diff options
-rw-r--r-- | backends/hol4/ilistScript.sml | 14 | ||||
-rw-r--r-- | backends/hol4/ilistTheory.sig | 5 | ||||
-rw-r--r-- | backends/hol4/primitivesArithTheory.sig | 35 | ||||
-rw-r--r-- | backends/hol4/primitivesScript.sml | 29 | ||||
-rw-r--r-- | backends/hol4/primitivesTheory.sig | 24 | ||||
-rw-r--r-- | tests/hol4/hashmap/hashmap_PropertiesScript.sml | 1022 | ||||
-rw-r--r-- | tests/hol4/hashmap/hashmap_PropertiesTheory.sig | 902 |
7 files changed, 1559 insertions, 472 deletions
diff --git a/backends/hol4/ilistScript.sml b/backends/hol4/ilistScript.sml index 2183ef77..fb0c7688 100644 --- a/backends/hol4/ilistScript.sml +++ b/backends/hol4/ilistScript.sml @@ -16,6 +16,7 @@ val len_def = Define ‘ len [] : int = 0 /\ len (x :: ls) : int = 1 + len ls ’ +val _ = BasicProvers.export_rewrites ["len_def"] (* Return the ith element of a list. @@ -117,6 +118,7 @@ Theorem len_append: Proof rw [len_eq_LENGTH] >> cooper_tac QED +val _ = BasicProvers.export_rewrites ["len_append"] Theorem append_len_eq: (∀l1 l2 l1' l2'. @@ -129,6 +131,18 @@ Proof rw [len_eq_LENGTH] >> fs [APPEND_11_LENGTH] QED +Theorem drop_more_than_length: + ∀ ls i. + len ls ≤ i ⇒ + drop i ls = [] +Proof + Induct_on ‘ls’ >> + rw [drop_def] >> + qspec_assume ‘ls’ len_pos >> try_tac int_tac >> + last_x_assum irule >> + int_tac +QED + (* TODO: prove more theorems, and add rewriting theorems *) val _ = export_theory () diff --git a/backends/hol4/ilistTheory.sig b/backends/hol4/ilistTheory.sig index da7cdbb3..26f455d6 100644 --- a/backends/hol4/ilistTheory.sig +++ b/backends/hol4/ilistTheory.sig @@ -11,6 +11,7 @@ sig (* Theorems *) val append_len_eq : thm val drop_eq : thm + val drop_more_than_length : thm val index_eq : thm val index_eq_EL : thm val len_append : thm @@ -62,6 +63,10 @@ sig drop i (x::ls) = if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then drop (i − 1) ls else x::ls + [drop_more_than_length] Theorem + + ⊢ ∀ls i. len ls ≤ i ⇒ drop i ls = [] + [index_eq] Theorem ⊢ (∀x ls. index 0 (x::ls) = x) ∧ diff --git a/backends/hol4/primitivesArithTheory.sig b/backends/hol4/primitivesArithTheory.sig index 84b9b67a..85a627d2 100644 --- a/backends/hol4/primitivesArithTheory.sig +++ b/backends/hol4/primitivesArithTheory.sig @@ -15,13 +15,16 @@ sig val le_eq_ge : thm val lt_eq_gt : thm val mul_pos_left_le : thm + val mul_pos_left_lt : thm val mul_pos_right_le : thm + val mul_pos_right_lt : thm val not_ge_eq_lt : thm val not_gt_eq_le : thm val not_le_eq_gt : thm val not_lt_eq_ge : thm val num_sub_1_eq : thm val num_sub_eq : thm + val pos_div_pos_ge : thm val pos_div_pos_is_pos : thm val pos_div_pos_le : thm val pos_div_pos_le_init : thm @@ -30,9 +33,13 @@ sig val pos_mod_pos_is_pos : thm val pos_mod_pos_le_init : thm val pos_mod_pos_lt : thm + val pos_mul_2_div_pos_decompose : thm val pos_mul_left_pos_le : thm + val pos_mul_left_pos_lt : thm + val pos_mul_pos_div_pos_decompose : thm val pos_mul_pos_is_pos : thm val pos_mul_right_pos_le : thm + val pos_mul_right_pos_lt : thm val primitivesArith_grammars : type_grammar.grammar * term_grammar.grammar (* @@ -88,10 +95,18 @@ sig ⊢ ∀a x y. 0 ≤ a ⇒ x ≤ y ⇒ a * x ≤ a * y + [mul_pos_left_lt] Theorem + + ⊢ ∀a x y. 0 < a ⇒ x < y ⇒ a * x < a * y + [mul_pos_right_le] Theorem ⊢ ∀a x y. 0 ≤ a ⇒ x ≤ y ⇒ x * a ≤ y * a + [mul_pos_right_lt] Theorem + + ⊢ ∀a x y. 0 < a ⇒ x < y ⇒ x * a < y * a + [not_ge_eq_lt] Theorem ⊢ ∀x y. ¬(x ≥ y) ⇔ x < y @@ -116,6 +131,10 @@ sig ⊢ ∀x y z. x = y − z ⇒ 0 ≤ x ⇒ 0 ≤ z ⇒ Num y = Num z + Num x + [pos_div_pos_ge] Theorem + + ⊢ ∀x y d. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < d ⇒ x ≥ y ⇒ x / d ≥ y / d + [pos_div_pos_is_pos] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ 0 ≤ x / y @@ -148,10 +167,22 @@ sig ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x % y < y + [pos_mul_2_div_pos_decompose] Theorem + + ⊢ ∀x y. 0 ≤ x ⇒ 0 < y ⇒ x / y + x / y ≤ x * 2 / y + [pos_mul_left_pos_le] Theorem ⊢ ∀a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ a * x + [pos_mul_left_pos_lt] Theorem + + ⊢ ∀a x. 1 < a ⇒ 0 < x ⇒ x < a * x + + [pos_mul_pos_div_pos_decompose] Theorem + + ⊢ ∀x y z. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 < z ⇒ x / z + y / z ≤ (x + y) / z + [pos_mul_pos_is_pos] Theorem ⊢ ∀x y. 0 ≤ x ⇒ 0 ≤ y ⇒ 0 ≤ x * y @@ -160,6 +191,10 @@ sig ⊢ ∀a x. 0 < a ⇒ 0 ≤ x ⇒ x ≤ x * a + [pos_mul_right_pos_lt] Theorem + + ⊢ ∀a x. 1 < a ⇒ 0 < x ⇒ x < x * a + *) end diff --git a/backends/hol4/primitivesScript.sml b/backends/hol4/primitivesScript.sml index 4378f9c3..82da4de9 100644 --- a/backends/hol4/primitivesScript.sml +++ b/backends/hol4/primitivesScript.sml @@ -1702,16 +1702,16 @@ QED Theorem update_spec: ∀ls i y. - 0 <= i ⇒ - i < len ls ⇒ len (update ls i y) = len ls ∧ - index i (update ls i y) = y ∧ - ∀j. j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls + (0 <= i ⇒ + i < len ls ⇒ + index i (update ls i y) = y ∧ + ∀j. j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls) Proof Induct_on ‘ls’ >> Cases_on ‘i = 0’ >> rw [update_def, len_def, index_def] >> try_tac (exfalso >> cooper_tac) >> try_tac ( - pop_last_assum (qspecl_assume [‘i' - 1’, ‘y’]) >> + pop_last_assum (qspecl_assume [‘i' - 1’, ‘y’]) >> fs [] >> pop_assum sg_premise_tac >- cooper_tac >> pop_assum sg_premise_tac >- cooper_tac >> rw []) @@ -1722,6 +1722,13 @@ Proof rw []) QED +Theorem len_update: + ∀ ls i y. len (update ls i y) = len ls +Proof + fs [update_spec] +QED +val _ = BasicProvers.export_rewrites ["len_update"] + Theorem index_update_same: ∀ls i j y. 0 <= i ⇒ @@ -1832,6 +1839,18 @@ Proof sg_dep_rewrite_all_tac index_update_same >- cooper_tac >> fs [] QED +Theorem vec_to_list_vec_update: + ∀ v i x. vec_to_list (vec_update v i x) = update (vec_to_list v) (usize_to_int i) x +Proof + rw [vec_update_def] >> + qspec_assume ‘v’ vec_len_spec >> + qspecl_assume [‘v’, ‘i’, ‘x’] vec_update_eq >> fs [] >> + qspecl_assume [‘vec_to_list v’, ‘usize_to_int i’, ‘x’] update_len >> + sg_dep_rewrite_all_tac mk_vec_axiom >- fs [] >> + fs [] +QED +val _ = export_rewrites ["vec_to_list_vec_update"] + Definition vec_index_fwd_def: vec_index_fwd v i = if usize_to_int i ≤ usize_to_int (vec_len v) diff --git a/backends/hol4/primitivesTheory.sig b/backends/hol4/primitivesTheory.sig index 7e03987b..ae7f083d 100644 --- a/backends/hol4/primitivesTheory.sig +++ b/backends/hol4/primitivesTheory.sig @@ -278,6 +278,7 @@ sig val isize_sub_eq : thm val isize_to_int_int_to_isize_i16_bounds : thm val isize_to_int_int_to_isize_unfold : thm + val len_update : thm val mk_isize_unfold : thm val mk_usize_unfold : thm val mk_vec_unfold : thm @@ -349,6 +350,7 @@ sig val vec_push_back_unfold : thm val vec_to_list_int_bounds : thm val vec_to_list_vec_new : thm + val vec_to_list_vec_update : thm val vec_update_eq : thm val primitives_grammars : type_grammar.grammar * term_grammar.grammar @@ -1907,6 +1909,10 @@ sig if i16_min ≤ n ∧ n ≤ i16_max then n else isize_to_int (int_to_isize n) + [len_update] Theorem + + ⊢ ∀ls i y. len (update ls i y) = len ls + [mk_isize_unfold] Theorem [oracles: DISK_THM] [axioms: isize_bounds] [] @@ -2305,10 +2311,11 @@ sig [update_spec] Theorem ⊢ ∀ls i y. - 0 ≤ i ⇒ - i < len ls ⇒ - len (update ls i y) = len ls ∧ index i (update ls i y) = y ∧ - ∀j. j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls + len (update ls i y) = len ls ∧ + (0 ≤ i ⇒ + i < len ls ⇒ + index i (update ls i y) = y ∧ + ∀j. j < len ls ⇒ j ≠ i ⇒ index j (update ls i y) = index j ls) [usize_add_eq] Theorem @@ -2454,6 +2461,15 @@ sig [oracles: DISK_THM] [axioms: mk_vec_axiom, usize_bounds] [] ⊢ vec_to_list vec_new = [] + [vec_to_list_vec_update] Theorem + + [oracles: DISK_THM] + [axioms: mk_vec_axiom, usize_to_int_bounds, + usize_to_int_int_to_usize, usize_bounds, vec_to_list_num_bounds] [] + ⊢ ∀v i x. + vec_to_list (vec_update v i x) = + update (vec_to_list v) (usize_to_int i) x + [vec_update_eq] Theorem [oracles: DISK_THM] diff --git a/tests/hol4/hashmap/hashmap_PropertiesScript.sml b/tests/hol4/hashmap/hashmap_PropertiesScript.sml index 4eceed97..68ed2d4e 100644 --- a/tests/hol4/hashmap/hashmap_PropertiesScript.sml +++ b/tests/hol4/hashmap/hashmap_PropertiesScript.sml @@ -12,8 +12,8 @@ Theorem EVERY_quant_equiv: ∀p ls. EVERY p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls) Proof strip_tac >> Induct_on ‘ls’ - >-(rw [EVERY_DEF, len_def] >> int_tac) >> - rw [EVERY_DEF, len_def, index_eq] >> + >-(rw [EVERY_DEF] >> int_tac) >> + rw [EVERY_DEF, index_eq] >> equiv_tac >-( rw [] >> @@ -38,8 +38,8 @@ Theorem pairwise_rel_quant_equiv: (∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls)) Proof strip_tac >> Induct_on ‘ls’ - >-(rw [pairwise_rel_def, len_def] >> int_tac) >> - rw [pairwise_rel_def, len_def] >> + >-(rw [pairwise_rel_def] >> int_tac) >> + rw [pairwise_rel_def] >> equiv_tac >-( (* ==> *) @@ -74,6 +74,12 @@ Proof fs [] QED +(* TODO: the context tends to quickly saturate. In particular: + - sg_prove_premise_tac leaves the proven assumption in the context, while it shouldn't + - maybe massage shouldn't leave the introduced inequalities in the context: it is very noisy. + For instance, int_tac could introduce those inequalities. + *) + Type key_t = “:usize” val distinct_keys_def = Define ‘ @@ -86,27 +92,33 @@ Definition list_t_v_def: (list_t_v (ListNil : 't list_t) : (key_t # 't) list = []) /\ (list_t_v (ListCons k v tl) = (k, v) :: list_t_v tl) End +val _ = export_rewrites ["list_t_v_def"] (* Invariants *) +(* TODO: add to srw_ss *) Definition lookup_def: lookup key [] = NONE /\ lookup key ((k, v) :: ls) = if k = key then SOME v else lookup key ls End +val _ = export_rewrites ["lookup_def"] Definition slot_t_lookup_def: slot_t_lookup key ls = lookup key (list_t_v ls) End +val _ = export_rewrites ["slot_t_lookup_def"] Definition remove_def: remove key [] = [] ∧ remove key ((k, v) :: ls) = if k = key then ls else (k, v) :: remove key ls End +val _ = export_rewrites ["remove_def"] Definition slot_t_remove_def: slot_t_remove key ls = remove key (list_t_v ls) End +val _ = export_rewrites ["slot_t_remove_def"] Definition hash_mod_key_def: hash_mod_key k (l : int) : int = @@ -114,11 +126,14 @@ Definition hash_mod_key_def: | Return k => usize_to_int k % l | _ => ARB End +val _ = export_rewrites ["hashmap_Funs.hash_key_fwd_def", "hash_mod_key_def"] +val _ = export_rewrites ["primitives.mem_replace_fwd_def", "primitives.mem_replace_back_def"] Definition slot_s_inv_hash_def: slot_s_inv_hash (l : int) (i : int) (ls : (key_t # 'b) list) : bool = ∀ k v. MEM (k, v) ls ⇒ hash_mod_key k l = i End +val _ = export_rewrites ["slot_s_inv_hash_def"] Definition slot_s_inv_def: slot_s_inv (l : int) (i : int) (ls : (key_t # 'b) list) : bool = ( @@ -126,6 +141,7 @@ Definition slot_s_inv_def: slot_s_inv_hash l i ls ) End +val _ = export_rewrites ["slot_s_inv_def"] (* TODO: try with this invariant: @@ -159,6 +175,7 @@ Definition slots_s_inv_def: slots_s_inv (s : 'a list_t list) = ∀ (i : int). 0 ≤ i ⇒ i < len s ⇒ slot_t_inv (len s) i (index i s) End +val _ = export_rewrites ["slots_s_inv_def"] Definition slots_t_inv_def: slots_t_inv (s : 'a list_t vec) = slots_s_inv (vec_to_list s) @@ -173,6 +190,7 @@ Definition hash_map_t_base_inv_def: slots_t_inv hm.hash_map_slots ∧ (* The capacity must be > 0 (otherwise we can't resize, because when we resize we multiply the capacity by two) *) + (* TODO: write it as 0 < ... *) len (vec_to_list hm.hash_map_slots) > 0 ∧ (* Load computation *) (let capacity = len (vec_to_list hm.hash_map_slots) in @@ -270,7 +288,7 @@ Proof sg ‘v = usize_to_int n - 1’ >- int_tac >> fs [] >> (* *) progress >> - fs [vec_len_def, len_append, len_def] >> + fs [vec_len_def] >> int_tac ) >> fs [] >> @@ -288,11 +306,11 @@ Theorem hash_map_allocate_slots_fwd_spec: Proof rw [] >> pure_once_rewrite_tac [hash_map_allocate_slots_fwd_def] >> - progress >> gvs [len_def, slots_t_inv_def, slots_s_inv_def, slot_s_inv_hash_def] >> - rw [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def] - >- fs [EVERY_quant_equiv, distinct_keys_def, pairwise_rel_def, list_t_v_def] >> + progress >> gvs [slots_t_inv_def] >> + rw [slot_t_inv_def] + >- fs [EVERY_quant_equiv, distinct_keys_def, pairwise_rel_def] >> fs [EVERY_quant_equiv] >> - qpat_assum ‘∀i. _’ sg_dep_rewrite_all_tac >> gvs [list_t_v_def] + qpat_assum ‘∀i. _’ sg_dep_rewrite_all_tac >> gvs [] QED val _ = save_spec_thm "hash_map_allocate_slots_fwd_spec" @@ -300,7 +318,7 @@ val _ = save_spec_thm "hash_map_allocate_slots_fwd_spec" Theorem FLAT_ListNil_is_nil: EVERY (λx. x = ListNil) ls ⇒ FLAT (MAP list_t_v ls) = [] Proof - Induct_on ‘ls’ >> fs [list_t_v_def] + Induct_on ‘ls’ >> fs [] QED Theorem hash_map_new_with_capacity_fwd_spec: @@ -323,27 +341,27 @@ Proof progress >> gvs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> rw [] - >-(massage >> sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs [len_def]) + >-(massage >> sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs []) >-(int_tac) >-(massage >> metis_tac []) >-(fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> - sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs [len_def]) >> - fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def] >> + sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs []) >> + fs [lookup_s_def, slots_t_lookup_def] >> fs [EVERY_quant_equiv] >> (* TODO: sg_dep_rewrite_goal_tac does weird things here *) first_x_assum (qspec_assume ‘hash_mod_key k (usize_to_int capacity)’) >> first_x_assum sg_premise_tac >- ( - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> massage >> irule pos_mod_pos_is_pos >> fs []) >> first_x_assum sg_premise_tac >-( - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> massage >> irule pos_mod_pos_lt >> fs [] ) >> - fs [list_t_v_def, lookup_def] + fs [] QED val _ = save_spec_thm "hash_map_new_with_capacity_fwd_spec" @@ -442,19 +460,19 @@ Proof rw [hash_map_clear_fwd_back_def] >> progress >> fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def, lookup_s_def] >> - fs [slots_t_lookup_def, slot_t_lookup_def, len_def] >> rw [] + fs [slots_t_lookup_def] >> rw [] >-((* Prove that the invariant is preserved *) - fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def, len_def] >> + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> massage >> fs [] >> conj_tac >-( - fs [slots_t_inv_def, slots_s_inv_def] >> - rw [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def, list_t_v_def, distinct_keys_def, pairwise_rel_def]) >> + fs [slots_t_inv_def] >> + rw [slot_t_inv_def, distinct_keys_def, pairwise_rel_def]) >> Cases_on ‘hm.hash_map_max_load_factor’ >> gvs [] >> disj1_tac >> irule pos_div_pos_is_pos >> int_tac) >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> (* TODO: would like to do: qpat_assum ‘∀j. _’ sg_dep_rewrite_goal_tac >> *) first_x_assum (qspec_assume ‘usize_to_int k % len (vec_to_list hm.hash_map_slots)’) >> fs [] >> @@ -465,7 +483,7 @@ Proof >-(fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> fs [] >> sg ‘~(len (vec_to_list hm.hash_map_slots) < 0)’ >- int_tac >> - fs [list_t_v_def, lookup_def] + fs [] QED val _ = save_spec_thm "hash_map_clear_fwd_back_spec" @@ -495,7 +513,7 @@ Theorem hash_map_insert_in_list_loop_fwd_spec: (b ⇔ slot_t_lookup key ls = NONE) Proof Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_insert_in_list_loop_fwd_def] >> - fs [slot_t_lookup_def, lookup_def, list_t_v_def] >> + fs [] >> rw [] QED val _ = save_spec_thm "hash_map_insert_in_list_loop_fwd_spec" @@ -524,17 +542,13 @@ Theorem hash_map_insert_in_list_loop_back_spec_aux: | NONE => len (list_t_v ls1) = len (list_t_v ls) + 1 | SOME _ => len (list_t_v ls1) = len (list_t_v ls)) Proof - Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >> + Induct_on ‘ls’ >> rw [] >~ [‘ListNil’] >> pure_once_rewrite_tac [hash_map_insert_in_list_loop_back_def] - >- (rw [slot_t_lookup_def, lookup_def, list_t_v_def, len_def, slot_s_inv_hash_def]) >> - fs [] >> - case_tac >> fs [] - >-(fs [slot_t_lookup_def, lookup_def, list_t_v_def, len_def, slot_s_inv_hash_def] >> - metis_tac []) >> - progress >> - fs [slot_t_lookup_def, lookup_def, list_t_v_def, len_def] >> - rw [] - >-(fs [slot_s_inv_hash_def] >> metis_tac []) >> + >- (rw []) >> + fs [] >- metis_tac [] >> + progress >> fs [] >> rw [] + >- (metis_tac []) + >- (metis_tac []) >> case_tac >> fs [] >> int_tac QED @@ -548,13 +562,13 @@ Theorem hash_map_insert_in_list_loop_back_EVERY_distinct_keys: EVERY (λy. k1 ≠ FST y) (list_t_v ls1) Proof Induct_on ‘ls0’ >> rw [pairwise_rel_def] >~ [‘ListNil’] >> - gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] - >-(gvs [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def, list_t_v_def, EVERY_DEF]) >> + gvs [pairwise_rel_def, EVERY_DEF] + >-(gvs [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def, EVERY_DEF]) >> pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >> simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >> - Cases_on ‘u = k’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + Cases_on ‘u = k’ >> rw [] >> gvs [pairwise_rel_def, EVERY_DEF] >> Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >> - gvs [distinct_keys_def, list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + gvs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >> metis_tac [] QED @@ -566,14 +580,14 @@ Theorem hash_map_insert_in_list_loop_back_distinct_keys: Proof Induct_on ‘ls0’ >> rw [distinct_keys_def] >~ [‘ListNil’] >-( - fs [list_t_v_def, hash_map_insert_in_list_loop_back_def] >> - gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF]) >> + fs [hash_map_insert_in_list_loop_back_def] >> + gvs [pairwise_rel_def, EVERY_DEF]) >> last_x_assum (qspecl_assume [‘k’, ‘v’]) >> pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >> simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >> - Cases_on ‘u = k’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + Cases_on ‘u = k’ >> rw [] >> gvs [pairwise_rel_def, EVERY_DEF] >> Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >> - gvs [distinct_keys_def, list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + gvs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >> metis_tac [hash_map_insert_in_list_loop_back_EVERY_distinct_keys] QED @@ -599,11 +613,11 @@ Theorem hash_map_insert_in_list_loop_back_spec: (∀l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ⇒ insert_in_slot_t_rel l key value ls ls1) Proof - rw [slot_t_inv_def, slot_s_inv_def] >> + rw [slot_t_inv_def] >> qspecl_assume [‘ls’, ‘key’, ‘value’] hash_map_insert_in_list_loop_back_spec_aux >> fs [] >> qspecl_assume [‘key’, ‘value’, ‘ls’, ‘ls1’] hash_map_insert_in_list_loop_back_distinct_keys >> - gvs [insert_in_slot_t_rel_def, slot_t_inv_def, slot_s_inv_def] + gvs [insert_in_slot_t_rel_def, slot_t_inv_def] >> metis_tac [] QED val _ = save_spec_thm "hash_map_insert_in_list_loop_back_spec" @@ -655,6 +669,7 @@ Proof fs [hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_slots_fupd_def] >> fs [hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_num_entries_fupd_def] QED +val hash_map_insert_no_resize_fwd_back_branches_eq = SIMP_RULE (srw_ss ()) [] hash_map_insert_no_resize_fwd_back_branches_eq Theorem hash_map_cond_incr_thm: ∀ hm key a. @@ -713,14 +728,15 @@ Proof fs [hash_map_insert_no_resize_fwd_back_branches_eq] >> qspecl_assume [‘hm’, ‘key’, ‘a’] hash_map_cond_incr_thm >> gvs [] >> pop_assum sg_premise_tac - >- (fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def, int_rem_def]) >> + >- (fs [lookup_s_def, slots_t_lookup_def, vec_index_def, int_rem_def]) >> fs [] >> (* TODO: lemma? *) sg ‘let l = len (vec_to_list hm.hash_map_slots) in slot_t_inv l (usize_to_int key % l) (index (usize_to_int key % l) (vec_to_list hm.hash_map_slots))’ - >-(fs [hash_map_t_base_inv_def, slots_t_inv_def, slots_s_inv_def] >> + >-(fs [hash_map_t_base_inv_def, slots_t_inv_def] >> last_x_assum (qspec_assume ‘usize_to_int a’) >> - gvs [vec_index_def, int_rem_def, slot_t_inv_def, slot_s_inv_def]) >> + gvs [vec_index_def, int_rem_def, slot_t_inv_def] >> + metis_tac []) >> fs [] >> sg ‘usize_to_int a = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >-(fs [int_rem_def]) >> @@ -728,7 +744,7 @@ Proof >-(fs [int_rem_def]) >> fs [] >> sg ‘distinct_keys (list_t_v (vec_index hm.hash_map_slots a))’ - >-(fs [slot_t_inv_def, slot_s_inv_def, vec_index_def]) >> + >-(fs [slot_t_inv_def, vec_index_def]) >> fs [hash_map_insert_in_list_back_def] >> progress >> progress >- ((* TODO: *) massage >> fs []) >> @@ -737,12 +753,9 @@ Proof (* Prove the post-condition *) qexists ‘a'’ >> rw [hash_map_same_params_def] - >-(gvs [insert_in_slot_t_rel_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def, vec_update_def, slot_t_inv_def, slot_s_inv_def] >> - metis_tac []) - >-( - fs [hash_mod_key_def, hash_key_fwd_def, vec_index_def, vec_update_def] >> - sg_dep_rewrite_goal_tac mk_vec_axiom >> gvs []) >> - gvs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def] >> + >-(gvs [insert_in_slot_t_rel_def, vec_index_def, vec_update_def, slot_t_inv_def] >> + metis_tac []) >> + gvs [lookup_s_def, slots_t_lookup_def, vec_index_def] >> case_tac >> fs [] QED @@ -755,12 +768,12 @@ Theorem len_FLAT_MAP_update: Proof strip_tac >> Induct_on ‘ls’ - >-(rw [len_def] >> int_tac) >> + >-(rw [] >> int_tac) >> rw [] >> - fs [len_def, index_def, update_def] >> - Cases_on ‘i = 0’ >> fs [len_append] + fs [index_def, update_def] >> + Cases_on ‘i = 0’ >> fs [] >- int_tac >> - sg ‘0 < i’ >- int_tac >> fs [len_append] >> + sg ‘0 < i’ >- int_tac >> fs [] >> first_x_assum (qspec_assume ‘i - 1’) >> fs [] >> (* TODO: automate *) @@ -804,39 +817,39 @@ Proof rw [] >-( sg_dep_rewrite_goal_tac len_FLAT_MAP_update - >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + >-(fs []) >> fs [insert_in_slot_t_rel_def] >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> Cases_on ‘lookup_s hm key’ >> - fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def] >> + fs [lookup_s_def, slots_t_lookup_def] >> int_tac) >> - fs [slots_t_inv_def, slots_s_inv_def] >> + fs [slots_t_inv_def] >> rw [] >> (* Proof of the slot property: has the slot been updated∃ *) Cases_on ‘i = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> fs [] >-( sg_dep_rewrite_goal_tac index_update_diff - >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + >-(fs []) >> fs [insert_in_slot_t_rel_def]) >> sg_dep_rewrite_goal_tac index_update_same - >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + >-(fs []) >> fs []) >> (* Prove the rest of the postcondition *) rw [] >-((* The binding for key is updated *) fs [lookup_s_def, slots_t_lookup_def] >> sg_dep_rewrite_goal_tac index_update_diff - >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + >-(fs []) >> fs [insert_in_slot_t_rel_def]) >-((* The other bindings are unchanged *) fs [lookup_s_def, slots_t_lookup_def] >> Cases_on ‘hash_mod_key k (len (vec_to_list hm.hash_map_slots)) = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> gvs [] >-( sg_dep_rewrite_goal_tac index_update_diff - >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + >-(fs []) >> fs [insert_in_slot_t_rel_def]) >> sg_dep_rewrite_goal_tac index_update_same - >-(fs [hash_mod_key_def, hash_key_fwd_def] >> irule pos_mod_pos_lt >> massage >> fs []) >> + >-(fs [] >> irule pos_mod_pos_lt >> massage >> fs []) >> fs [insert_in_slot_t_rel_def]) >> (* Length *) Cases_on ‘lookup_s hm key’ >> @@ -862,8 +875,8 @@ Theorem distinct_keys_lookup_NONE: lookup k ls = NONE Proof Induct_on ‘ls’ >> rw [] >> - fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF, lookup_def] >> - Cases_on ‘h’ >> fs [lookup_def] + fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >> + Cases_on ‘h’ >> fs [] QED Theorem hash_map_move_elements_from_list_fwd_back_spec: @@ -886,14 +899,11 @@ Proof (* TODO: improve massage to not only look at variables *) qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >> (* TODO: automate *) - qspec_assume ‘list_t_v ls’ len_pos - >-(fs [slot_t_lookup_def, lookup_def, list_t_v_def]) - >-(fs [len_def, list_t_v_def]) >> + qspec_assume ‘list_t_v ls’ len_pos >> (* Recursive case *) + progress >> progress - >-(fs [len_s_def, hash_map_t_base_inv_def, list_t_v_def, len_def] >> int_tac) >> - progress - >-(Cases_on ‘lookup_s hm u’ >> fs [len_s_def, hash_map_t_base_inv_def, list_t_v_def, len_def] >> int_tac) >> + >-(Cases_on ‘lookup_s hm u’ >> fs [len_s_def, hash_map_t_base_inv_def] >> int_tac) >> (* Prove the postcondition *) (* Drop the induction hypothesis *) last_x_assum ignore_tac >> @@ -905,7 +915,7 @@ Proof fs [hash_map_same_params_def] >> (* *) sg ‘distinct_keys (list_t_v ls)’ - >-(fs [distinct_keys_def, list_t_v_def, pairwise_rel_def, EVERY_DEF]) >> + >-(fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF]) >> fs [] >> (* For some reason, if we introduce an assumption with [sg], the rewriting doesn't work (and I couldn't find any typing issue) *) @@ -913,53 +923,33 @@ Proof first_assum sg_premise_tac >-( rw [] >> - sg ‘k ≠ u’ >-(irule distinct_keys_MEM_not_eq >> metis_tac [list_t_v_def]) >> + sg ‘k ≠ u’ >-(irule distinct_keys_MEM_not_eq >> metis_tac []) >> last_x_assum (qspec_assume ‘k’) >> gvs [] >> first_x_assum (qspecl_assume [‘k’, ‘v’]) >> - gvs [list_t_v_def]) >> + gvs []) >> gvs[] >> (* *) rw [] >-( - sg ‘k ≠ u’ >-(fs [slot_t_lookup_def, lookup_def, list_t_v_def] >> Cases_on ‘u = k’ >> fs []) >> - last_x_assum (qspec_assume ‘k’) >> gvs [] >> first_x_assum (qspec_assume ‘k’) >> first_x_assum (qspec_assume ‘k’) >> - gvs [slot_t_lookup_def, list_t_v_def, lookup_def]) - >-( - first_x_assum (qspec_assume ‘k’) >> - first_x_assum (qspec_assume ‘k’) >> - fs [slot_t_lookup_def, list_t_v_def, lookup_def] >> - Cases_on ‘u = k’ >> gvs [] >> + fs [] >> sg ‘lookup k (list_t_v ls) = NONE’ >-(irule distinct_keys_lookup_NONE >> metis_tac []) >> - fs []) >> + gvs []) >> (* The length *) - fs [len_def, list_t_v_def] >> + fs [] >> int_tac QED val _ = save_spec_thm "hash_map_move_elements_from_list_fwd_back_spec" -(* TODO: move *) -Theorem drop_more_than_length: - ∀ ls i. - len ls ≤ i ⇒ - drop i ls = [] -Proof - Induct_on ‘ls’ >> - rw [len_def, drop_def] >> - qspec_assume ‘ls’ len_pos >> try_tac int_tac >> - last_x_assum irule >> - int_tac -QED - (* TODO: induction theorem for vectors *) Theorem len_index_FLAT_MAP_list_t_v: ∀ slots i. 0 ≤ i ⇒ i < len slots ⇒ len (list_t_v (index i slots)) ≤ len (FLAT (MAP list_t_v (drop i slots))) Proof - Induct_on ‘slots’ >> rw [vec_index_def, drop_def, index_def, len_def, len_append, len_pos, update_def, drop_eq] >> try_tac int_tac >> fs [] >> + Induct_on ‘slots’ >> rw [vec_index_def, drop_def, index_def, len_pos, update_def, drop_eq] >> try_tac int_tac >> fs [] >> last_x_assum (qspec_assume ‘i - 1’) >> sg ‘0 ≤ i − 1 ∧ i − 1 < len slots’ >- int_tac >> fs [] QED @@ -971,24 +961,11 @@ Theorem len_vec_FLAT_drop_update: len (list_t_v (index i slots)) + len (FLAT (MAP list_t_v (drop (i + 1) (update slots i ListNil)))) Proof - Induct_on ‘slots’ >> fs [len_def, drop_def, update_def, len_append, len_pos, index_def] >> rw [] >> try_tac int_tac >> fs [drop_eq, len_append] >> + Induct_on ‘slots’ >> fs [drop_def, update_def, len_pos, index_def] >> rw [] >> try_tac int_tac >> fs [drop_eq, len_append] >> last_x_assum (qspec_assume ‘i - 1’) >> sg ‘0 ≤ i − 1 ∧ i − 1 < len slots ∧ ~(i + 1 < 0) ∧ ~(i + 1 = 0)’ >- int_tac >> fs [] >> sg ‘i + 1 - 1 = i’ >- int_tac >> fs [drop_def] QED -(* TODO: move *) -(* TODO: add to srw_ss () ? *) -Theorem vec_to_list_vec_update: - ∀ v i x. vec_to_list (vec_update v i x) = update (vec_to_list v) (usize_to_int i) x -Proof - rw [vec_update_def] >> - qspec_assume ‘v’ vec_len_spec >> - qspecl_assume [‘v’, ‘i’, ‘x’] vec_update_eq >> fs [] >> - qspecl_assume [‘vec_to_list v’, ‘usize_to_int i’, ‘x’] update_len >> - sg_dep_rewrite_all_tac mk_vec_axiom >- fs [] >> - fs [] -QED - Theorem MEM_EVERY_not: ∀ k v ls. MEM (k, v) ls ⇒ @@ -1006,9 +983,9 @@ Theorem MEM_distinct_keys_lookup: distinct_keys ls ⇒ lookup k ls = SOME v Proof - Induct_on ‘ls’ >> fs [lookup_def, distinct_keys_def, pairwise_rel_def] >> - rw [lookup_def] >> fs [lookup_def] >> - Cases_on ‘h’ >> fs [lookup_def] >> rw [] >> + Induct_on ‘ls’ >> fs [distinct_keys_def, pairwise_rel_def] >> + rw [] >> fs [] >> + Cases_on ‘h’ >> fs [] >> rw [] >> (* Absurd *) exfalso >> metis_tac [MEM_EVERY_not] @@ -1020,9 +997,9 @@ Theorem lookup_distinct_keys_MEM: distinct_keys ls ⇒ MEM (k, v) ls Proof - Induct_on ‘ls’ >> fs [lookup_def, distinct_keys_def, pairwise_rel_def] >> - rw [lookup_def] >> fs [lookup_def] >> - Cases_on ‘h’ >> fs [lookup_def] >> rw [] >> + Induct_on ‘ls’ >> fs [distinct_keys_def, pairwise_rel_def] >> + rw [] >> fs [] >> + Cases_on ‘h’ >> fs [] >> rw [] >> Cases_on ‘q = k’ >> fs [] QED @@ -1036,23 +1013,23 @@ Theorem key_MEM_j_lookup_i_is_NONE: slot_t_lookup k (index (usize_to_int i) (vec_to_list slots)) = NONE Proof rw [] >> - fs [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def] >> + fs [slot_t_inv_def] >> (* *) first_assum (qspec_assume ‘j’) >> fs [] >> pop_assum sg_premise_tac >- int_tac >> fs [] >> first_x_assum imp_res_tac >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> (* Prove by contradiction *) first_assum (qspec_assume ‘usize_to_int i’) >> fs [] >> pop_assum sg_premise_tac >- int_tac >> fs [] >> Cases_on ‘slot_t_lookup k (index (usize_to_int i) (vec_to_list slots))’ >> fs [] >> sg ‘MEM (k,v) (list_t_v (index (usize_to_int i) (vec_to_list slots)))’ >- ( - fs [slot_t_lookup_def] >> + fs [] >> metis_tac [lookup_distinct_keys_MEM] ) >> qpat_x_assum ‘∀k. _’ imp_res_tac >> - fs [hash_mod_key_def, hash_key_fwd_def] + fs [] QED (* TODO: the names introduced by progress are random, which is confusing. @@ -1095,31 +1072,31 @@ Proof massage >-( case_tac >- int_tac >> fs [] >> - sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [len_def] >> + sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >> strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> (* Contradiction *) rw [] >> int_tac ) >-( (* Same as above - TODO: this is a bit annoying, update the invariant principle (maybe base case is ≤ 0 ?) *) - sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [len_def] >> + sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >> strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> (* Contradiction *) rw [] >> int_tac) >> (* Recursive case *) case_tac >> fs [] >> (* Eliminate the trivial case *) try_tac ( - sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [len_def] >> + sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >> strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >> - fs [hash_mod_key_def, hash_key_fwd_def] >> + fs [] >> (* Contradiction *) rw [] >> int_tac) >> progress >- (fs [vec_len_def] >> massage >> fs []) >> progress >- ( - fs [mem_replace_fwd_def, vec_index_def] >> + fs [vec_index_def] >> qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_index_FLAT_MAP_list_t_v >> gvs [] >> int_tac) >> (* We just evaluated the call to “hash_map_move_elements_from_list_fwd_back”: prove the assumptions @@ -1127,27 +1104,26 @@ Proof qpat_x_assum ‘_ ⇒ _’ sg_premise_tac >-( first_x_assum (qspec_assume ‘usize_to_int i’) >> gvs [vec_index_def] >> - rw [mem_replace_fwd_def] + rw [] >-(first_x_assum irule >> metis_tac []) >> - fs [slot_t_inv_def, slot_s_inv_def]) >> - gvs [mem_replace_fwd_def] >> + fs [slot_t_inv_def]) >> + gvs [] >> (* Continue going forward *) progress >> progress >- (fs [vec_len_def] >> massage >> fs []) >> - progress >> fs [mem_replace_back_def, mem_replace_fwd_def] >> qspecl_assume [‘slots’, ‘i’, ‘ListNil’] vec_update_eq >> + progress >> fs [] >> qspecl_assume [‘slots’, ‘i’, ‘ListNil’] vec_update_eq >> gvs [] >> (* Drop the induction hypothesis *) last_x_assum ignore_tac (* TODO: when we update the theorem, progress lookups the stored (deprecated) rather than the inductive hypothesis *) (* The preconditions of the recursive call *) - >- (int_tac) >- ( qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_vec_FLAT_drop_update >> gvs [] >> - gvs [vec_to_list_vec_update, vec_index_def] >> + gvs [vec_index_def] >> int_tac) >-( - fs [vec_to_list_vec_update] >> + fs [] >> sg_dep_rewrite_goal_tac index_update_same >-(fs [] >> int_tac) >> fs [] >> @@ -1158,17 +1134,18 @@ Proof (* Prove that index j (update slots i) = index j slots *) pop_assum (qspec_assume ‘int_to_usize j’) >> gvs [] >> massage >> gvs [] >> fs [vec_len_def] >> - fs [vec_to_list_vec_update] >> massage >> gvs [] >> sg ‘j ≠ usize_to_int i’ >- int_tac >> gvs [vec_index_def, vec_update_def] >> massage >> - sg_dep_rewrite_all_tac mk_vec_axiom >- fs [] >> gvs [] >> (* Use the fact that slot_t_lookup k (index i ... slots) = NONE *) last_x_assum (qspec_assume ‘k’) >> first_assum sg_premise_tac >- ( - sg ‘usize_to_int i < j’ >- int_tac >> - metis_tac [key_MEM_j_lookup_i_is_NONE]) >> + sg ‘usize_to_int i < j’ >- int_tac >> fs [] >> + (* TODO: we have to rewrite key_MEM_j_lookup_i_is_NONE before applying + metis_tac *) + assume_tac key_MEM_j_lookup_i_is_NONE >> fs [] >> + metis_tac []) >> gvs [] >> (* Use the fact that as the key is in the slots after i, it can't be in “hm” (yet) *) last_x_assum (qspec_assume ‘j’) >> gvs [] >> @@ -1180,12 +1157,11 @@ Proof (* Reasoning about the length *) qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_vec_FLAT_drop_update >> gvs [] >> - fs [vec_to_list_vec_update] >> fs [GSYM integerTheory.INT_ADD_ASSOC, vec_index_def]) >> (* Same params *) fs [hash_map_same_params_def] >> (* Lookup properties *) - strip_tac >> fs [hash_mod_key_def, hash_key_fwd_def] >> + strip_tac >> fs [] >> sg ‘usize_to_int k % len (vec_to_list slots) < len (vec_to_list slots)’ >- (irule pos_mod_pos_lt >> massage >> fs [] >> int_tac) >> fs [] >> Cases_on ‘usize_to_int i = usize_to_int k % len (vec_to_list slots)’ >> fs [] @@ -1194,14 +1170,14 @@ Proof sg ‘~ (usize_to_int k % len (vec_to_list slots) + 1 ≤ usize_to_int k % len (vec_to_list slots))’ >- int_tac >> fs [] >> (* Is the key is slot i ? *) (* TODO: use key_MEM_j_lookup_i_is_NONE? *) - Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> gvs [slot_t_lookup_def, vec_index_def] >> + Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> gvs [vec_index_def] >> (* The key can't be in “hm” *) last_x_assum (qspec_assume ‘usize_to_int i’) >> pop_assum sg_premise_tac >> fs [] >> pop_assum sg_premise_tac >> fs [] >> pop_assum (qspecl_assume [‘k’, ‘x’]) >> pop_assum sg_premise_tac - >-(irule lookup_distinct_keys_MEM >> gvs [slot_t_inv_def, slot_s_inv_def]) >> fs []) >> + >-(irule lookup_distinct_keys_MEM >> gvs [slot_t_inv_def]) >> fs []) >> (* Here: usize_to_int i ≠ usize_to_int k % len (vec_to_list slots) *) Cases_on ‘usize_to_int i ≤ usize_to_int k % len (vec_to_list slots)’ >> fs [] >- ( @@ -1217,15 +1193,15 @@ Proof first_x_assum irule >> last_x_assum (qspec_assume ‘usize_to_int i’) >> gvs [] >> (* Prove by contradiction - TODO: turn this into a lemma? *) - gvs [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def, hash_mod_key_def, hash_key_fwd_def] >> + gvs [slot_t_inv_def] >> Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> fs [vec_index_def] >> exfalso >> - fs [slot_t_lookup_def] >> + fs [] >> imp_res_tac lookup_distinct_keys_MEM >> sg ‘usize_to_int k % len (vec_to_list slots) = usize_to_int i’ >- metis_tac [] >> fs [] ) >> fs [] >> case_tac >> - fs [vec_to_list_vec_update] >> + fs [] >> sg_dep_rewrite_goal_tac index_update_same >> fs [] ) >> (* Here: usize_to_int i > usize_to_int k % ... *) @@ -1237,10 +1213,10 @@ Proof last_x_assum (qspec_assume ‘usize_to_int i’) >> pop_assum sg_premise_tac >> fs [] >> pop_assum sg_premise_tac >> fs [] >> - gvs [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def, hash_mod_key_def, hash_key_fwd_def] >> + gvs [slot_t_inv_def] >> (* Prove by contradiction *) Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> fs [vec_index_def] >> exfalso >> - fs [slot_t_lookup_def] >> + fs [] >> imp_res_tac lookup_distinct_keys_MEM >> sg ‘usize_to_int k % len (vec_to_list slots) = usize_to_int i’ >- metis_tac [] >> fs [] ) >> @@ -1402,7 +1378,7 @@ Proof (* TODO: automate *) qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >> int_tac) - >-(fs [hash_map_t_base_inv_def, slots_t_inv_def, slots_s_inv_def]) >> + >-(fs [hash_map_t_base_inv_def, slots_t_inv_def]) >> pure_rewrite_tac [hash_map_t_inv_def] >> fs [len_s_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def, drop_eq] >> gvs [] >> @@ -1431,7 +1407,7 @@ Proof int_tac) >> rw [] >> first_x_assum (qspec_assume ‘k’) >> - gvs [hash_mod_key_def, hash_key_fwd_def, slots_t_lookup_def, slot_t_lookup_def, lookup_s_def] >> + gvs [slots_t_lookup_def, lookup_s_def] >> massage >> sg ‘0 ≤ usize_to_int k % len (vec_to_list hm.hash_map_slots)’ >- (irule pos_mod_pos_is_pos >> fs [] >> int_tac) >> fs [] >> @@ -1498,359 +1474,479 @@ Proof QED val _ = save_spec_thm "hash_map_insert_fwd_back_spec" -(* -Theorem nth_mut_fwd_spec: - !(ls : 't list_t) (i : u32). - u32_to_int i < len (list_t_v ls) ==> - case nth_mut_fwd ls i of - | Return x => x = index (u32_to_int i) (list_t_v ls) - | Fail _ => F - | Diverge => F +Theorem hash_map_contains_key_in_list_fwd_spec: + ∀ key ls. + hash_map_contains_key_in_list_fwd key ls = Return (slot_t_lookup key ls ≠ NONE) Proof - Induct_on ‘ls’ >> rw [list_t_v_def, len_def] >~ [‘ListNil’] - >-(massage >> int_tac) >> - pure_once_rewrite_tac [nth_mut_fwd_def] >> rw [] >> - fs [index_eq] >> - progress >> progress + fs [hash_map_contains_key_in_list_fwd_def] >> + Induct_on ‘ls’ >> + pure_once_rewrite_tac [hash_map_contains_key_in_list_loop_fwd_def] >> + fs [] >> + (* There remains only the recursive case *) + rw [] QED +val _ = save_spec_thm "hash_map_contains_key_in_list_fwd_spec" -val _ = save_spec_thm "nth_mut_fwd_spec" - -val _ = new_constant ("insert", “: u32 -> 't -> (u32 # 't) list_t -> (u32 # 't) list_t result”) -val insert_def = new_axiom ("insert_def", “ - insert (key : u32) (value : 't) (ls : (u32 # 't) list_t) : (u32 # 't) list_t result = - case ls of - | ListCons (ckey, cvalue) tl => - if ckey = key - then Return (ListCons (ckey, value) tl) - else - do - tl0 <- insert key value tl; - Return (ListCons (ckey, cvalue) tl0) - od - | ListNil => Return (ListCons (key, value) ListNil) - ”) - -(* Property that keys are pairwise distinct *) -val distinct_keys_def = Define ‘ - distinct_keys (ls : (u32 # 't) list) = - !i j. - 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ - FST (index i ls) ≠ FST (index j ls) -’ - -(* Lemma about ‘insert’, without the invariant *) -Theorem insert_lem_aux: - !ls key value. - (* The keys are pairwise distinct *) - case insert key value ls of - | Return ls1 => - (* We updated the binding *) - lookup key ls1 = SOME value /\ - (* The other bindings are left unchanged *) - (!k. k <> key ==> lookup k ls = lookup k ls1) - | Fail _ => F - | Diverge => F +Theorem hash_map_contains_key_fwd_spec: + ∀ hm key. + hash_map_t_inv hm ⇒ + hash_map_contains_key_fwd hm key = Return (lookup_s hm key ≠ NONE) Proof - Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >> - pure_once_rewrite_tac [insert_def] >> rw [] - >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) - >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >> - case_tac >> rw [] - >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) - >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >> + fs [hash_map_contains_key_fwd_def] >> + fs [hash_key_fwd_def] >> + rw [] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + progress >> gvs [] + >- ( + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> + massage >> int_tac) >> + progress >> massage >> gvs [int_rem_def] + >- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> progress >> - fs [lookup_def, lookup_raw_def, list_t_v_def] + fs [lookup_s_def, vec_index_def, slots_t_lookup_def] QED - -(* - * Invariant proof 1 - *) - -Theorem distinct_keys_cons: - ∀ k v ls. - (∀ i. 0 ≤ i ⇒ i < len ls ⇒ FST (index i ls) ≠ k) ⇒ - distinct_keys ls ⇒ - distinct_keys ((k,v) :: ls) +val _ = save_spec_thm "hash_map_contains_key_fwd_spec" + +Theorem hash_map_get_in_list_fwd_spec: + ∀ ls key. + case hash_map_get_in_list_fwd key ls of + | Diverge => F + | Fail _ => slot_t_lookup key ls = NONE + | Return x => slot_t_lookup key ls = SOME x +Proof + fs [hash_map_get_in_list_fwd_def] >> + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_in_list_loop_fwd_def] >> + fs [] >> + rw [] +QED +val _ = save_spec_thm "hash_map_get_in_list_fwd_spec" + +Theorem hash_map_get_fwd_spec: + ∀ hm key. + hash_map_t_inv hm ⇒ + case hash_map_get_fwd hm key of + | Diverge => F + | Fail _ => lookup_s hm key = NONE + | Return x => lookup_s hm key = SOME x +Proof + rw [hash_map_get_fwd_def] >> + fs [hash_key_fwd_def] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + progress >> gvs [] + >- ( + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> + massage >> int_tac) >> + progress >> massage >> gvs [int_rem_def] + >- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + progress >> + gvs [lookup_s_def, vec_index_def, slots_t_lookup_def] +QED +val _ = save_spec_thm "hash_map_get_fwd_spec" + +Theorem hash_map_get_mut_in_list_fwd_spec: + ∀ ls key. + case hash_map_get_mut_in_list_fwd ls key of + | Diverge => F + | Fail _ => slot_t_lookup key ls = NONE + | Return x => slot_t_lookup key ls = SOME x +Proof + fs [hash_map_get_mut_in_list_fwd_def] >> + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_mut_in_list_loop_fwd_def] >> + fs [] >> + rw [] +QED +val _ = save_spec_thm "hash_map_get_mut_in_list_fwd_spec" + +Theorem hash_map_get_mut_fwd_spec: + ∀ hm key. + hash_map_t_inv hm ⇒ + case hash_map_get_mut_fwd hm key of + | Diverge => F + | Fail _ => lookup_s hm key = NONE + | Return x => lookup_s hm key = SOME x Proof + rw [hash_map_get_mut_fwd_def] >> + fs [hash_key_fwd_def] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + progress >> gvs [] + >- ( + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> + massage >> int_tac) >> + progress >> massage >> gvs [int_rem_def] + >- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + progress >> + gvs [lookup_s_def, vec_index_def, slots_t_lookup_def] +QED +val _ = save_spec_thm "hash_map_get_mut_fwd_spec" + +Theorem hash_map_get_mut_in_list_back_spec: + ∀ ls key nx. + slot_t_lookup key ls ≠ NONE ⇒ + ∃ nls. hash_map_get_mut_in_list_back ls key nx = Return nls ∧ + slot_t_lookup key nls = SOME nx ∧ + (∀ k. k ≠ key ⇒ slot_t_lookup k nls = slot_t_lookup k ls) +Proof + fs [hash_map_get_mut_in_list_back_def] >> + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_mut_in_list_loop_back_def] >> + fs [] >> rw [] >> - rw [distinct_keys_def] >> - Cases_on ‘i = 0’ >> fs [] + fs [] >> + progress >> + fs [] +QED +val _ = save_spec_thm "hash_map_get_mut_in_list_back_spec" + +Theorem hash_map_get_mut_back_spec: + ∀ hm key nx. + lookup_s hm key ≠ NONE ⇒ + hash_map_t_inv hm ⇒ + ∃ hm1. hash_map_get_mut_back hm key nx = Return hm1 ∧ + lookup_s hm1 key = SOME nx ∧ + (∀ k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k) +Proof + rw [hash_map_get_mut_back_def] >> + fs [hash_key_fwd_def] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + progress >> gvs [] + >- ( + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> + massage >> int_tac) >> + progress >> massage >> gvs [int_rem_def] + (* TODO: we did this proof many times *) + >- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + progress >> + gvs [lookup_s_def, vec_index_def, slots_t_lookup_def] >> + progress + (* TODO: again the same proof *) + >- (massage >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + gvs [] >> + conj_tac >-( - (* Use the first hypothesis *) - fs [index_eq] >> - last_x_assum (qspecl_assume [‘j - 1’]) >> - sg ‘0 ≤ j - 1’ >- int_tac >> - fs [len_def] >> - sg ‘j - 1 < len ls’ >- int_tac >> + sg_dep_rewrite_goal_tac index_update_diff + >- (fs [] >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> fs [] ) >> - (* Use the second hypothesis *) - sg ‘0 < i’ >- int_tac >> - sg ‘0 < j’ >- int_tac >> - fs [distinct_keys_def, index_eq, len_def] >> - first_x_assum (qspecl_assume [‘i - 1’, ‘j - 1’]) >> - sg ‘0 ≤ i - 1 ∧ i - 1 < j - 1 ∧ j - 1 < len ls’ >- int_tac >> + rw [] >> + Cases_on ‘usize_to_int k % len (vec_to_list hm.hash_map_slots) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> + fs [] + >- ( + sg_dep_rewrite_goal_tac index_update_diff + >- (fs [] >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + fs [] + ) >> + sg_dep_rewrite_goal_tac index_update_same + >- ( + rw [] + >- (irule pos_mod_pos_lt >> massage >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) + >- (irule pos_mod_pos_lt >> massage >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) + ) >> fs [] QED +val _ = save_spec_thm "hash_map_get_mut_back_spec" -Theorem distinct_keys_tail: - ∀ k v ls. - distinct_keys ((k,v) :: ls) ⇒ - distinct_keys ls +Theorem hash_map_remove_from_list_fwd_spec: + ∀ key l i ls. + hash_map_remove_from_list_fwd key ls = Return (slot_t_lookup key ls) Proof - rw [distinct_keys_def] >> - last_x_assum (qspecl_assume [‘i + 1’, ‘j + 1’]) >> - fs [len_def] >> - sg ‘0 ≤ i + 1 ∧ i + 1 < j + 1 ∧ j + 1 < 1 + len ls’ >- int_tac >> fs [] >> - sg ‘0 < i + 1 ∧ 0 < j + 1’ >- int_tac >> fs [index_eq] >> - sg ‘i + 1 - 1 = i ∧ j + 1 - 1 = j’ >- int_tac >> fs [] + fs [hash_map_remove_from_list_fwd_def] >> + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_remove_from_list_loop_fwd_def] >> + rw [] >> + metis_tac [] QED +val _ = save_spec_thm "hash_map_remove_from_list_fwd_spec" -Theorem insert_index_neq: - ∀ q k v ls0 ls1 i. - (∀ j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒ q ≠ FST (index j (list_t_v ls0))) ⇒ - q ≠ k ⇒ - insert k v ls0 = Return ls1 ⇒ - 0 ≤ i ⇒ - i < len (list_t_v ls1) ⇒ - FST (index i (list_t_v ls1)) ≠ q +Theorem lookup_SOME_not_empty: + ∀ ls k. lookup k ls ≠ NONE ⇒ 0 < len ls Proof - ntac 3 strip_tac >> - Induct_on ‘ls0’ >> rw [] >~ [‘ListNil’] - >-( - fs [insert_def] >> - sg ‘ls1 = ListCons (k,v) ListNil’ >- fs [] >> fs [list_t_v_def, len_def] >> - sg ‘i = 0’ >- int_tac >> fs [index_eq]) >> - Cases_on ‘t’ >> - Cases_on ‘i = 0’ >> fs [] - >-( - qpat_x_assum ‘insert _ _ _ = _’ mp_tac >> - simp [MK_BOUNDED insert_def 1, bind_def] >> - Cases_on ‘q' = k’ >> rw [] - >- (fs [list_t_v_def, index_eq]) >> - Cases_on ‘insert k v ls0’ >> fs [] >> - gvs [list_t_v_def, index_eq] >> - first_x_assum (qspec_assume ‘0’) >> - fs [len_def] >> - strip_tac >> - qspec_assume ‘list_t_v ls0’ len_pos >> - sg ‘0 < 1 + len (list_t_v ls0)’ >- int_tac >> - fs []) >> - qpat_x_assum ‘insert _ _ _ = _’ mp_tac >> - simp [MK_BOUNDED insert_def 1, bind_def] >> - Cases_on ‘q' = k’ >> rw [] - >-( - fs [list_t_v_def, index_eq, len_def] >> - first_x_assum (qspec_assume ‘i’) >> rfs []) >> - Cases_on ‘insert k v ls0’ >> fs [] >> - gvs [list_t_v_def, index_eq] >> - last_x_assum (qspec_assume ‘i - 1’) >> - fs [len_def] >> - sg ‘0 ≤ i - 1 ∧ i - 1 < len (list_t_v a)’ >- int_tac >> fs [] >> - first_x_assum irule >> - rw [] >> - last_x_assum (qspec_assume ‘j + 1’) >> - rfs [] >> - sg ‘j + 1 < 1 + len (list_t_v ls0) ∧ j + 1 − 1 = j ∧ j + 1 ≠ 0’ >- int_tac >> fs [] + Induct_on ‘ls’ >> fs [] >> rw [] >> + qspec_assume ‘ls’ len_pos >> + int_tac QED -Theorem distinct_keys_insert_index_neq: - ∀ k v q r ls0 ls1 i. - distinct_keys ((q,r)::list_t_v ls0) ⇒ - q ≠ k ⇒ - insert k v ls0 = Return ls1 ⇒ +Theorem slot_t_lookup_SOME_not_empty: + ∀ ls i k. 0 ≤ i ⇒ - i < len (list_t_v ls1) ⇒ - FST (index i (list_t_v ls1)) ≠ q + i < len ls ⇒ + slot_t_lookup k (index i ls) ≠ NONE ⇒ + 0 < len (FLAT (MAP list_t_v ls)) Proof - rw [] >> - (* Use the first assumption to prove the following assertion *) - sg ‘∀ j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒ q ≠ FST (index j (list_t_v ls0))’ + Induct_on ‘ls’ >> rw [] >> try_tac int_tac >> + gvs [index_eq] >> + Cases_on ‘i = 0’ >> fs [] >-( - strip_tac >> - fs [distinct_keys_def] >> - last_x_assum (qspecl_assume [‘0’, ‘j + 1’]) >> - fs [index_eq] >> - sg ‘j + 1 - 1 = j’ >- int_tac >> fs [len_def] >> - rw []>> - first_x_assum irule >> int_tac) >> - qspecl_assume [‘q’, ‘k’, ‘v’, ‘ls0’, ‘ls1’, ‘i’] insert_index_neq >> - fs [] + qspec_assume ‘FLAT (MAP list_t_v ls)’ len_pos >> + imp_res_tac lookup_SOME_not_empty >> int_tac + ) >> + qspec_assume ‘list_t_v h’ len_pos >> + last_x_assum (qspecl_assume [‘i - 1’, ‘k’]) >> + sg ‘0 ≤ i - 1 ∧ i - 1 < len ls ∧ i ≠ 0’ >- int_tac >> + gvs [] >> + int_tac QED -Theorem distinct_keys_insert: - ∀ k v ls0 ls1. - distinct_keys (list_t_v ls0) ⇒ - insert k v ls0 = Return ls1 ⇒ - distinct_keys (list_t_v ls1) +Theorem lookup_s_SOME_not_empty: + ∀ hm key. + hash_map_t_inv hm ⇒ + lookup_s hm key ≠ NONE ⇒ 0 < len_s hm Proof - Induct_on ‘ls0’ >~ [‘ListNil’] - >-( - rw [distinct_keys_def, list_t_v_def, insert_def] >> - fs [list_t_v_def, len_def] >> - int_tac) >> - Cases >> - pure_once_rewrite_tac [insert_def] >> fs[] >> - rw [] >> fs [] - >-( - (* k = q *) - last_x_assum ignore_tac >> - fs [distinct_keys_def] >> - rw [] >> - last_x_assum (qspecl_assume [‘i’, ‘j’]) >> - rfs [list_t_v_def, len_def] >> - sg ‘0 < j’ >- int_tac >> - Cases_on ‘i = 0’ >> gvs [index_eq]) >> - (* k ≠ q: recursion *) - Cases_on ‘insert k v ls0’ >> fs [bind_def] >> - last_x_assum (qspecl_assume [‘k’, ‘v’, ‘a’]) >> - gvs [list_t_v_def] >> - imp_res_tac distinct_keys_tail >> fs [] >> - irule distinct_keys_cons >> rw [] >> - metis_tac [distinct_keys_insert_index_neq] -QED + rw [lookup_s_def, slots_t_lookup_def, len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + sg ‘0 < len (vec_to_list hm.hash_map_slots)’ + >- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + irule slot_t_lookup_SOME_not_empty >> + qexists ‘usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> + qexists ‘key’ >> + rw [] + >-(irule pos_mod_pos_is_pos >> massage >> int_tac) >> + irule pos_mod_pos_lt >> massage >> int_tac +QED -Theorem insert_lem: - !ls key value. - (* The keys are pairwise distinct *) - distinct_keys (list_t_v ls) ==> - case insert key value ls of - | Return ls1 => - (* We updated the binding *) - lookup key ls1 = SOME value /\ - (* The other bindings are left unchanged *) - (!k. k <> key ==> lookup k ls = lookup k ls1) ∧ - (* The keys are still pairwise disjoint *) - distinct_keys (list_t_v ls1) - | Fail _ => F - | Diverge => F +Theorem hash_map_remove_fwd_spec: + ∀ hm key. + hash_map_t_inv hm ⇒ + hash_map_remove_fwd hm key = Return (lookup_s hm key) Proof - rw [] >> - qspecl_assume [‘ls’, ‘key’, ‘value’] insert_lem_aux >> + rw [hash_map_remove_fwd_def] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + sg ‘0 < usize_to_int (vec_len hm.hash_map_slots)’ + >- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> massage >> int_tac) >> + fs [vec_len_def] >> massage >> + (* TODO: rewriting for: usize_to_int (int_to_usize (len (vec_to_list v))) = len (vec_to_list v) *) + progress >> + progress >> fs [int_rem_def, vec_len_def] >> massage + >- (irule pos_mod_pos_lt >> fs []) >> + progress >> + gvs [lookup_s_def, slots_t_lookup_def, vec_index_def] >> case_tac >> fs [] >> - metis_tac [distinct_keys_insert] + progress >> + (* Prove that we can decrement the number of entries *) + qspecl_assume [‘hm’, ‘key’] lookup_s_SOME_not_empty >> + gvs [lookup_s_def, slots_t_lookup_def, len_s_def, hash_map_t_inv_def, hash_map_t_base_inv_def] >> + int_tac QED +val _ = save_spec_thm "hash_map_remove_fwd_spec" -(* - * Invariant proof 2: functional version of the invariant - *) - -Theorem distinct_keys_f_insert_for_all: - ∀k v k1 ls0 ls1. - k1 ≠ k ⇒ - for_all (λy. k1 ≠ FST y) (list_t_v ls0) ⇒ - pairwise_rel (λx y. FST x ≠ FST y) (list_t_v ls0) ⇒ - insert k v ls0 = Return ls1 ⇒ - for_all (λy. k1 ≠ FST y) (list_t_v ls1) +Theorem every_distinct_remove_every_distinct: + ∀ k0 k1 ls0. + EVERY (λy. k1 ≠ FST y) ls0 ⇒ + EVERY (λy. k1 ≠ FST y) (remove k0 ls0) Proof - Induct_on ‘ls0’ >> rw [pairwise_rel_def] >~ [‘ListNil’] >> - gvs [list_t_v_def, pairwise_rel_def, for_all_def] - >-(gvs [MK_BOUNDED insert_def 1, bind_def, list_t_v_def, for_all_def]) >> - pat_undisch_tac ‘insert _ _ _ = _’ >> - simp [MK_BOUNDED insert_def 1, bind_def] >> - Cases_on ‘t’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, for_all_def] >> - Cases_on ‘insert k v ls0’ >> - gvs [distinct_keys_f_def, list_t_v_def, pairwise_rel_def, for_all_def] >> - metis_tac [] + Induct_on ‘ls0’ >> fs [] >> rw [] >> + Cases_on ‘h’ >> fs [] >> + case_tac >> fs [] QED -Theorem distinct_keys_f_insert: - ∀ k v ls0 ls1. - distinct_keys_f (list_t_v ls0) ⇒ - insert k v ls0 = Return ls1 ⇒ - distinct_keys_f (list_t_v ls1) +Theorem hash_map_remove_from_list_back_spec: + ∀ key ls. + ∃ ls1. hash_map_remove_from_list_back key ls = Return ls1 ∧ + (∀ l i. slot_t_inv l i ls ⇒ + slot_t_inv l i ls1 ∧ + list_t_v ls1 = remove key (list_t_v ls) ∧ + slot_t_lookup key ls1 = NONE ∧ + (∀ k. k ≠ key ⇒ slot_t_lookup k ls1 = slot_t_lookup k ls) ∧ + (case slot_t_lookup key ls of + | NONE => len (list_t_v ls1) = len (list_t_v ls) + | SOME _ => len (list_t_v ls1) = len (list_t_v ls) - 1)) Proof - Induct_on ‘ls0’ >> rw [distinct_keys_f_def] >~ [‘ListNil’] - >-( - fs [list_t_v_def, insert_def] >> - gvs [list_t_v_def, pairwise_rel_def, for_all_def]) >> - last_x_assum (qspecl_assume [‘k’, ‘v’]) >> - pat_undisch_tac ‘insert _ _ _ = _’ >> - simp [MK_BOUNDED insert_def 1, bind_def] >> - (* TODO: improve case_tac *) - Cases_on ‘t’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, for_all_def] >> - Cases_on ‘insert k v ls0’ >> - gvs [distinct_keys_f_def, list_t_v_def, pairwise_rel_def, for_all_def] >> - metis_tac [distinct_keys_f_insert_for_all] + fs [hash_map_remove_from_list_back_def] >> + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_remove_from_list_loop_back_def] >> + fs [slot_t_inv_def] >> + fs [distinct_keys_def, pairwise_rel_def] >> + rw [] + >- (metis_tac []) + >- ( + last_x_assum ignore_tac >> + pop_assum ignore_tac >> + pop_assum ignore_tac >> + Induct_on ‘ls’ >> fs [] + ) >> + progress >> + rw [] >> gvs [pairwise_rel_def] + >- metis_tac [every_distinct_remove_every_distinct] + >- metis_tac [] + >- metis_tac [] + >- metis_tac [] + >- metis_tac [] >> + case_tac >> fs [] >- metis_tac [] >> + first_x_assum (qspecl_assume [‘l’, ‘i’]) >> gvs [] >> + pop_assum sg_premise_tac >- metis_tac [] >> fs [] QED +val _ = save_spec_thm "hash_map_remove_from_list_back_spec" -(* - * Proving equivalence between the two version - exercise. - *) -Theorem for_all_quant: - ∀p ls. for_all p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls) +(* TODO: automate this *) +Theorem hash_map_remove_back_branch_eq: + ∀ key hm a. + (case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of + NONE => + do + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return (hm with hash_map_slots := v) + od + | SOME x0 => + do + i0 <- usize_sub hm.hash_map_num_entries (int_to_usize 1); + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od) = + (do + i0 <- (case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of + | NONE => Return hm.hash_map_num_entries + | SOME _ => usize_sub hm.hash_map_num_entries (int_to_usize 1)); + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od) Proof - strip_tac >> Induct_on ‘ls’ - >-(rw [for_all_def, len_def] >> int_tac) >> - rw [for_all_def, len_def, index_eq] >> - equiv_tac - >-( - rw [] >> - Cases_on ‘i = 0’ >> fs [] >> - first_x_assum irule >> - int_tac) >> - rw [] - >-( - first_x_assum (qspec_assume ‘0’) >> fs [] >> - first_x_assum irule >> - qspec_assume ‘ls’ len_pos >> - int_tac) >> - first_x_assum (qspec_assume ‘i + 1’) >> - fs [] >> - sg ‘i + 1 ≠ 0 ∧ i + 1 - 1 = i’ >- int_tac >> fs [] >> - first_x_assum irule >> int_tac + rw [bind_def] >> + rpt (case_tac >> fs []) >> + Cases_on ‘hm’ >> fs [] >> + fs [hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_slots_fupd_def, + hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_num_entries_fupd_def] QED -Theorem pairwise_rel_quant: - ∀p ls. pairwise_rel p ls ⇔ - (∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls)) +(* TODO: this doesn't work very well *) +Theorem lookup_cond_decr_entries_eq: + ∀ hm key i. + hash_map_t_inv hm ⇒ + usize_to_int i < len (vec_to_list hm.hash_map_slots) ⇒ + ∃ j. + (case lookup key (list_t_v (vec_index hm.hash_map_slots i)) of + NONE => Return hm.hash_map_num_entries + | SOME v => usize_sub hm.hash_map_num_entries (int_to_usize 1)) = Return j ∧ + (lookup key (list_t_v (vec_index hm.hash_map_slots i)) = NONE ⇒ j = hm.hash_map_num_entries) ∧ + (lookup key (list_t_v (vec_index hm.hash_map_slots i)) ≠ NONE ⇒ + usize_to_int j + 1 = usize_to_int hm.hash_map_num_entries) Proof - strip_tac >> Induct_on ‘ls’ - >-(rw [pairwise_rel_def, len_def] >> int_tac) >> - rw [pairwise_rel_def, len_def] >> - equiv_tac - >-( - (* ==> *) - rw [] >> - sg ‘0 < j’ >- int_tac >> - Cases_on ‘i = 0’ - >-( - simp [index_eq] >> - qspecl_assume [‘p h’, ‘ls’] (iffLR for_all_quant) >> - first_x_assum irule >> fs [] >> int_tac - ) >> - rw [index_eq] >> - first_x_assum irule >> int_tac - ) >> - (* <== *) - rw [] - >-( - rw [for_all_quant] >> - first_x_assum (qspecl_assume [‘0’, ‘i + 1’]) >> - sg ‘0 < i + 1 ∧ i + 1 - 1 = i’ >- int_tac >> - fs [index_eq] >> - first_x_assum irule >> int_tac - ) >> - sg ‘pairwise_rel p ls’ - >-( - rw [pairwise_rel_def] >> - first_x_assum (qspecl_assume [‘i' + 1’, ‘j' + 1’]) >> - sg ‘0 < i' + 1 ∧ 0 < j' + 1’ >- int_tac >> - fs [index_eq, int_add_minus_same_eq] >> - first_x_assum irule >> int_tac - ) >> - fs [] + rw [] >> + case_tac >> + progress >> + qspecl_assume [‘vec_to_list hm.hash_map_slots’, ‘usize_to_int i’, ‘key’] slot_t_lookup_SOME_not_empty >> + gvs [vec_index_def] >> + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + int_tac QED -Theorem distinct_keys_f_eq_distinct_keys: - ∀ ls. - distinct_keys_f ls ⇔ distinct_keys ls +(* TODO: when saving a spec theorem, check that all the variables which appear + in the pre/postconditions also appear in the application *) +Theorem hash_map_remove_back_spec: + ∀ hm key. + hash_map_t_inv hm ⇒ + ∃ hm1. hash_map_remove_back hm key = Return hm1 ∧ + hash_map_t_inv hm1 ∧ + lookup_s hm1 key = NONE ∧ + (∀ k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k) ∧ + (case lookup_s hm key of + | NONE => len_s hm1 = len_s hm + | SOME _ => len_s hm1 = len_s hm - 1) Proof - rw [distinct_keys_def, distinct_keys_f_def] >> - qspecl_assume [‘(λx y. FST x ≠ FST y)’, ‘ls’] pairwise_rel_quant >> - fs [] + rw [hash_map_remove_back_def] >> + (* TODO: automate *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> + fs [vec_len_def] >> + sg ‘0 < usize_to_int (vec_len hm.hash_map_slots)’ + >-(fs [hash_map_t_inv_def, hash_map_t_base_inv_def, gt_eq_lt, vec_len_def] >> massage >> fs []) >> + (* TODO: we have to prove this several times - it would be good to remember the preconditions + we proved, sometimes *) + sg ‘usize_to_int key % len (vec_to_list hm.hash_map_slots) < usize_to_int (vec_len hm.hash_map_slots)’ + >- (fs [vec_len_def] >> massage >> irule pos_mod_pos_lt >> int_tac) >> + (* TODO: add a rewriting rule *) + sg ‘usize_to_int (vec_len hm.hash_map_slots) = len (vec_to_list hm.hash_map_slots)’ + >- (fs [vec_len_def] >> massage >> fs []) >> + fs [vec_len_def] >> + massage >> + progress >> + progress >> fs [int_rem_def, vec_len_def] >> + progress >> + gvs [] >> + fs [hash_map_remove_back_branch_eq] >> + qspecl_assume [‘hm’, ‘key’, ‘a’] lookup_cond_decr_entries_eq >> + gvs [] >> + progress >> + progress >> fs [vec_len_def] >> + (* Prove the post-condition *) + sg ‘let i = usize_to_int key % len (vec_to_list hm.hash_map_slots) in + slot_t_inv (len (vec_to_list hm.hash_map_slots)) i (index i (vec_to_list hm.hash_map_slots))’ + >- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def, slots_t_inv_def]) >> fs [] >> + gvs [vec_index_def] >> + qpat_assum ‘∀l. _’ imp_res_tac >> + rw [] + >- ( + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + rw [] + >- ( + (* The num_entries has been correctly updated *) + sg_dep_rewrite_goal_tac len_FLAT_MAP_update >- int_tac >> fs [] >> pop_assum ignore_tac >> gvs [] >> + (* Case analysis on: ‘lookup key (index (key % len slots) slots)’ *) + pop_assum mp_tac >> case_tac >> fs [] >> + int_tac + ) + >- ( + fs [slots_t_inv_def] >> rw [] >> + (* TODO: this is annoying: we proved this many times *) + last_x_assum (qspec_assume ‘i’) >> + gvs [vec_index_def] >> + qpat_x_assum ‘∀l. _’ imp_res_tac >> + Cases_on ‘i = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> fs [] + >- ( + sg_dep_rewrite_goal_tac index_update_diff + >- (fs [] >> int_tac) >> fs [] + ) >> + sg_dep_rewrite_goal_tac index_update_same + >- (fs [] >> int_tac) >> fs [] + ) >> + (* num_entries ≤ max_load *) + Cases_on ‘lookup key (list_t_v (index + (usize_to_int key % len (vec_to_list hm.hash_map_slots)) + (vec_to_list hm.hash_map_slots)))’ >> gvs [] >> + (* Remains the case where we decrment num_entries - TODO: this is too much work, should be easier *) + gvs [usize_sub_def, mk_usize_def] >> + massage >> + sg ‘0 ≤ len_s hm - 1 ∧ len_s hm - 1 ≤ usize_max’ + >- (fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> int_tac) >> + fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + gvs [] >> + massage >> + Cases_on ‘hm.hash_map_max_load_factor’ >> gvs [] >> + disj1_tac >> int_tac) + >- ( + fs [lookup_s_def, slots_t_lookup_def] >> + (* TODO: we did this too many times *) + sg_dep_rewrite_goal_tac index_update_diff + >- (fs [] >> int_tac) >> fs [] >> + metis_tac [] + ) + >- ( + (* Lookup of k ≠ key *) + fs [lookup_s_def, slots_t_lookup_def] >> + Cases_on ‘usize_to_int k % len (vec_to_list hm.hash_map_slots) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> fs [] + >- ( + sg_dep_rewrite_goal_tac index_update_diff + >- (fs [] >> int_tac) >> fs [] >> + metis_tac []) >> + sg_dep_rewrite_goal_tac index_update_same + >- (rw [] >> try_tac int_tac >> irule pos_mod_pos_lt >> fs [] >> massage >> fs []) >> fs [] >> + case_tac >> fs [] >> + metis_tac [] + ) >> + (* The length is correctly updated *) + fs [lookup_s_def, len_s_def, slots_t_lookup_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + case_tac >> gvs [] >> + sg_dep_rewrite_goal_tac len_FLAT_MAP_update >> fs [] >> int_tac QED +val _ = save_spec_thm "hash_map_remove_back_spec" val _ = export_theory () -*) diff --git a/tests/hol4/hashmap/hashmap_PropertiesTheory.sig b/tests/hol4/hashmap/hashmap_PropertiesTheory.sig new file mode 100644 index 00000000..39b6f048 --- /dev/null +++ b/tests/hol4/hashmap/hashmap_PropertiesTheory.sig @@ -0,0 +1,902 @@ +signature hashmap_PropertiesTheory = +sig + type thm = Thm.thm + + (* Axioms *) + val usize_u32_bounds : thm + + (* Definitions *) + val distinct_keys_def : thm + val hash_map_just_before_resize_pred_def : thm + val hash_map_same_params_def : thm + val hash_map_t_al_v_def : thm + val hash_map_t_base_inv_def : thm + val hash_map_t_inv_def : thm + val hash_map_t_v_def : thm + val hash_mod_key_def : thm + val insert_in_slot_t_rel_def : thm + val len_s_def : thm + val list_t_v_def : thm + val lookup_s_def : thm + val pairwise_rel_def : thm + val slot_s_inv_def : thm + val slot_s_inv_hash_def : thm + val slot_t_inv_def : thm + val slot_t_lookup_def : thm + val slot_t_remove_def : thm + val slots_s_inv_def : thm + val slots_t_inv_def : thm + val slots_t_lookup_def : thm + + (* Theorems *) + val EVERY_quant_equiv : thm + val FLAT_ListNil_is_nil : thm + val MEM_EVERY_not : thm + val MEM_distinct_keys_lookup : thm + val distinct_keys_MEM_not_eq : thm + val distinct_keys_lookup_NONE : thm + val every_distinct_remove_every_distinct : thm + val hash_map_allocate_slots_fwd_spec : thm + val hash_map_allocate_slots_loop_fwd_spec : thm + val hash_map_clear_fwd_back_spec : thm + val hash_map_clear_loop_fwd_back_spec : thm + val hash_map_clear_loop_fwd_back_spec_aux : thm + val hash_map_cond_incr_thm : thm + val hash_map_contains_key_fwd_spec : thm + val hash_map_contains_key_in_list_fwd_spec : thm + val hash_map_get_fwd_spec : thm + val hash_map_get_in_list_fwd_spec : thm + val hash_map_get_mut_back_spec : thm + val hash_map_get_mut_fwd_spec : thm + val hash_map_get_mut_in_list_back_spec : thm + val hash_map_get_mut_in_list_fwd_spec : thm + val hash_map_insert_fwd_back_spec : thm + val hash_map_insert_in_list_fwd_spec : thm + val hash_map_insert_in_list_loop_back_EVERY_distinct_keys : thm + val hash_map_insert_in_list_loop_back_distinct_keys : thm + val hash_map_insert_in_list_loop_back_spec : thm + val hash_map_insert_in_list_loop_back_spec_aux : thm + val hash_map_insert_in_list_loop_fwd_spec : thm + val hash_map_insert_no_resize_fwd_back_branches_eq : thm + val hash_map_insert_no_resize_fwd_back_spec : thm + val hash_map_insert_no_resize_fwd_back_spec_aux : thm + val hash_map_len_spec : thm + val hash_map_move_elements_from_list_fwd_back_spec : thm + val hash_map_move_elements_fwd_back_spec : thm + val hash_map_move_elements_loop_fwd_back_spec_aux : thm + val hash_map_new_fwd_spec : thm + val hash_map_new_with_capacity_fwd_spec : thm + val hash_map_remove_back_branch_eq : thm + val hash_map_remove_back_spec : thm + val hash_map_remove_from_list_back_spec : thm + val hash_map_remove_from_list_fwd_spec : thm + val hash_map_remove_fwd_spec : thm + val hash_map_same_params_refl : thm + val hash_map_t_base_inv_len_slots : thm + val hash_map_try_resize_fwd_back_spec : thm + val key_MEM_j_lookup_i_is_NONE : thm + val len_FLAT_MAP_update : thm + val len_index_FLAT_MAP_list_t_v : thm + val len_vec_FLAT_drop_update : thm + val lookup_SOME_not_empty : thm + val lookup_cond_decr_entries_eq : thm + val lookup_def : thm + val lookup_distinct_keys_MEM : thm + val lookup_ind : thm + val lookup_s_SOME_not_empty : thm + val pairwise_rel_quant_equiv : thm + val remove_def : thm + val remove_ind : thm + val slot_t_lookup_SOME_not_empty : thm + + val hashmap_Properties_grammars : type_grammar.grammar * term_grammar.grammar +(* + [hashmap_Funs] Parent theory of "hashmap_Properties" + + [usize_u32_bounds] Axiom + + [oracles: ] [axioms: usize_u32_bounds] [] ⊢ usize_max = u32_max + + [distinct_keys_def] Definition + + ⊢ ∀ls. distinct_keys ls ⇔ pairwise_rel (λx y. FST x ≠ FST y) ls + + [hash_map_just_before_resize_pred_def] Definition + + ⊢ ∀hm. + hash_map_just_before_resize_pred hm ⇔ + (let + (dividend,divisor) = hm.hash_map_max_load_factor + in + usize_to_int hm.hash_map_num_entries = + usize_to_int hm.hash_map_max_load + 1 ∧ + len (vec_to_list hm.hash_map_slots) * 2 * + usize_to_int dividend ≤ usize_max ∨ + len (vec_to_list hm.hash_map_slots) * 2 * + usize_to_int dividend > usize_max) + + [hash_map_same_params_def] Definition + + ⊢ ∀hm hm1. + hash_map_same_params hm hm1 ⇔ + hm1.hash_map_max_load_factor = hm.hash_map_max_load_factor ∧ + hm1.hash_map_max_load = hm.hash_map_max_load ∧ + len (vec_to_list hm1.hash_map_slots) = + len (vec_to_list hm.hash_map_slots) + + [hash_map_t_al_v_def] Definition + + ⊢ ∀hm. hash_map_t_al_v hm = FLAT (hash_map_t_v hm) + + [hash_map_t_base_inv_def] Definition + + ⊢ ∀hm. + hash_map_t_base_inv hm ⇔ + (let + al = hash_map_t_al_v hm + in + usize_to_int hm.hash_map_num_entries = len al ∧ + slots_t_inv hm.hash_map_slots ∧ + len (vec_to_list hm.hash_map_slots) > 0 ∧ + (let + capacity = len (vec_to_list hm.hash_map_slots); + (dividend,divisor) = hm.hash_map_max_load_factor; + dividend = usize_to_int dividend; + divisor = usize_to_int divisor + in + 0 < dividend ∧ dividend < divisor ∧ + capacity * dividend ≥ divisor ∧ + usize_to_int hm.hash_map_max_load = + capacity * dividend / divisor)) + + [hash_map_t_inv_def] Definition + + ⊢ ∀hm. + hash_map_t_inv hm ⇔ + hash_map_t_base_inv hm ∧ + (let + (dividend,divisor) = hm.hash_map_max_load_factor + in + usize_to_int hm.hash_map_num_entries ≤ + usize_to_int hm.hash_map_max_load ∨ + len (vec_to_list hm.hash_map_slots) * 2 * + usize_to_int dividend > usize_max) + + [hash_map_t_v_def] Definition + + ⊢ ∀hm. hash_map_t_v hm = MAP list_t_v (vec_to_list hm.hash_map_slots) + + [hash_mod_key_def] Definition + + ⊢ ∀k l. + hash_mod_key k l = + case hash_key_fwd k of + Return k => usize_to_int k % l + | Fail v3 => ARB + | Diverge => ARB + + [insert_in_slot_t_rel_def] Definition + + ⊢ ∀l key value slot slot1. + insert_in_slot_t_rel l key value slot slot1 ⇔ + slot_t_inv l (hash_mod_key key l) slot1 ∧ + slot_t_lookup key slot1 = SOME value ∧ + (∀k. k ≠ key ⇒ slot_t_lookup k slot = slot_t_lookup k slot1) ∧ + case slot_t_lookup key slot of + NONE => len (list_t_v slot1) = len (list_t_v slot) + 1 + | SOME v => len (list_t_v slot1) = len (list_t_v slot) + + [len_s_def] Definition + + ⊢ ∀hm. len_s hm = len (hash_map_t_al_v hm) + + [list_t_v_def] Definition + + ⊢ list_t_v ListNil = [] ∧ + ∀k v tl. list_t_v (ListCons k v tl) = (k,v)::list_t_v tl + + [lookup_s_def] Definition + + ⊢ ∀hm k. + lookup_s hm k = slots_t_lookup (vec_to_list hm.hash_map_slots) k + + [pairwise_rel_def] Definition + + ⊢ (∀p. pairwise_rel p [] ⇔ T) ∧ + ∀p x ls. + pairwise_rel p (x::ls) ⇔ EVERY (p x) ls ∧ pairwise_rel p ls + + [slot_s_inv_def] Definition + + ⊢ ∀l i ls. + slot_s_inv l i ls ⇔ distinct_keys ls ∧ slot_s_inv_hash l i ls + + [slot_s_inv_hash_def] Definition + + ⊢ ∀l i ls. + slot_s_inv_hash l i ls ⇔ + ∀k v. MEM (k,v) ls ⇒ hash_mod_key k l = i + + [slot_t_inv_def] Definition + + ⊢ ∀l i s. slot_t_inv l i s ⇔ slot_s_inv l i (list_t_v s) + + [slot_t_lookup_def] Definition + + ⊢ ∀key ls. slot_t_lookup key ls = lookup key (list_t_v ls) + + [slot_t_remove_def] Definition + + ⊢ ∀key ls. slot_t_remove key ls = remove key (list_t_v ls) + + [slots_s_inv_def] Definition + + ⊢ ∀s. slots_s_inv s ⇔ + ∀i. 0 ≤ i ⇒ i < len s ⇒ slot_t_inv (len s) i (index i s) + + [slots_t_inv_def] Definition + + ⊢ ∀s. slots_t_inv s ⇔ slots_s_inv (vec_to_list s) + + [slots_t_lookup_def] Definition + + ⊢ ∀s k. + slots_t_lookup s k = + (let + i = hash_mod_key k (len s); + slot = index i s + in + slot_t_lookup k slot) + + [EVERY_quant_equiv] Theorem + + ⊢ ∀p ls. EVERY p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls) + + [FLAT_ListNil_is_nil] Theorem + + ⊢ EVERY (λx. x = ListNil) ls ⇒ FLAT (MAP list_t_v ls) = [] + + [MEM_EVERY_not] Theorem + + ⊢ ∀k v ls. MEM (k,v) ls ⇒ EVERY (λx. k ≠ FST x) ls ⇒ F + + [MEM_distinct_keys_lookup] Theorem + + ⊢ ∀k v ls. MEM (k,v) ls ⇒ distinct_keys ls ⇒ lookup k ls = SOME v + + [distinct_keys_MEM_not_eq] Theorem + + ⊢ ∀ls k1 x1 k2 x2. + distinct_keys ((k1,x1)::ls) ⇒ MEM (k2,x2) ls ⇒ k2 ≠ k1 + + [distinct_keys_lookup_NONE] Theorem + + ⊢ ∀ls k x. distinct_keys ((k,x)::ls) ⇒ lookup k ls = NONE + + [every_distinct_remove_every_distinct] Theorem + + ⊢ ∀k0 k1 ls0. + EVERY (λy. k1 ≠ FST y) ls0 ⇒ + EVERY (λy. k1 ≠ FST y) (remove k0 ls0) + + [hash_map_allocate_slots_fwd_spec] Theorem + + ⊢ ∀n. usize_to_int n ≤ usize_max ⇒ + ∃slots. + hash_map_allocate_slots_fwd vec_new n = Return slots ∧ + slots_t_inv slots ∧ + len (vec_to_list slots) = usize_to_int n ∧ + EVERY (λx. x = ListNil) (vec_to_list slots) + + [hash_map_allocate_slots_loop_fwd_spec] Theorem + + ⊢ ∀slots n. + EVERY (λx. x = ListNil) (vec_to_list slots) ⇒ + len (vec_to_list slots) + usize_to_int n ≤ usize_max ⇒ + ∃nslots. + hash_map_allocate_slots_loop_fwd slots n = Return nslots ∧ + len (vec_to_list nslots) = + len (vec_to_list slots) + usize_to_int n ∧ + EVERY (λx. x = ListNil) (vec_to_list nslots) + + [hash_map_clear_fwd_back_spec] Theorem + + ⊢ ∀hm. + hash_map_t_inv hm ⇒ + ∃hm1. + hash_map_clear_fwd_back hm = Return hm1 ∧ hash_map_t_inv hm1 ∧ + len_s hm1 = 0 ∧ ∀k. lookup_s hm1 k = NONE + + [hash_map_clear_loop_fwd_back_spec] Theorem + + ⊢ ∀slots. ∃slots1. + hash_map_clear_loop_fwd_back slots (int_to_usize 0) = + Return slots1 ∧ + len (vec_to_list slots1) = len (vec_to_list slots) ∧ + (∀j. 0 ≤ j ⇒ + j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = ListNil) ∧ + FLAT (MAP list_t_v (vec_to_list slots1)) = [] + + [hash_map_clear_loop_fwd_back_spec_aux] Theorem + + ⊢ ∀n slots i. + n = len (vec_to_list slots) − usize_to_int i ⇒ + ∃slots1. + hash_map_clear_loop_fwd_back slots i = Return slots1 ∧ + len (vec_to_list slots1) = len (vec_to_list slots) ∧ + (∀j. 0 ≤ j ⇒ + j < usize_to_int i ⇒ + j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = index j (vec_to_list slots)) ∧ + ∀j. usize_to_int i ≤ j ⇒ + j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = ListNil + + [hash_map_cond_incr_thm] Theorem + + ⊢ ∀hm key a. + hash_map_t_base_inv hm ⇒ + (slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE ⇒ + len_s hm < usize_max) ⇒ + ∃n. (if + slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE + then + usize_add hm.hash_map_num_entries (int_to_usize 1) + else Return hm.hash_map_num_entries) = + Return n ∧ + if + slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE + then + usize_to_int n = usize_to_int hm.hash_map_num_entries + 1 + else n = hm.hash_map_num_entries + + [hash_map_contains_key_fwd_spec] Theorem + + ⊢ ∀hm key. + hash_map_t_inv hm ⇒ + hash_map_contains_key_fwd hm key = + Return (lookup_s hm key ≠ NONE) + + [hash_map_contains_key_in_list_fwd_spec] Theorem + + ⊢ ∀key ls. + hash_map_contains_key_in_list_fwd key ls = + Return (slot_t_lookup key ls ≠ NONE) + + [hash_map_get_fwd_spec] Theorem + + ⊢ ∀hm key. + hash_map_t_inv hm ⇒ + case hash_map_get_fwd hm key of + Return x => lookup_s hm key = SOME x + | Fail v1 => lookup_s hm key = NONE + | Diverge => F + + [hash_map_get_in_list_fwd_spec] Theorem + + ⊢ ∀ls key. + case hash_map_get_in_list_fwd key ls of + Return x => slot_t_lookup key ls = SOME x + | Fail v1 => slot_t_lookup key ls = NONE + | Diverge => F + + [hash_map_get_mut_back_spec] Theorem + + ⊢ ∀hm key nx. + lookup_s hm key ≠ NONE ⇒ + hash_map_t_inv hm ⇒ + ∃hm1. + hash_map_get_mut_back hm key nx = Return hm1 ∧ + lookup_s hm1 key = SOME nx ∧ + ∀k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k + + [hash_map_get_mut_fwd_spec] Theorem + + ⊢ ∀hm key. + hash_map_t_inv hm ⇒ + case hash_map_get_mut_fwd hm key of + Return x => lookup_s hm key = SOME x + | Fail v1 => lookup_s hm key = NONE + | Diverge => F + + [hash_map_get_mut_in_list_back_spec] Theorem + + ⊢ ∀ls key nx. + slot_t_lookup key ls ≠ NONE ⇒ + ∃nls. + hash_map_get_mut_in_list_back ls key nx = Return nls ∧ + slot_t_lookup key nls = SOME nx ∧ + ∀k. k ≠ key ⇒ slot_t_lookup k nls = slot_t_lookup k ls + + [hash_map_get_mut_in_list_fwd_spec] Theorem + + ⊢ ∀ls key. + case hash_map_get_mut_in_list_fwd ls key of + Return x => slot_t_lookup key ls = SOME x + | Fail v1 => slot_t_lookup key ls = NONE + | Diverge => F + + [hash_map_insert_fwd_back_spec] Theorem + + [oracles: DISK_THM] [axioms: usize_u32_bounds] [] + ⊢ ∀hm key value. + hash_map_t_inv hm ⇒ + (lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒ + ∃hm1. + hash_map_insert_fwd_back hm key value = Return hm1 ∧ + hash_map_t_inv hm1 ∧ lookup_s hm1 key = SOME value ∧ + (∀k. k ≠ key ⇒ lookup_s hm k = lookup_s hm1 k) ∧ + case lookup_s hm key of + NONE => len_s hm1 = len_s hm + 1 + | SOME v => len_s hm1 = len_s hm + + [hash_map_insert_in_list_fwd_spec] Theorem + + ⊢ ∀ls key value. ∃b. + hash_map_insert_in_list_fwd key value ls = Return b ∧ + (b ⇔ slot_t_lookup key ls = NONE) + + [hash_map_insert_in_list_loop_back_EVERY_distinct_keys] Theorem + + ⊢ ∀k v k1 ls0 ls1. + k1 ≠ k ⇒ + EVERY (λy. k1 ≠ FST y) (list_t_v ls0) ⇒ + pairwise_rel (λx y. FST x ≠ FST y) (list_t_v ls0) ⇒ + hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒ + EVERY (λy. k1 ≠ FST y) (list_t_v ls1) + + [hash_map_insert_in_list_loop_back_distinct_keys] Theorem + + ⊢ ∀k v ls0 ls1. + distinct_keys (list_t_v ls0) ⇒ + hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒ + distinct_keys (list_t_v ls1) + + [hash_map_insert_in_list_loop_back_spec] Theorem + + ⊢ ∀i ls key value. + distinct_keys (list_t_v ls) ⇒ + ∃ls1. + hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧ + ∀l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ⇒ + insert_in_slot_t_rel l key value ls ls1 + + [hash_map_insert_in_list_loop_back_spec_aux] Theorem + + ⊢ ∀ls key value. ∃ls1. + hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧ + slot_t_lookup key ls1 = SOME value ∧ + (∀k. k ≠ key ⇒ slot_t_lookup k ls = slot_t_lookup k ls1) ∧ + (∀l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ⇒ + slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls1)) ∧ + case slot_t_lookup key ls of + NONE => len (list_t_v ls1) = len (list_t_v ls) + 1 + | SOME v => len (list_t_v ls1) = len (list_t_v ls) + + [hash_map_insert_in_list_loop_fwd_spec] Theorem + + ⊢ ∀ls key value. ∃b. + hash_map_insert_in_list_loop_fwd key value ls = Return b ∧ + (b ⇔ slot_t_lookup key ls = NONE) + + [hash_map_insert_no_resize_fwd_back_branches_eq] Theorem + + ⊢ (if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE then + do + i0 <- usize_add hm.hash_map_num_entries (int_to_usize 1); + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od + else + do + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return (hm with hash_map_slots := v) + od) = + do + i0 <- + if + slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE + then + usize_add hm.hash_map_num_entries (int_to_usize 1) + else Return hm.hash_map_num_entries; + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od + + [hash_map_insert_no_resize_fwd_back_spec] Theorem + + ⊢ ∀hm key value. + hash_map_t_base_inv hm ⇒ + (lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒ + ∃hm1. + hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧ + hash_map_t_base_inv hm1 ∧ lookup_s hm1 key = SOME value ∧ + (∀k. k ≠ key ⇒ lookup_s hm k = lookup_s hm1 k) ∧ + (case lookup_s hm key of + NONE => len_s hm1 = len_s hm + 1 + | SOME v => len_s hm1 = len_s hm) ∧ + hash_map_same_params hm hm1 + + [hash_map_insert_no_resize_fwd_back_spec_aux] Theorem + + ⊢ ∀hm key value. + hash_map_t_base_inv hm ⇒ + (lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒ + ∃hm1 slot1. + hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧ + len (vec_to_list hm1.hash_map_slots) = + len (vec_to_list hm.hash_map_slots) ∧ + (let + l = len (vec_to_list hm.hash_map_slots); + i = hash_mod_key key (len (vec_to_list hm.hash_map_slots)); + slot = index i (vec_to_list hm.hash_map_slots) + in + insert_in_slot_t_rel l key value slot slot1 ∧ + vec_to_list hm1.hash_map_slots = + update (vec_to_list hm.hash_map_slots) i slot1 ∧ + hm1.hash_map_max_load_factor = hm.hash_map_max_load_factor ∧ + hm1.hash_map_max_load = hm.hash_map_max_load ∧ + (case lookup_s hm key of + NONE => + usize_to_int hm1.hash_map_num_entries = + usize_to_int hm.hash_map_num_entries + 1 + | SOME v => + hm1.hash_map_num_entries = hm.hash_map_num_entries) ∧ + hash_map_same_params hm hm1) + + [hash_map_len_spec] Theorem + + ⊢ ∀hm. + hash_map_t_base_inv hm ⇒ + ∃x. hash_map_len_fwd hm = Return x ∧ usize_to_int x = len_s hm + + [hash_map_move_elements_from_list_fwd_back_spec] Theorem + + ⊢ ∀hm ls. + (let + l = len (list_t_v ls) + in + hash_map_t_base_inv hm ⇒ + len_s hm + l ≤ usize_max ⇒ + ∃hm1. + hash_map_move_elements_from_list_fwd_back hm ls = Return hm1 ∧ + hash_map_t_base_inv hm1 ∧ + ((∀k v. MEM (k,v) (list_t_v ls) ⇒ lookup_s hm k = NONE) ⇒ + distinct_keys (list_t_v ls) ⇒ + (∀k. slot_t_lookup k ls = NONE ⇒ + lookup_s hm1 k = lookup_s hm k) ∧ + (∀k. slot_t_lookup k ls ≠ NONE ⇒ + lookup_s hm1 k = slot_t_lookup k ls) ∧ + len_s hm1 = len_s hm + l) ∧ hash_map_same_params hm hm1) + + [hash_map_move_elements_fwd_back_spec] Theorem + + ⊢ ∀hm slots i. + (let + slots_l = + len + (FLAT + (MAP list_t_v + (drop (usize_to_int i) (vec_to_list slots)))) + in + hash_map_t_base_inv hm ⇒ + len_s hm + slots_l ≤ usize_max ⇒ + (∀j. (let + l = len (vec_to_list slots) + in + usize_to_int i ≤ j ⇒ + j < l ⇒ + (let + slot = index j (vec_to_list slots) + in + slot_t_inv l j slot ∧ + ∀k v. + MEM (k,v) (list_t_v slot) ⇒ lookup_s hm k = NONE))) ⇒ + ∃hm1 slots1. + hash_map_move_elements_fwd_back hm slots i = + Return (hm1,slots1) ∧ hash_map_t_base_inv hm1 ∧ + len_s hm1 = len_s hm + slots_l ∧ + (∀k. lookup_s hm1 k = + case lookup_s hm k of + NONE => + (let + j = hash_mod_key k (len (vec_to_list slots)) + in + if + usize_to_int i ≤ j ∧ + j < len (vec_to_list slots) + then + (let + slot = index j (vec_to_list slots) + in + lookup k (list_t_v slot)) + else NONE) + | SOME v => SOME v) ∧ hash_map_same_params hm hm1) + + [hash_map_move_elements_loop_fwd_back_spec_aux] Theorem + + ⊢ ∀hm slots i n. + (let + slots_l = + len + (FLAT + (MAP list_t_v + (drop (usize_to_int i) (vec_to_list slots)))) + in + n = len (vec_to_list slots) − usize_to_int i ⇒ + hash_map_t_base_inv hm ⇒ + len_s hm + slots_l ≤ usize_max ⇒ + (∀j. (let + l = len (vec_to_list slots) + in + usize_to_int i ≤ j ⇒ + j < l ⇒ + (let + slot = index j (vec_to_list slots) + in + slot_t_inv l j slot ∧ + ∀k v. + MEM (k,v) (list_t_v slot) ⇒ lookup_s hm k = NONE))) ⇒ + ∃hm1 slots1. + hash_map_move_elements_loop_fwd_back hm slots i = + Return (hm1,slots1) ∧ hash_map_t_base_inv hm1 ∧ + len_s hm1 = len_s hm + slots_l ∧ + (∀k. lookup_s hm1 k = + case lookup_s hm k of + NONE => + (let + j = hash_mod_key k (len (vec_to_list slots)) + in + if + usize_to_int i ≤ j ∧ + j < len (vec_to_list slots) + then + (let + slot = index j (vec_to_list slots) + in + lookup k (list_t_v slot)) + else NONE) + | SOME v => SOME v) ∧ hash_map_same_params hm hm1) + + [hash_map_new_fwd_spec] Theorem + + ⊢ ∃hm. + hash_map_new_fwd = Return hm ∧ hash_map_t_inv hm ∧ + ∀k. lookup_s hm k = NONE ∧ len_s hm = 0 + + [hash_map_new_with_capacity_fwd_spec] Theorem + + ⊢ ∀capacity max_load_dividend max_load_divisor. + 0 < usize_to_int max_load_dividend ⇒ + usize_to_int max_load_dividend < usize_to_int max_load_divisor ⇒ + 0 < usize_to_int capacity ⇒ + usize_to_int capacity * usize_to_int max_load_dividend ≥ + usize_to_int max_load_divisor ⇒ + usize_to_int capacity * usize_to_int max_load_dividend ≤ + usize_max ⇒ + ∃hm. + hash_map_new_with_capacity_fwd capacity max_load_dividend + max_load_divisor = + Return hm ∧ hash_map_t_inv hm ∧ len_s hm = 0 ∧ + ∀k. lookup_s hm k = NONE ∧ + len (vec_to_list hm.hash_map_slots) = usize_to_int capacity ∧ + hm.hash_map_max_load_factor = + (max_load_dividend,max_load_divisor) + + [hash_map_remove_back_branch_eq] Theorem + + ⊢ ∀key hm a. + (case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of + NONE => + do + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return (hm with hash_map_slots := v) + od + | SOME x0 => + do + i0 <- usize_sub hm.hash_map_num_entries (int_to_usize 1); + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with + <|hash_map_num_entries := i0; hash_map_slots := v|>) + od) = + do + i0 <- + case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of + NONE => Return hm.hash_map_num_entries + | SOME v => + usize_sub hm.hash_map_num_entries (int_to_usize 1); + l0 <- + hash_map_remove_from_list_back key + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od + + [hash_map_remove_back_spec] Theorem + + ⊢ ∀hm key. + hash_map_t_inv hm ⇒ + ∃hm1. + hash_map_remove_back hm key = Return hm1 ∧ hash_map_t_inv hm1 ∧ + lookup_s hm1 key = NONE ∧ + (∀k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k) ∧ + case lookup_s hm key of + NONE => len_s hm1 = len_s hm + | SOME v => len_s hm1 = len_s hm − 1 + + [hash_map_remove_from_list_back_spec] Theorem + + ⊢ ∀key ls. ∃ls1. + hash_map_remove_from_list_back key ls = Return ls1 ∧ + ∀l i. + slot_t_inv l i ls ⇒ + slot_t_inv l i ls1 ∧ list_t_v ls1 = remove key (list_t_v ls) ∧ + slot_t_lookup key ls1 = NONE ∧ + (∀k. k ≠ key ⇒ slot_t_lookup k ls1 = slot_t_lookup k ls) ∧ + case slot_t_lookup key ls of + NONE => len (list_t_v ls1) = len (list_t_v ls) + | SOME v => len (list_t_v ls1) = len (list_t_v ls) − 1 + + [hash_map_remove_from_list_fwd_spec] Theorem + + ⊢ ∀key l i ls. + hash_map_remove_from_list_fwd key ls = + Return (slot_t_lookup key ls) + + [hash_map_remove_fwd_spec] Theorem + + ⊢ ∀hm key. + hash_map_t_inv hm ⇒ + hash_map_remove_fwd hm key = Return (lookup_s hm key) + + [hash_map_same_params_refl] Theorem + + ⊢ ∀hm. hash_map_same_params hm hm + + [hash_map_t_base_inv_len_slots] Theorem + + ⊢ ∀hm. + hash_map_t_base_inv hm ⇒ 0 < len (vec_to_list hm.hash_map_slots) + + [hash_map_try_resize_fwd_back_spec] Theorem + + [oracles: DISK_THM] [axioms: usize_u32_bounds] [] + ⊢ ∀hm. + hash_map_t_base_inv hm ⇒ + hash_map_just_before_resize_pred hm ⇒ + ∃hm1. + hash_map_try_resize_fwd_back hm = Return hm1 ∧ + hash_map_t_inv hm1 ∧ len_s hm1 = len_s hm ∧ + ∀k. lookup_s hm1 k = lookup_s hm k + + [key_MEM_j_lookup_i_is_NONE] Theorem + + ⊢ ∀i j slots k v. + usize_to_int i < j ⇒ + j < len (vec_to_list slots) ⇒ + (∀j. usize_to_int i ≤ j ⇒ + j < len (vec_to_list slots) ⇒ + slot_t_inv (len (vec_to_list slots)) j + (index j (vec_to_list slots))) ⇒ + MEM (k,v) (list_t_v (index j (vec_to_list slots))) ⇒ + slot_t_lookup k (index (usize_to_int i) (vec_to_list slots)) = + NONE + + [len_FLAT_MAP_update] Theorem + + ⊢ ∀x ls i. + 0 ≤ i ⇒ + i < len ls ⇒ + len (FLAT (MAP list_t_v (update ls i x))) = + len (FLAT (MAP list_t_v ls)) + len (list_t_v x) − + len (list_t_v (index i ls)) + + [len_index_FLAT_MAP_list_t_v] Theorem + + ⊢ ∀slots i. + 0 ≤ i ⇒ + i < len slots ⇒ + len (list_t_v (index i slots)) ≤ + len (FLAT (MAP list_t_v (drop i slots))) + + [len_vec_FLAT_drop_update] Theorem + + ⊢ ∀slots i. + 0 ≤ i ⇒ + i < len slots ⇒ + len (FLAT (MAP list_t_v (drop i slots))) = + len (list_t_v (index i slots)) + + len (FLAT (MAP list_t_v (drop (i + 1) (update slots i ListNil)))) + + [lookup_SOME_not_empty] Theorem + + ⊢ ∀ls k. lookup k ls ≠ NONE ⇒ 0 < len ls + + [lookup_cond_decr_entries_eq] Theorem + + ⊢ ∀hm key i. + hash_map_t_inv hm ⇒ + usize_to_int i < len (vec_to_list hm.hash_map_slots) ⇒ + ∃j. (case + lookup key (list_t_v (vec_index hm.hash_map_slots i)) + of + NONE => Return hm.hash_map_num_entries + | SOME v => + usize_sub hm.hash_map_num_entries (int_to_usize 1)) = + Return j ∧ + (lookup key (list_t_v (vec_index hm.hash_map_slots i)) = NONE ⇒ + j = hm.hash_map_num_entries) ∧ + (lookup key (list_t_v (vec_index hm.hash_map_slots i)) ≠ NONE ⇒ + usize_to_int j + 1 = usize_to_int hm.hash_map_num_entries) + + [lookup_def] Theorem + + ⊢ (∀key. lookup key [] = NONE) ∧ + ∀v ls key k. + lookup key ((k,v)::ls) = + if k = key then SOME v else lookup key ls + + [lookup_distinct_keys_MEM] Theorem + + ⊢ ∀k v ls. lookup k ls = SOME v ⇒ distinct_keys ls ⇒ MEM (k,v) ls + + [lookup_ind] Theorem + + ⊢ ∀P. (∀key. P key []) ∧ + (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒ + ∀v v1. P v v1 + + [lookup_s_SOME_not_empty] Theorem + + ⊢ ∀hm key. hash_map_t_inv hm ⇒ lookup_s hm key ≠ NONE ⇒ 0 < len_s hm + + [pairwise_rel_quant_equiv] Theorem + + ⊢ ∀p ls. + pairwise_rel p ls ⇔ + ∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls) + + [remove_def] Theorem + + ⊢ (∀key. remove key [] = []) ∧ + ∀v ls key k. + remove key ((k,v)::ls) = + if k = key then ls else (k,v)::remove key ls + + [remove_ind] Theorem + + ⊢ ∀P. (∀key. P key []) ∧ + (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒ + ∀v v1. P v v1 + + [slot_t_lookup_SOME_not_empty] Theorem + + ⊢ ∀ls i k. + 0 ≤ i ⇒ + i < len ls ⇒ + slot_t_lookup k (index i ls) ≠ NONE ⇒ + 0 < len (FLAT (MAP list_t_v ls)) + + +*) +end |