summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--tests/lean/Hashmap/Properties.lean109
1 files changed, 34 insertions, 75 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean
index 66c386f2..dce33fa4 100644
--- a/tests/lean/Hashmap/Properties.lean
+++ b/tests/lean/Hashmap/Properties.lean
@@ -6,7 +6,8 @@ open Result
namespace List
-- TODO: we don't want to use the original List.lookup because it uses BEq
--- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ?
+-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar)
+-- TODO: move?
@[simp]
def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α :=
match ls with
@@ -49,6 +50,7 @@ end List
@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*]
-- TODO: move
+-- TODO: this doesn't work because of sugar
theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
(x == y) = (if x = y then true else false) := by
split <;> simp_all
@@ -161,47 +163,6 @@ def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v
theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
- (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) :
- ∃ l1,
- insert_in_list_back α key value l0 = ret l1 ∧
- -- We update the binding
- l1.lookup key = value ∧
- (∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
- -- We preserve part of the key invariant
- slot_s_inv_hash l (hash_mod_key key l) l1.v ∧
- -- Reasoning about the length
- match l0.lookup key with
- | none => l1.len = l0.len + 1
- | some _ => l1.len = l0.len
- := match l0 with
- | .Nil => by
- simp (config := {contextual := true}) [insert_in_list_back, insert_in_list_loop_back, List.v, slot_s_inv_hash]
- | .Cons k v tl0 =>
- if h: k = key then
- by
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
- simp [h]
- constructor
- . intros; simp [*]
- . simp [List.v, slot_s_inv_hash] at *
- simp [*]
- else
- by
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
- simp [h]
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by
- simp_all [List.v, slot_s_inv_hash]
- progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 ⟩
- simp only [insert_in_list_back] at heq
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by
- simp [List.v, slot_s_inv_hash] at *
- simp [*]
- -- TODO: canonize addition by default?
- simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
-
-theorem insert_in_list_back_spec_aux1 {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
∃ l1,
@@ -220,43 +181,41 @@ theorem insert_in_list_back_spec_aux1 {α : Type} (l : Int) (key: Usize) (value:
-- We need this auxiliary property to prove that the keys distinct properties is preserved
(∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1))
:= match l0 with
- | .Nil => by
+ | .Nil => by checkpoint
simp (config := {contextual := true})
[insert_in_list_back, insert_in_list_loop_back,
List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
| .Cons k v tl0 =>
- if h: k = key then
- by
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
- simp [h]
- split_target_conjs
- . intros; simp [*]
- . simp [List.v, slot_s_inv_hash] at *
- simp [*]
- . simp [*, distinct_keys] at *
- apply hdk
- . tauto
- else
- by
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
- simp [h]
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by
- simp_all [List.v, slot_s_inv_hash]
- have : distinct_keys (List.v tl0) := by
- simp [distinct_keys] at hdk
- simp [hdk, distinct_keys]
- progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 hp5 hp6 ⟩ -- TODO: naming is weird
- simp only [insert_in_list_back] at heq
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by
- simp [List.v, slot_s_inv_hash] at *
- simp [*]
- have : distinct_keys ((k, v) :: List.v tl1) := by
- simp [distinct_keys] at *
- simp [*]
- -- TODO: canonize addition by default?
- simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
+ if h: k = key then by checkpoint
+ simp [insert_in_list_back]
+ rw [insert_in_list_loop_back]
+ simp [h]
+ split_target_conjs
+ . intros; simp [*]
+ . simp [List.v, slot_s_inv_hash] at *
+ simp [*]
+ . simp [*, distinct_keys] at *
+ apply hdk
+ . tauto
+ else by checkpoint
+ simp [insert_in_list_back]
+ rw [insert_in_list_loop_back]
+ simp [h]
+ have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
+ simp_all [List.v, slot_s_inv_hash]
+ have : distinct_keys (List.v tl0) := by checkpoint
+ simp [distinct_keys] at hdk
+ simp [hdk, distinct_keys]
+ progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 hp5 hp6 ⟩
+ simp only [insert_in_list_back] at heq
+ have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
+ simp [List.v, slot_s_inv_hash] at *
+ simp [*]
+ have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint
+ simp [distinct_keys] at *
+ simp [*]
+ -- TODO: canonize addition by default?
+ simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
end HashMap