_int_int_to_i16,
+ i32_to_int_int_to_i32,
+ i64_to_int_int_to_i64,
+ i128_to_int_int_to_i128,
+ usize_to_int_int_to_usize,
+ u8_to_int_int_to_u8,
+ u16_to_int_int_to_u16,
+ u32_to_int_int_to_u32,
+ u64_to_int_int_to_u64,
+ u128_to_int_int_to_u128
+]
+
+(* Look for conversions from integers to machine integers and back.
+ {[
+ u32_to_int (int_to_u32 x)
+ ]}
+
+ Attempts to prove and apply equalities of the form:
+ {[
+ u32_to_int (int_to_u32 x) = x
+ ]}
+ *)
+val rewrite_with_dep_int_lemmas : tactic =
+ (* We're not trying to be smart: we just try to rewrite with each theorem at
+ a time *)
+ let
+ val prove_premise = full_simp_tac simpLib.empty_ss integer_bounds_defs_list >> int_tac;
+ val then_tac1 = (fn th => full_simp_tac simpLib.empty_ss [th]);
+ val rewr_tac1 = apply_dep_rewrites_match_concl_with_all_tac prove_premise then_tac1;
+ val then_tac2 = (fn th => full_simp_tac simpLib.empty_ss [th]);
+ val rewr_tac2 = apply_dep_rewrites_match_first_premise_with_all_tac (fn _ => true) prove_premise then_tac2;
+ in
+ map_every_tac rewr_tac1 integer_conversion_lemmas_list >>
+ map_every_tac rewr_tac2 []
+ end
+
+(* Massage a bit the goal, for instance by introducing integer bounds in the
+ assumptions.
+*)
+val massage : tactic =
+ assume_bounds_for_all_int_vars >>
+ rewrite_with_dep_int_lemmas
+
+(* Lexicographic order over pairs *)
+fun pair_compare (comp1 : 'a * 'a -> order) (comp2 : 'b * 'b -> order)
+ ((p1, p2) : (('a * 'b) * ('a * 'b))) : order =
+ let
+ val (x1, y1) = p1;
+ val (x2, y2) = p2;
+ in
+ case comp1 (x1, x2) of
+ LESS => LESS
+ | GREATER => GREATER
+ | EQUAL => comp2 (y1, y2)
+ end
+
+(* A constant name (theory, constant name) *)
+type const_name = string * string
+
+val const_name_compare = pair_compare String.compare String.compare
+
+(* The registered spec theorems, that {!progress} will automatically apply.
+
+ The keys are the function names (it is a pair, because constant names
+ are made of the theory name and the name of the constant itself).
+
+ Also note that we can store several specs per definition (in practice, when
+ looking up specs, we will try them all one by one, in a LIFO order).
+
+ We store theorems where all the premises are in the goal, with implications
+ (i.e.: [⊢ H0 ==> ... ==> Hn ==> H], not [H0, ..., Hn ⊢ H]).
+
+ We do this because, when doing proofs by induction, {!progress} might have to
+ handle *unregistered* theorems coming the current goal assumptions and of the shape
+ (the conclusion of the theorem is an assumption, and we want to ignore this assumption):
+ {[
+ [∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...]
+ ⊢ ∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...
+ ]}
+ *)
+val reg_spec_thms: (const_name, thm) Redblackmap.dict ref =
+ ref (Redblackmap.mkDict const_name_compare)
+
+(* Retrieve the specified application in a spec theorem.
+
+ A spec theorem for a function [f] typically has the shape:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ (exists ...
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ ...
+ ]}
+
+ Or:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ case f y0 ... yp of
+ ... => ...
+ | ... => ...
+ ]}
+
+ We return: [f y0 ... yp]
+*)
+fun get_spec_app (t : term) : term =
+ let
+ (* Remove the universally quantified variables, the premises and
+ the existentially quantified variables *)
+ val t = (snd o strip_exists o snd o strip_imp o snd o strip_forall) t;
+ (* Remove the exists, take the first disjunct *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Split the conjunctions and take the first conjunct *)
+ val t = (hd o strip_conj) t;
+ (* Remove the case if there is, otherwise destruct the equality *)
+ val t =
+ if TypeBase.is_case t then let val (_, t, _) = TypeBase.dest_case t in t end
+ else (fst o dest_eq) t;
+ in t end
+
+(* Given a function call [f y0 ... yn] return the name of the function *)
+fun get_fun_name_from_app (t : term) : const_name =
+ let
+ val f = (fst o strip_comb) t;
+ val {Name=name, Thy=thy, Ty=_} = dest_thy_const f;
+ val cn = (thy, name);
+ in cn end
+
+(* Register a spec theorem in the spec database.
+
+ For the shape of spec theorems, see {!get_spec_thm_app}.
+ *)
+fun register_spec_thm (th: thm) : unit =
+ let
+ (* Transform the theroem a bit before storing it *)
+ val th = SPEC_ALL th;
+ (* Retrieve the app ([f x0 ... xn]) *)
+ val f = get_spec_app (concl th);
+ (* Retrieve the function name *)
+ val cn = get_fun_name_from_app f;
+ in
+ (* Store *)
+ reg_spec_thms := Redblackmap.insert (!reg_spec_thms, cn, th)
+ end
+
+val all_add_eqs = [
+ isize_add_eq,
+ i8_add_eq,
+ i16_add_eq,
+ i32_add_eq,
+ i64_add_eq,
+ i128_add_eq,
+ usize_add_eq,
+ u8_add_eq,
+ u16_add_eq,
+ u32_add_eq,
+ u64_add_eq,
+ u128_add_eq
+]
+val _ = app register_spec_thm all_add_eqs
+
+val all_sub_eqs = [
+ isize_sub_eq,
+ i8_sub_eq,
+ i16_sub_eq,
+ i32_sub_eq,
+ i64_sub_eq,
+ i128_sub_eq,
+ usize_sub_eq,
+ u8_sub_eq,
+ u16_sub_eq,
+ u32_sub_eq,
+ u64_sub_eq,
+ u128_sub_eq
+]
+val _ = app register_spec_thm all_sub_eqs
+
+val all_mul_eqs = [
+ isize_mul_eq,
+ i8_mul_eq,
+ i16_mul_eq,
+ i32_mul_eq,
+ i64_mul_eq,
+ i128_mul_eq,
+ usize_mul_eq,
+ u8_mul_eq,
+ u16_mul_eq,
+ u32_mul_eq,
+ u64_mul_eq,
+ u128_mul_eq
+]
+val _ = app register_spec_thm all_mul_eqs
+
+val all_div_eqs = [
+ isize_div_eq,
+ i8_div_eq,
+ i16_div_eq,
+ i32_div_eq,
+ i64_div_eq,
+ i128_div_eq,
+ usize_div_eq,
+ u8_div_eq,
+ u16_div_eq,
+ u32_div_eq,
+ u64_div_eq,
+ u128_div_eq
+]
+val _ = app register_spec_thm all_div_eqs
+
+val all_rem_eqs = [
+ isize_rem_eq,
+ i8_rem_eq,
+ i16_rem_eq,
+ i32_rem_eq,
+ i64_rem_eq,
+ i128_rem_eq,
+ usize_rem_eq,
+ u8_rem_eq,
+ u16_rem_eq,
+ u32_rem_eq,
+ u64_rem_eq,
+ u128_rem_eq
+]
+val _ = app register_spec_thm all_rem_eqs
+
+val all_vec_lems = [
+ vec_len_spec,
+ vec_insert_back_spec
+]
+val _ = app register_spec_thm all_vec_lems
+
+(* Repeatedly destruct cases and return the last scrutinee we get *)
+fun strip_all_cases_get_scrutinee (t : term) : term =
+ if TypeBase.is_case t
+ then (strip_all_cases_get_scrutinee o fst o TypeBase.strip_case) t
+ else t
+
+(*
+TypeBase.dest_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case (if b then [] else [0, 1]) of [] => T | _ => F”
+TypeBase.strip_case “3”
+TypeBase.dest_case “3”
+
+strip_all_cases_get_scrutinee “case ls of [] => T | _ => F”
+strip_all_cases_get_scrutinee “case (if b then [] else [0, 1]) of [] => T | _ => F”
+strip_all_cases_get_scrutinee “3”
+*)
+
+
+(* Provided the goal contains a call to a monadic function, return this function call.
+
+ The goal should be of the shape:
+ 1.
+ {[
+ case (* potentially expanded function body *) of
+ ... => ...
+ | ... => ...
+ ]}
+
+ 2. Or:
+ {[
+ exists ... .
+ ... (* potentially expanded function body *) = Return ... /\
+ ... (* Various properties *)
+ ]}
+
+ 3. Or a disjunction of cases like the one above, below existential binders
+ (actually: note sure this last case exists in practice):
+ {[
+ exists ... .
+ (exists ... . (* body *) = Return ... /\ ...) \/
+ ...
+ ]}
+
+ The function body should be of the shape:
+ {[
+ x <- f y0 ... yn;
+ ...
+ ]}
+
+ Or (typically if we expanded the monadic binds):
+ {[
+ case f y0 ... yn of
+ ...
+ ]}
+
+ Or simply (typically if we reached the end of the function we're analyzing):
+ {[
+ f y0 ... yn
+ ]}
+
+ For all the above cases we would return [f y0 ... yn].
+ *)
+fun get_monadic_app_call (t : term) : term =
+ (* We do something slightly imprecise but hopefully general and robut *)
+ let
+ (* Case 3.: strip the existential binders, and take the first disjuntion *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Case 2.: strip the existential binders, and take the first conjunction *)
+ val t = (hd o strip_conj o snd o strip_exists) t;
+ (* If it is an equality, take the lhs *)
+ val t = if is_eq t then lhs t else t;
+ (* Expand the binders to transform them to cases *)
+ val t =
+ (rhs o concl) (REWRITE_CONV [bind_def] t)
+ handle UNCHANGED => t;
+ (* Strip all the cases *)
+ val t = strip_all_cases_get_scrutinee t;
+ in t end
+
+(* Use the given theorem to progress by one step (we use this when
+ analyzing a function body: this goes forward by one call to a monadic function).
+
+ We transform the goal by:
+ - pushing the theorem premises to a subgoal
+ - adding the theorem conclusion in the assumptions in another goal, and
+ getting rid of the monadic call
+
+ Then [then_tac] receives as paramter the monadic call on which we applied
+ the lemma. This can be useful, for instance, to make a case disjunction.
+
+ This function is the most primitive of the [progress...] functions.
+ *)
+fun pure_progress_with (premise_tac : tactic)
+ (then_tac : term -> thm_tactic) (th : thm) : tactic =
+ fn (asms,g) =>
+ let
+ (* Remove all the universally quantified variables from the theorem *)
+ val th = SPEC_ALL th;
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ (* Retrieve the app call from the theroem *)
+ val gth = get_spec_app (concl th);
+ (* Match and instantiate *)
+ val (var_s, ty_s) = match_term gth fgoal;
+ (* Instantiate the theorem *)
+ val th = INST var_s (INST_TYPE ty_s th);
+ (* Retrieve the premises of the theorem *)
+ val th = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] th;
+ in
+ (* Apply the theorem *)
+ sg_premise_then premise_tac (then_tac fgoal) th (asms, g)
+ end
+
+(*
+val (asms, g) = top_goal ()
+val t = g
+
+val th = U32_SUB_EQ
+
+val premise_tac = massage >> TRY COOPER_TAC
+fun then_tac fgoal =
+ fn thm => ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
+ rw [] >> fs [st_ex_bind_def] >> massage >> fs []
+
+pure_progress_with premise_tac then_tac th
+*)
+
+fun progress_with (th : thm) : tactic =
+ let
+ val premise_tac = massage >> fs [] >> rw [] >> TRY COOPER_TAC;
+ fun then_tac fgoal thm =
+ mp_tac thm >> strip_tac >> Cases_on ‘^fgoal’ >>
+ fs [bind_def] >> massage >> fs [];
+ in
+ pure_progress_with premise_tac then_tac th
+ end
+
+(*
+progress_with U32_SUB_EQ
+*)
+
+(* This function lookups the theorem to use to make progress *)
+val progress : tactic =
+ fn (asms, g) =>
+ let
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ val fname = get_fun_name_from_app fgoal;
+ (* Lookup the theorem: first look in the assumptions (we might want to
+ use the inductive hypothesis for instance) *)
+ fun asm_to_spec asm =
+ let
+ (* Fail if there are no universal quantifiers *)
+ val _ =
+ if is_forall asm then asm
+ else assert is_forall ((snd o strip_imp) asm);
+ val asm_fname = (get_fun_name_from_app o get_spec_app) asm;
+ (* Fail if the name is not the one we're looking for *)
+ val _ = assert (fn n => fname = n) asm_fname;
+ in
+ ASSUME asm
+ end
+ val asms_thl = mapfilter asm_to_spec asms;
+ (* Lookup a spec in the database *)
+ val thl =
+ case Redblackmap.peek (!reg_spec_thms, fname) of
+ NONE => asms_thl
+ | SOME spec => spec :: asms_thl;
+ val _ =
+ if null thl then
+ raise (failwith "progress: could not find a suitable theorem to apply")
+ else ();
+ in
+ (* Attempt to use the theorems one by one *)
+ map_first_tac progress_with thl (asms, g)
+ end
end