diff options
-rw-r--r-- | tests/lean/Hashmap/Properties.lean | 109 |
1 files changed, 34 insertions, 75 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean index 66c386f2..dce33fa4 100644 --- a/tests/lean/Hashmap/Properties.lean +++ b/tests/lean/Hashmap/Properties.lean @@ -6,7 +6,8 @@ open Result namespace List -- TODO: we don't want to use the original List.lookup because it uses BEq --- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? +-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar) +-- TODO: move? @[simp] def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α := match ls with @@ -49,6 +50,7 @@ end List @[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*] -- TODO: move +-- TODO: this doesn't work because of sugar theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) : (x == y) = (if x = y then true else false) := by split <;> simp_all @@ -161,47 +163,6 @@ def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop := def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) - (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) : - ∃ l1, - insert_in_list_back α key value l0 = ret l1 ∧ - -- We update the binding - l1.lookup key = value ∧ - (∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧ - -- We preserve part of the key invariant - slot_s_inv_hash l (hash_mod_key key l) l1.v ∧ - -- Reasoning about the length - match l0.lookup key with - | none => l1.len = l0.len + 1 - | some _ => l1.len = l0.len - := match l0 with - | .Nil => by - simp (config := {contextual := true}) [insert_in_list_back, insert_in_list_loop_back, List.v, slot_s_inv_hash] - | .Cons k v tl0 => - if h: k = key then - by - simp [insert_in_list_back] - rw [insert_in_list_loop_back] - simp [h] - constructor - . intros; simp [*] - . simp [List.v, slot_s_inv_hash] at * - simp [*] - else - by - simp [insert_in_list_back] - rw [insert_in_list_loop_back] - simp [h] - have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by - simp_all [List.v, slot_s_inv_hash] - progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 ⟩ - simp only [insert_in_list_back] at heq - have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by - simp [List.v, slot_s_inv_hash] at * - simp [*] - -- TODO: canonize addition by default? - simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] - -theorem insert_in_list_back_spec_aux1 {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) (hdk : distinct_keys l0.v) : ∃ l1, @@ -220,43 +181,41 @@ theorem insert_in_list_back_spec_aux1 {α : Type} (l : Int) (key: Usize) (value: -- We need this auxiliary property to prove that the keys distinct properties is preserved (∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1)) := match l0 with - | .Nil => by + | .Nil => by checkpoint simp (config := {contextual := true}) [insert_in_list_back, insert_in_list_loop_back, List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel] | .Cons k v tl0 => - if h: k = key then - by - simp [insert_in_list_back] - rw [insert_in_list_loop_back] - simp [h] - split_target_conjs - . intros; simp [*] - . simp [List.v, slot_s_inv_hash] at * - simp [*] - . simp [*, distinct_keys] at * - apply hdk - . tauto - else - by - simp [insert_in_list_back] - rw [insert_in_list_loop_back] - simp [h] - have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by - simp_all [List.v, slot_s_inv_hash] - have : distinct_keys (List.v tl0) := by - simp [distinct_keys] at hdk - simp [hdk, distinct_keys] - progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 hp5 hp6 ⟩ -- TODO: naming is weird - simp only [insert_in_list_back] at heq - have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by - simp [List.v, slot_s_inv_hash] at * - simp [*] - have : distinct_keys ((k, v) :: List.v tl1) := by - simp [distinct_keys] at * - simp [*] - -- TODO: canonize addition by default? - simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] + if h: k = key then by checkpoint + simp [insert_in_list_back] + rw [insert_in_list_loop_back] + simp [h] + split_target_conjs + . intros; simp [*] + . simp [List.v, slot_s_inv_hash] at * + simp [*] + . simp [*, distinct_keys] at * + apply hdk + . tauto + else by checkpoint + simp [insert_in_list_back] + rw [insert_in_list_loop_back] + simp [h] + have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint + simp_all [List.v, slot_s_inv_hash] + have : distinct_keys (List.v tl0) := by checkpoint + simp [distinct_keys] at hdk + simp [hdk, distinct_keys] + progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 hp5 hp6 ⟩ + simp only [insert_in_list_back] at heq + have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint + simp [List.v, slot_s_inv_hash] at * + simp [*] + have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint + simp [distinct_keys] at * + simp [*] + -- TODO: canonize addition by default? + simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] end HashMap |