summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--backends/lean/Base/Arith/Scalar.lean2
-rw-r--r--backends/lean/Base/IList/IList.lean2
-rw-r--r--backends/lean/Base/Primitives.lean1
-rw-r--r--backends/lean/Base/Primitives/ArraySlice.lean2
-rw-r--r--backends/lean/Base/Primitives/Base.lean4
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean207
-rw-r--r--backends/lean/Base/Primitives/Vec.lean2
-rw-r--r--backends/lean/Base/Tuples.lean82
-rw-r--r--compiler/Config.ml4
-rw-r--r--compiler/Extract.ml61
-rw-r--r--compiler/ExtractBase.ml8
-rw-r--r--compiler/ExtractTypes.ml5
-rw-r--r--compiler/Main.ml4
-rw-r--r--tests/lean/Arrays.lean4
-rw-r--r--tests/lean/Constants.lean36
-rw-r--r--tests/lean/Hashmap/Funs.lean12
-rw-r--r--tests/lean/HashmapMain/Funs.lean12
-rw-r--r--tests/lean/NoNestedBorrows.lean62
-rw-r--r--tests/lean/Paper.lean10
-rw-r--r--tests/lean/Traits.lean5
20 files changed, 352 insertions, 173 deletions
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 43fd2766..9441be86 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -74,7 +74,7 @@ example : U32.ofInt 1 ≤ U32.max := by
scalar_tac
example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) :
- U32.ofInt x (by constructor <;> scalar_tac) ≤ U32.max := by
+ U32.ofIntCore x (by constructor <;> scalar_tac) ≤ U32.max := by
scalar_tac
-- Not equal
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
index 51457c20..ca5ee266 100644
--- a/backends/lean/Base/IList/IList.lean
+++ b/backends/lean/Base/IList/IList.lean
@@ -33,7 +33,7 @@ def indexOpt (ls : List α) (i : Int) : Option α :=
@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt]
@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt]
--- Remark: if i < 0, then the result is the defaul element
+-- Remark: if i < 0, then the result is the default element
def index [Inhabited α] (ls : List α) (i : Int) : α :=
match ls with
| [] => Inhabited.default
diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean
index 613b6076..7196d2ec 100644
--- a/backends/lean/Base/Primitives.lean
+++ b/backends/lean/Base/Primitives.lean
@@ -1,4 +1,5 @@
import Base.Primitives.Base
+import Base.Tuples
import Base.Primitives.Scalar
import Base.Primitives.ArraySlice
import Base.Primitives.Vec
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean
index c90a85b8..e1a39d40 100644
--- a/backends/lean/Base/Primitives/ArraySlice.lean
+++ b/backends/lean/Base/Primitives/ArraySlice.lean
@@ -131,7 +131,7 @@ def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .
-- TODO: very annoying that the α is an explicit parameter
def Slice.len (α : Type u) (v : Slice α) : Usize :=
- Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
+ Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length :=
diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean
index 9dbaf133..0b9d9c39 100644
--- a/backends/lean/Base/Primitives/Base.lean
+++ b/backends/lean/Base/Primitives/Base.lean
@@ -69,7 +69,7 @@ def div? {α: Type u} (r: Result α): Bool :=
def massert (b:Bool) : Result Unit :=
if b then ret () else fail assertionFailure
-def eval_global {α: Type u} (x: Result α) (_: ret? x): α :=
+def eval_global {α: Type u} (x: Result α) (_: ret? x := by decide): α :=
match x with
| fail _ | div => by contradiction
| ret x => x
@@ -78,7 +78,7 @@ def eval_global {α: Type u} (x: Result α) (_: ret? x): α :=
def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β :=
match x with
- | ret v => f v
+ | ret v => f v
| fail v => fail v
| div => div
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index 285bc7fb..3d90f1a5 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -281,25 +281,38 @@ theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
λ h => by
apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
--- Tactic to prove that integers are in bounds
--- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam
-syntax "intlit" : tactic
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide)
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty :=
- -- Remark: we initially wrote:
- -- let ⟨ hmin, hmax ⟩ := h
- -- Scalar.ofIntCore x hmin hmax
- -- We updated to the line below because a similar pattern in `Scalar.tryMk`
- -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though.
- -- TODO: investigate
- Scalar.ofIntCore x h.left h.right
+/- [match_pattern] attribute: allows to us `Scalar.ofIntCore` inside of patterns.
+ This is particularly useful once we introduce notations like `#u32` (which
+ desugards to `Scalar.ofIntCore`) as it allows to write expressions like this:
+ Example:
+ ```
+ match x with
+ | 0#u32 => ...
+ | 1#u32 => ...
+ | ...
+ ```
+ -/
+@[match_pattern] def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
+ (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty :=
+ { val := x, hmin := h.left, hmax := h.right }
+
+-- The definitions below are used later to introduce nice syntax for constants,
+-- like `1#u32`. We are reusing the technique described here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Different.20elaboration.20inside.2Foutside.20of.20match.20patterns/near/425455284
+
+class InBounds (ty : ScalarTy) (x : Int) :=
+ hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty
+
+-- This trick to trigger reduction for decidable propositions comes from
+-- here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam/near/343495807
+class Decide (p : Prop) [Decidable p] : Prop where
+ isTrue : p
+instance : @Decide p (.isTrue h) := @Decide.mk p (_) h
+
+instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty v where
+ hInBounds := Decide.isTrue
+
+@[reducible, match_pattern] def Scalar.ofInt {ty : ScalarTy} (x : Int) [InBounds ty x] : Scalar ty :=
+ Scalar.ofIntCore x (Scalar.bound_suffices ty x InBounds.hInBounds)
@[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool :=
(Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty)
@@ -326,7 +339,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
-- ```
-- then normalization blocks (for instance, some proofs which use reflexivity fail).
-- However, the version below doesn't block reduction (TODO: investigate):
- return Scalar.ofInt x (Scalar.check_bounds_prop h)
+ return Scalar.ofIntCore x (Scalar.check_bounds_prop h)
else fail integerOverflow
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
@@ -439,8 +452,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
constructor; cases ty <;> apply (Scalar.ofInt 0)
-- TODO: reducible?
-@[reducible] def core_isize_min : Isize := Scalar.ofInt Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
-@[reducible] def core_isize_max : Isize := Scalar.ofInt Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
+@[reducible] def core_isize_min : Isize := Scalar.ofIntCore Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
+@[reducible] def core_isize_max : Isize := Scalar.ofIntCore Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
@[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min
@[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max
@[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min
@@ -453,8 +466,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
@[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max
-- TODO: reducible?
-@[reducible] def core_usize_min : Usize := Scalar.ofInt Usize.min
-@[reducible] def core_usize_max : Usize := Scalar.ofInt Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
+@[reducible] def core_usize_min : Usize := Scalar.ofIntCore Usize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
+@[reducible] def core_usize_max : Usize := Scalar.ofIntCore Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
@[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min
@[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max
@[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min
@@ -478,15 +491,35 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
one here.
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
+The notation typeclass for heterogeneous negation.
-/
class HNeg (α : Type u) (β : outParam (Type v)) where
/-- `- a` computes the negation of `a`.
The meaning of this notation is type-dependent. -/
hNeg : α → β
-prefix:75 "-" => HNeg.hNeg
+/- Notation for heterogeneous negation.
+
+ We initially used the notation "-" but it conflicted with the homogeneous
+ negation too much. In particular, it made terms like `-10` ambiguous,
+ and seemingly caused to backtracking in elaboration, leading to definitions
+ like arrays of constants to take an unreasonable time to get elaborated
+ and type-checked.
+
+ TODO: PR to replace Neg with HNeg in Lean?
+ -/
+prefix:75 "-." => HNeg.hNeg
+
+/- We need this, otherwise we break pattern matching like in:
+
+ ```
+ def is_minus_one (x : Int) : Bool :=
+ match x with
+ | -1 => true
+ | _ => false
+ ```
+-/
+attribute [match_pattern] HNeg.hNeg
instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
@@ -965,18 +998,18 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128
-- ofInt
-- TODO: typeclass?
-abbrev Isize.ofInt := @Scalar.ofInt .Isize
-abbrev I8.ofInt := @Scalar.ofInt .I8
-abbrev I16.ofInt := @Scalar.ofInt .I16
-abbrev I32.ofInt := @Scalar.ofInt .I32
-abbrev I64.ofInt := @Scalar.ofInt .I64
-abbrev I128.ofInt := @Scalar.ofInt .I128
-abbrev Usize.ofInt := @Scalar.ofInt .Usize
-abbrev U8.ofInt := @Scalar.ofInt .U8
-abbrev U16.ofInt := @Scalar.ofInt .U16
-abbrev U32.ofInt := @Scalar.ofInt .U32
-abbrev U64.ofInt := @Scalar.ofInt .U64
-abbrev U128.ofInt := @Scalar.ofInt .U128
+@[match_pattern] abbrev Isize.ofInt := @Scalar.ofInt .Isize
+@[match_pattern] abbrev I8.ofInt := @Scalar.ofInt .I8
+@[match_pattern] abbrev I16.ofInt := @Scalar.ofInt .I16
+@[match_pattern] abbrev I32.ofInt := @Scalar.ofInt .I32
+@[match_pattern] abbrev I64.ofInt := @Scalar.ofInt .I64
+@[match_pattern] abbrev I128.ofInt := @Scalar.ofInt .I128
+@[match_pattern] abbrev Usize.ofInt := @Scalar.ofInt .Usize
+@[match_pattern] abbrev U8.ofInt := @Scalar.ofInt .U8
+@[match_pattern] abbrev U16.ofInt := @Scalar.ofInt .U16
+@[match_pattern] abbrev U32.ofInt := @Scalar.ofInt .U32
+@[match_pattern] abbrev U64.ofInt := @Scalar.ofInt .U64
+@[match_pattern] abbrev U128.ofInt := @Scalar.ofInt .U128
postfix:max "#isize" => Isize.ofInt
postfix:max "#i8" => I8.ofInt
@@ -991,47 +1024,86 @@ postfix:max "#u32" => U32.ofInt
postfix:max "#u64" => U64.ofInt
postfix:max "#u128" => U128.ofInt
+/- Testing the notations -/
+example := 0#u32
+example := 1#u32
+example := 1#i32
+example := 0#isize
+example := (-1)#isize
+example (x : U32) : Bool :=
+ match x with
+ | 0#u32 => true
+ | _ => false
+
+example (x : U32) : Bool :=
+ match x with
+ | 1#u32 => true
+ | _ => false
+
+example (x : I32) : Bool :=
+ match x with
+ | (-1)#i32 => true
+ | _ => false
+
+-- Notation for pattern matching
+-- We make the precedence looser than the negation.
+notation:70 a:70 "#scalar" => Scalar.mk (a) _ _
+
+example {ty} (x : Scalar ty) : ℤ :=
+ match x with
+ | v#scalar => v
+
+example {ty} (x : Scalar ty) : Bool :=
+ match x with
+ | 1#scalar => true
+ | _ => false
+
+example {ty} (x : Scalar ty) : Bool :=
+ match x with
+ | -(1 : Int)#scalar => true
+ | _ => false
+
-- Testing the notations
example : Result Usize := 0#usize + 1#usize
-- TODO: factor those lemmas out
-@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by
+@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by
simp [Scalar.ofInt, Scalar.ofIntCore]
-@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by
+@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by
+@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by
+@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by
+@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by
+@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by
+@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by
+@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by
+@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by
+@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by
+@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by
+@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by
+@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-- Comparisons
@@ -1082,35 +1154,4 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
intro i j; cases i; cases j; simp
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
end Primitives
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean
index b03de15b..65249c12 100644
--- a/backends/lean/Base/Primitives/Vec.lean
+++ b/backends/lean/Base/Primitives/Vec.lean
@@ -43,7 +43,7 @@ instance (α : Type u) : Inhabited (Vec α) := by
-- TODO: very annoying that the α is an explicit parameter
def Vec.len (α : Type u) (v : Vec α) : Usize :=
- Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
+ Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length :=
diff --git a/backends/lean/Base/Tuples.lean b/backends/lean/Base/Tuples.lean
new file mode 100644
index 00000000..4c59dac9
--- /dev/null
+++ b/backends/lean/Base/Tuples.lean
@@ -0,0 +1,82 @@
+import Lean
+import Base.Utils
+
+namespace Primitives
+
+-------------------------------
+-- Tuple field access syntax --
+-------------------------------
+-- Declare new syntax `a.#i` for accessing the `i`-th term in a tuple
+-- The `noWs` parser is used to ensure there is no whitespace.
+-- We use the maximum precedence to make the syntax work with function calls.
+-- Ex.: `f (0, 1).#0`
+syntax:max term noWs ".#" noWs num : term
+
+open Lean Meta Elab Term
+
+-- Auxliary function for computing the number of elements in a tuple (`Prod`) type.
+def getArity (type : Expr) : Nat :=
+ match type with
+ | .app (.app (.const ``Prod _) _) as => getArity as + 1
+ | _ => 1 -- It is not product
+
+-- Given a `tuple` of size `n`, construct a term that for accessing the `i`-th element
+def mkGetIdx (tuple : Expr) (n : Nat) (i : Nat) : MetaM Expr := do
+ match i with
+ | 0 => mkAppM ``Prod.fst #[tuple]
+ | i+1 =>
+ if n = 2 then
+ -- If the tuple has only two elements and `i` is not `0`,
+ -- we just return the second element.
+ mkAppM ``Prod.snd #[tuple]
+ else
+ -- Otherwise, we continue with the rest of the tuple.
+ let tuple ← mkAppM ``Prod.snd #[tuple]
+ mkGetIdx tuple (n-1) i
+
+-- Now, we define the elaboration function for the new syntax `a#i`
+elab_rules : term
+| `($a:term.#$i:num) => do
+ -- Convert `i : Syntax` into a natural number
+ let i := i.getNat
+ -- Return error if it is 0.
+ unless i ≥ 0 do
+ throwError "tuple index must be greater or equal to 0"
+ -- Convert `a : Syntax` into an `tuple : Expr` without providing expected type
+ let tuple ← elabTerm a none
+ let type ← inferType tuple
+ -- Instantiate assigned metavariable occurring in `type`
+ let type ← instantiateMVars type
+ /- In case we are indexing into a type abbreviation, we need to unfold the type.
+
+ TODO: we have to be careful about not unfolding too much,
+ for instance because of the following code:
+ ```
+ def Pair T U := T × U
+ def Tuple T U V := T × Pair U V
+ ```
+ We have to make sure that, given `x : Tuple T U V`, `x.1` evaluates
+ to the pair (an element of type `Pair T U`), not to the first field
+ of the pair (an element of type `T`).
+
+ We have a similar issue below if we generate code from the following Rust definition:
+ ```
+ struct Tuple(u32, (u32, u32));
+ ```
+ The issue is that in Rust, field 1 of `Tuple` is a pair `(u32, u32)`, but
+ in Lean there is no difference between `A × B × C` and `A × (B × C)`.
+
+ In case such situations happen we probably need to resort to chaining
+ the pair projectors, like in: `x.snd.fst`.
+ -/
+ let type ← whnf type
+ -- Ensure `tuple`'s type is a `Prod`uct.
+ unless type.isAppOf ``Prod do
+ throwError "tuple expected{indentExpr type}"
+ let n := getArity type
+ -- Ensure `i` is a valid index
+ unless i < n do
+ throwError "invalid tuple access at {i}, tuple has {n} elements"
+ mkGetIdx tuple n i
+
+end Primitives
diff --git a/compiler/Config.ml b/compiler/Config.ml
index 2bb1ca34..3b0070c0 100644
--- a/compiler/Config.ml
+++ b/compiler/Config.ml
@@ -469,3 +469,7 @@ let use_tuple_structs = ref true
let backend_has_tuple_projectors () =
match !backend with Lean -> true | Coq | FStar | HOL4 -> false
+
+(** We we use nested projectors for tuple (like: [(0, 1).snd.fst]) or do
+ we use better projector syntax? *)
+let use_nested_tuple_projectors = ref false
diff --git a/compiler/Extract.ml b/compiler/Extract.ml
index 6c523549..dbca4f8f 100644
--- a/compiler/Extract.ml
+++ b/compiler/Extract.ml
@@ -577,12 +577,17 @@ and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter)
in
(* Check if we extract the type as a tuple, and it only has one field.
In this case, there is no projection. *)
- let has_one_field =
+ let num_fields =
match proj.adt_id with
| TAdtId id -> (
let d = TypeDeclId.Map.find id ctx.trans_types in
- match d.kind with Struct [ _ ] -> true | _ -> false)
- | _ -> false
+ match d.kind with
+ | Struct fields -> Some (List.length fields)
+ | _ -> None)
+ | _ -> None
+ in
+ let has_one_field =
+ match num_fields with Some len -> len = 1 | None -> false
in
if is_tuple_struct && has_one_field then
extract_texpression ctx fmt inside arg
@@ -590,7 +595,52 @@ and extract_field_projector (ctx : extraction_ctx) (fmt : F.formatter)
(* Exactly one argument: pretty-print *)
let field_name =
(* Check if we need to extract the type as a tuple *)
- if is_tuple_struct then FieldId.to_string proj.field_id
+ if is_tuple_struct then
+ match !backend with
+ | FStar | HOL4 | Coq -> FieldId.to_string proj.field_id
+ | Lean ->
+ (* Tuples in Lean are syntax sugar for nested products/pairs,
+ so we need to map the field id accordingly.
+
+ We give two possibilities:
+ - either we use the custom syntax [.#i], like in: [(0, 1).#1]
+ - or we introduce nested projections which use the field
+ projectors [.1] and [.2], like in: [(0, 1).2.1]
+
+ This necessary in some situations, for instance if we have
+ in Rust:
+ {[
+ struct Tuple(u32, (u32, u32));
+ ]}
+
+ The issue comes from the fact that in Lean [A * B * C] and [A * (B *
+ C)] are the same type. As a result, in Rust, field 1 of [Tuple] is
+ the pair (an element of type [(u32, u32)]), however in Lean it would
+ be the first element of the pair (an element of type [u32]). If such
+ situations happen, we allow to force using the nested projectors by
+ providing the proper command line argument. TODO: we can actually
+ check the type to determine exactly when we need to use nested
+ projectors and when we don't.
+
+ When using nested projectors, a field id i maps to:
+ - (.2)^i if i is the last element of the tuple
+ - (.2)^i.1 otherwise
+ where (.2)^i denotes .2 repeated i times.
+ For example, 3 maps to .2.2.2 if the tuple has 4 fields and
+ to .2.2.2.1 if it has more than 4 fields.
+ Note that the first "." is added below.
+ *)
+ let field_id = FieldId.to_int proj.field_id in
+ if !Config.use_nested_tuple_projectors then
+ (* Nested projection: "2.2.2..." *)
+ if field_id = 0 then "1"
+ else
+ let twos_prefix =
+ String.concat "." (Collections.List.repeat field_id "2")
+ in
+ if field_id + 1 = Option.get num_fields then twos_prefix
+ else twos_prefix ^ ".1"
+ else "#" ^ string_of_int field_id
else ctx_get_field proj.adt_id proj.field_id ctx
in
(* Open a box *)
@@ -1863,8 +1913,7 @@ let extract_global_decl (ctx : extraction_ctx) (fmt : F.formatter)
(fun fmt ->
let body =
match !backend with
- | FStar -> "eval_global " ^ body_name
- | Lean -> "eval_global " ^ body_name ^ " (by decide)"
+ | FStar | Lean -> "eval_global " ^ body_name
| Coq -> body_name ^ "%global"
| HOL4 -> "get_return_value " ^ body_name
in
diff --git a/compiler/ExtractBase.ml b/compiler/ExtractBase.ml
index db887539..5aa8323e 100644
--- a/compiler/ExtractBase.ml
+++ b/compiler/ExtractBase.ml
@@ -782,9 +782,13 @@ let ctx_get_termination_measure (def_id : A.FunDeclId.id)
let unop_name (unop : unop) : string =
match unop with
| Not -> (
- match !backend with FStar | Lean -> "not" | Coq -> "negb" | HOL4 -> "~")
+ match !backend with
+ | FStar -> "not"
+ | Lean -> "¬"
+ | Coq -> "negb"
+ | HOL4 -> "~")
| Neg (int_ty : integer_type) -> (
- match !backend with Lean -> "-" | _ -> int_name int_ty ^ "_neg")
+ match !backend with Lean -> "-." | _ -> int_name int_ty ^ "_neg")
| Cast _ ->
(* We never directly use the unop name in this case *)
raise (Failure "Unsupported")
diff --git a/compiler/ExtractTypes.ml b/compiler/ExtractTypes.ml
index 51e3fd77..a3dbf3cc 100644
--- a/compiler/ExtractTypes.ml
+++ b/compiler/ExtractTypes.ml
@@ -31,11 +31,6 @@ let extract_literal (fmt : F.formatter) (inside : bool) (cv : literal) : unit =
(* We need to add parentheses if the value is negative *)
if sv.value >= Z.of_int 0 then
F.pp_print_string fmt (Z.to_string sv.value)
- else if !backend = Lean then
- (* TODO: parsing issues with Lean because there are ambiguous
- interpretations between int values and nat values *)
- F.pp_print_string fmt
- ("(-(" ^ Z.to_string (Z.neg sv.value) ^ ":Int))")
else F.pp_print_string fmt ("(" ^ Z.to_string sv.value ^ ")");
(match !backend with
| Coq ->
diff --git a/compiler/Main.ml b/compiler/Main.ml
index 0b8ec439..4a2d01dc 100644
--- a/compiler/Main.ml
+++ b/compiler/Main.ml
@@ -123,6 +123,10 @@ let () =
( "-split-fwd-back",
Arg.Clear return_back_funs,
" Split the forward and backward functions." );
+ ( "-tuple-nested-proj",
+ Arg.Set use_nested_tuple_projectors,
+ " Use nested projectors for tuples (e.g., (0, 1).snd.fst instead of \
+ (0, 1).1)." );
]
in
diff --git a/tests/lean/Arrays.lean b/tests/lean/Arrays.lean
index 5158ca28..d2bb7cf2 100644
--- a/tests/lean/Arrays.lean
+++ b/tests/lean/Arrays.lean
@@ -397,7 +397,7 @@ divergent def sum2_loop
def sum2 (s : Slice U32) (s2 : Slice U32) : Result U32 :=
let i := Slice.len U32 s
let i1 := Slice.len U32 s2
- if not (i = i1)
+ if ¬ (i = i1)
then Result.fail .panic
else sum2_loop s s2 0#u32 0#usize
@@ -452,7 +452,7 @@ def f3 : Result U32 :=
/- [arrays::SZ]
Source: 'src/arrays.rs', lines 286:0-286:19 -/
def sz_body : Result Usize := Result.ret 32#usize
-def sz_c : Usize := eval_global sz_body (by decide)
+def sz_c : Usize := eval_global sz_body
/- [arrays::f5]:
Source: 'src/arrays.rs', lines 289:0-289:31 -/
diff --git a/tests/lean/Constants.lean b/tests/lean/Constants.lean
index 4c626ab3..32e0317b 100644
--- a/tests/lean/Constants.lean
+++ b/tests/lean/Constants.lean
@@ -8,17 +8,17 @@ namespace constants
/- [constants::X0]
Source: 'src/constants.rs', lines 5:0-5:17 -/
def x0_body : Result U32 := Result.ret 0#u32
-def x0_c : U32 := eval_global x0_body (by decide)
+def x0_c : U32 := eval_global x0_body
/- [constants::X1]
Source: 'src/constants.rs', lines 7:0-7:17 -/
def x1_body : Result U32 := Result.ret core_u32_max
-def x1_c : U32 := eval_global x1_body (by decide)
+def x1_c : U32 := eval_global x1_body
/- [constants::X2]
Source: 'src/constants.rs', lines 10:0-10:17 -/
def x2_body : Result U32 := Result.ret 3#u32
-def x2_c : U32 := eval_global x2_body (by decide)
+def x2_c : U32 := eval_global x2_body
/- [constants::incr]:
Source: 'src/constants.rs', lines 17:0-17:32 -/
@@ -28,7 +28,7 @@ def incr (n : U32) : Result U32 :=
/- [constants::X3]
Source: 'src/constants.rs', lines 15:0-15:17 -/
def x3_body : Result U32 := incr 32#u32
-def x3_c : U32 := eval_global x3_body (by decide)
+def x3_c : U32 := eval_global x3_body
/- [constants::mk_pair0]:
Source: 'src/constants.rs', lines 23:0-23:51 -/
@@ -49,22 +49,22 @@ def mk_pair1 (x : U32) (y : U32) : Result (Pair U32 U32) :=
/- [constants::P0]
Source: 'src/constants.rs', lines 31:0-31:24 -/
def p0_body : Result (U32 × U32) := mk_pair0 0#u32 1#u32
-def p0_c : (U32 × U32) := eval_global p0_body (by decide)
+def p0_c : (U32 × U32) := eval_global p0_body
/- [constants::P1]
Source: 'src/constants.rs', lines 32:0-32:28 -/
def p1_body : Result (Pair U32 U32) := mk_pair1 0#u32 1#u32
-def p1_c : Pair U32 U32 := eval_global p1_body (by decide)
+def p1_c : Pair U32 U32 := eval_global p1_body
/- [constants::P2]
Source: 'src/constants.rs', lines 33:0-33:24 -/
def p2_body : Result (U32 × U32) := Result.ret (0#u32, 1#u32)
-def p2_c : (U32 × U32) := eval_global p2_body (by decide)
+def p2_c : (U32 × U32) := eval_global p2_body
/- [constants::P3]
Source: 'src/constants.rs', lines 34:0-34:28 -/
def p3_body : Result (Pair U32 U32) := Result.ret { x := 0#u32, y := 1#u32 }
-def p3_c : Pair U32 U32 := eval_global p3_body (by decide)
+def p3_c : Pair U32 U32 := eval_global p3_body
/- [constants::Wrap]
Source: 'src/constants.rs', lines 49:0-49:18 -/
@@ -79,7 +79,7 @@ def Wrap.new (T : Type) (value : T) : Result (Wrap T) :=
/- [constants::Y]
Source: 'src/constants.rs', lines 41:0-41:22 -/
def y_body : Result (Wrap I32) := Wrap.new I32 2#i32
-def y_c : Wrap I32 := eval_global y_body (by decide)
+def y_c : Wrap I32 := eval_global y_body
/- [constants::unwrap_y]:
Source: 'src/constants.rs', lines 43:0-43:30 -/
@@ -89,12 +89,12 @@ def unwrap_y : Result I32 :=
/- [constants::YVAL]
Source: 'src/constants.rs', lines 47:0-47:19 -/
def yval_body : Result I32 := unwrap_y
-def yval_c : I32 := eval_global yval_body (by decide)
+def yval_c : I32 := eval_global yval_body
/- [constants::get_z1::Z1]
Source: 'src/constants.rs', lines 62:4-62:17 -/
def get_z1_z1_body : Result I32 := Result.ret 3#i32
-def get_z1_z1_c : I32 := eval_global get_z1_z1_body (by decide)
+def get_z1_z1_c : I32 := eval_global get_z1_z1_body
/- [constants::get_z1]:
Source: 'src/constants.rs', lines 61:0-61:28 -/
@@ -109,17 +109,17 @@ def add (a : I32) (b : I32) : Result I32 :=
/- [constants::Q1]
Source: 'src/constants.rs', lines 74:0-74:17 -/
def q1_body : Result I32 := Result.ret 5#i32
-def q1_c : I32 := eval_global q1_body (by decide)
+def q1_c : I32 := eval_global q1_body
/- [constants::Q2]
Source: 'src/constants.rs', lines 75:0-75:17 -/
def q2_body : Result I32 := Result.ret q1_c
-def q2_c : I32 := eval_global q2_body (by decide)
+def q2_c : I32 := eval_global q2_body
/- [constants::Q3]
Source: 'src/constants.rs', lines 76:0-76:17 -/
def q3_body : Result I32 := add q2_c 3#i32
-def q3_c : I32 := eval_global q3_body (by decide)
+def q3_c : I32 := eval_global q3_body
/- [constants::get_z2]:
Source: 'src/constants.rs', lines 70:0-70:28 -/
@@ -132,21 +132,21 @@ def get_z2 : Result I32 :=
/- [constants::S1]
Source: 'src/constants.rs', lines 80:0-80:18 -/
def s1_body : Result U32 := Result.ret 6#u32
-def s1_c : U32 := eval_global s1_body (by decide)
+def s1_c : U32 := eval_global s1_body
/- [constants::S2]
Source: 'src/constants.rs', lines 81:0-81:18 -/
def s2_body : Result U32 := incr s1_c
-def s2_c : U32 := eval_global s2_body (by decide)
+def s2_c : U32 := eval_global s2_body
/- [constants::S3]
Source: 'src/constants.rs', lines 82:0-82:29 -/
def s3_body : Result (Pair U32 U32) := Result.ret p3_c
-def s3_c : Pair U32 U32 := eval_global s3_body (by decide)
+def s3_c : Pair U32 U32 := eval_global s3_body
/- [constants::S4]
Source: 'src/constants.rs', lines 83:0-83:29 -/
def s4_body : Result (Pair U32 U32) := mk_pair1 7#u32 8#u32
-def s4_c : Pair U32 U32 := eval_global s4_body (by decide)
+def s4_c : Pair U32 U32 := eval_global s4_body
end constants
diff --git a/tests/lean/Hashmap/Funs.lean b/tests/lean/Hashmap/Funs.lean
index 3978bfc7..f0706725 100644
--- a/tests/lean/Hashmap/Funs.lean
+++ b/tests/lean/Hashmap/Funs.lean
@@ -397,14 +397,14 @@ def test1 : Result Unit :=
let hm3 ← HashMap.insert U64 hm2 1024#usize 138#u64
let hm4 ← HashMap.insert U64 hm3 1056#usize 256#u64
let i ← HashMap.get U64 hm4 128#usize
- if not (i = 18#u64)
+ if ¬ (i = 18#u64)
then Result.fail .panic
else
do
let (_, get_mut_back) ← HashMap.get_mut U64 hm4 1024#usize
let hm5 ← get_mut_back 56#u64
let i1 ← HashMap.get U64 hm5 1024#usize
- if not (i1 = 56#u64)
+ if ¬ (i1 = 56#u64)
then Result.fail .panic
else
do
@@ -412,22 +412,22 @@ def test1 : Result Unit :=
match x with
| none => Result.fail .panic
| some x1 =>
- if not (x1 = 56#u64)
+ if ¬ (x1 = 56#u64)
then Result.fail .panic
else
do
let i2 ← HashMap.get U64 hm6 0#usize
- if not (i2 = 42#u64)
+ if ¬ (i2 = 42#u64)
then Result.fail .panic
else
do
let i3 ← HashMap.get U64 hm6 128#usize
- if not (i3 = 18#u64)
+ if ¬ (i3 = 18#u64)
then Result.fail .panic
else
do
let i4 ← HashMap.get U64 hm6 1056#usize
- if not (i4 = 256#u64)
+ if ¬ (i4 = 256#u64)
then Result.fail .panic
else Result.ret ()
diff --git a/tests/lean/HashmapMain/Funs.lean b/tests/lean/HashmapMain/Funs.lean
index ebed2570..31441b4a 100644
--- a/tests/lean/HashmapMain/Funs.lean
+++ b/tests/lean/HashmapMain/Funs.lean
@@ -419,14 +419,14 @@ def hashmap.test1 : Result Unit :=
let hm3 ← hashmap.HashMap.insert U64 hm2 1024#usize 138#u64
let hm4 ← hashmap.HashMap.insert U64 hm3 1056#usize 256#u64
let i ← hashmap.HashMap.get U64 hm4 128#usize
- if not (i = 18#u64)
+ if ¬ (i = 18#u64)
then Result.fail .panic
else
do
let (_, get_mut_back) ← hashmap.HashMap.get_mut U64 hm4 1024#usize
let hm5 ← get_mut_back 56#u64
let i1 ← hashmap.HashMap.get U64 hm5 1024#usize
- if not (i1 = 56#u64)
+ if ¬ (i1 = 56#u64)
then Result.fail .panic
else
do
@@ -434,22 +434,22 @@ def hashmap.test1 : Result Unit :=
match x with
| none => Result.fail .panic
| some x1 =>
- if not (x1 = 56#u64)
+ if ¬ (x1 = 56#u64)
then Result.fail .panic
else
do
let i2 ← hashmap.HashMap.get U64 hm6 0#usize
- if not (i2 = 42#u64)
+ if ¬ (i2 = 42#u64)
then Result.fail .panic
else
do
let i3 ← hashmap.HashMap.get U64 hm6 128#usize
- if not (i3 = 18#u64)
+ if ¬ (i3 = 18#u64)
then Result.fail .panic
else
do
let i4 ← hashmap.HashMap.get U64 hm6 1056#usize
- if not (i4 = 256#u64)
+ if ¬ (i4 = 256#u64)
then Result.fail .panic
else Result.ret ()
diff --git a/tests/lean/NoNestedBorrows.lean b/tests/lean/NoNestedBorrows.lean
index bed71d94..a85209ea 100644
--- a/tests/lean/NoNestedBorrows.lean
+++ b/tests/lean/NoNestedBorrows.lean
@@ -46,7 +46,7 @@ inductive Sum (T1 T2 : Type) :=
/- [no_nested_borrows::neg_test]:
Source: 'src/no_nested_borrows.rs', lines 48:0-48:30 -/
def neg_test (x : I32) : Result I32 :=
- - x
+ -. x
/- [no_nested_borrows::add_u32]:
Source: 'src/no_nested_borrows.rs', lines 54:0-54:37 -/
@@ -139,12 +139,12 @@ def mix_arith_i32 (x : I32) (y : I32) (z : I32) : Result I32 :=
/- [no_nested_borrows::CONST0]
Source: 'src/no_nested_borrows.rs', lines 125:0-125:23 -/
def const0_body : Result Usize := 1#usize + 1#usize
-def const0_c : Usize := eval_global const0_body (by decide)
+def const0_c : Usize := eval_global const0_body
/- [no_nested_borrows::CONST1]
Source: 'src/no_nested_borrows.rs', lines 126:0-126:23 -/
def const1_body : Result Usize := 2#usize * 2#usize
-def const1_c : Usize := eval_global const1_body (by decide)
+def const1_c : Usize := eval_global const1_body
/- [no_nested_borrows::cast_u32_to_i32]:
Source: 'src/no_nested_borrows.rs', lines 128:0-128:37 -/
@@ -185,7 +185,7 @@ def test3 : Result Unit :=
let x ← get_max 4#u32 3#u32
let y ← get_max 10#u32 11#u32
let z ← x + y
- if not (z = 15#u32)
+ if ¬ (z = 15#u32)
then Result.fail .panic
else Result.ret ()
@@ -196,8 +196,8 @@ def test3 : Result Unit :=
Source: 'src/no_nested_borrows.rs', lines 169:0-169:18 -/
def test_neg1 : Result Unit :=
do
- let y ← - 3#i32
- if not (y = (-(3:Int))#i32)
+ let y ← -. 3#i32
+ if ¬ (y = (-3)#i32)
then Result.fail .panic
else Result.ret ()
@@ -207,7 +207,7 @@ def test_neg1 : Result Unit :=
/- [no_nested_borrows::refs_test1]:
Source: 'src/no_nested_borrows.rs', lines 176:0-176:19 -/
def refs_test1 : Result Unit :=
- if not (1#i32 = 1#i32)
+ if ¬ (1#i32 = 1#i32)
then Result.fail .panic
else Result.ret ()
@@ -217,15 +217,15 @@ def refs_test1 : Result Unit :=
/- [no_nested_borrows::refs_test2]:
Source: 'src/no_nested_borrows.rs', lines 187:0-187:19 -/
def refs_test2 : Result Unit :=
- if not (2#i32 = 2#i32)
+ if ¬ (2#i32 = 2#i32)
then Result.fail .panic
else
- if not (0#i32 = 0#i32)
+ if ¬ (0#i32 = 0#i32)
then Result.fail .panic
else
- if not (2#i32 = 2#i32)
+ if ¬ (2#i32 = 2#i32)
then Result.fail .panic
- else if not (2#i32 = 2#i32)
+ else if ¬ (2#i32 = 2#i32)
then Result.fail .panic
else Result.ret ()
@@ -247,7 +247,7 @@ def test_box1 : Result Unit :=
let (_, deref_mut_back) ← alloc.boxed.Box.deref_mut I32 0#i32
let b ← deref_mut_back 1#i32
let x ← alloc.boxed.Box.deref I32 b
- if not (x = 1#i32)
+ if ¬ (x = 1#i32)
then Result.fail .panic
else Result.ret ()
@@ -278,7 +278,7 @@ def test_panic (b : Bool) : Result Unit :=
def test_copy_int : Result Unit :=
do
let y ← copy_int 0#i32
- if not (0#i32 = y)
+ if ¬ (0#i32 = y)
then Result.fail .panic
else Result.ret ()
@@ -297,7 +297,7 @@ def is_cons (T : Type) (l : List T) : Result Bool :=
def test_is_cons : Result Unit :=
do
let b ← is_cons I32 (List.Cons 0#i32 List.Nil)
- if not b
+ if ¬ b
then Result.fail .panic
else Result.ret ()
@@ -317,7 +317,7 @@ def test_split_list : Result Unit :=
do
let p ← split_list I32 (List.Cons 0#i32 List.Nil)
let (hd, _) := p
- if not (hd = 0#i32)
+ if ¬ (hd = 0#i32)
then Result.fail .panic
else Result.ret ()
@@ -342,14 +342,14 @@ def choose_test : Result Unit :=
do
let (z, choose_back) ← choose I32 true 0#i32 0#i32
let z1 ← z + 1#i32
- if not (z1 = 1#i32)
+ if ¬ (z1 = 1#i32)
then Result.fail .panic
else
do
let (x, y) ← choose_back z1
- if not (x = 1#i32)
+ if ¬ (x = 1#i32)
then Result.fail .panic
- else if not (y = 0#i32)
+ else if ¬ (y = 0#i32)
then Result.fail .panic
else Result.ret ()
@@ -441,22 +441,22 @@ def test_list_functions : Result Unit :=
let l := List.Cons 2#i32 List.Nil
let l1 := List.Cons 1#i32 l
let i ← list_length I32 (List.Cons 0#i32 l1)
- if not (i = 3#u32)
+ if ¬ (i = 3#u32)
then Result.fail .panic
else
do
let i1 ← list_nth_shared I32 (List.Cons 0#i32 l1) 0#u32
- if not (i1 = 0#i32)
+ if ¬ (i1 = 0#i32)
then Result.fail .panic
else
do
let i2 ← list_nth_shared I32 (List.Cons 0#i32 l1) 1#u32
- if not (i2 = 1#i32)
+ if ¬ (i2 = 1#i32)
then Result.fail .panic
else
do
let i3 ← list_nth_shared I32 (List.Cons 0#i32 l1) 2#u32
- if not (i3 = 2#i32)
+ if ¬ (i3 = 2#i32)
then Result.fail .panic
else
do
@@ -464,17 +464,17 @@ def test_list_functions : Result Unit :=
list_nth_mut I32 (List.Cons 0#i32 l1) 1#u32
let ls ← list_nth_mut_back 3#i32
let i4 ← list_nth_shared I32 ls 0#u32
- if not (i4 = 0#i32)
+ if ¬ (i4 = 0#i32)
then Result.fail .panic
else
do
let i5 ← list_nth_shared I32 ls 1#u32
- if not (i5 = 3#i32)
+ if ¬ (i5 = 3#i32)
then Result.fail .panic
else
do
let i6 ← list_nth_shared I32 ls 2#u32
- if not (i6 = 2#i32)
+ if ¬ (i6 = 2#i32)
then Result.fail .panic
else Result.ret ()
@@ -555,24 +555,24 @@ def test_constants : Result Unit :=
do
let swt ← new_tuple1
let (i, _) := swt.p
- if not (i = 1#u32)
+ if ¬ (i = 1#u32)
then Result.fail .panic
else
do
let swt1 ← new_tuple2
let (i1, _) := swt1.p
- if not (i1 = 1#i16)
+ if ¬ (i1 = 1#i16)
then Result.fail .panic
else
do
let swt2 ← new_tuple3
let (i2, _) := swt2.p
- if not (i2 = 1#u64)
+ if ¬ (i2 = 1#u64)
then Result.fail .panic
else
do
let swp ← new_pair1
- if not (swp.p.x = 1#u32)
+ if ¬ (swp.p.x = 1#u32)
then Result.fail .panic
else Result.ret ()
@@ -591,7 +591,7 @@ def test_weird_borrows1 : Result Unit :=
Source: 'src/no_nested_borrows.rs', lines 481:0-481:37 -/
def test_mem_replace (px : U32) : Result U32 :=
let (y, _) := core.mem.replace U32 px 1#u32
- if not (y = 0#u32)
+ if ¬ (y = 0#u32)
then Result.fail .panic
else Result.ret 2#u32
@@ -643,7 +643,7 @@ def Tuple (T1 T2 : Type) := T1 × T2
/- [no_nested_borrows::use_tuple_struct]:
Source: 'src/no_nested_borrows.rs', lines 556:0-556:48 -/
def use_tuple_struct (x : Tuple U32 U32) : Result (Tuple U32 U32) :=
- Result.ret (1#u32, x.1)
+ Result.ret (1#u32, x.#1)
/- [no_nested_borrows::create_tuple_struct]:
Source: 'src/no_nested_borrows.rs', lines 560:0-560:61 -/
diff --git a/tests/lean/Paper.lean b/tests/lean/Paper.lean
index a35c8db0..4930a05c 100644
--- a/tests/lean/Paper.lean
+++ b/tests/lean/Paper.lean
@@ -15,7 +15,7 @@ def ref_incr (x : I32) : Result I32 :=
def test_incr : Result Unit :=
do
let i ← ref_incr 0#i32
- if not (i = 1#i32)
+ if ¬ (i = 1#i32)
then Result.fail .panic
else Result.ret ()
@@ -40,14 +40,14 @@ def test_choose : Result Unit :=
do
let (z, choose_back) ← choose I32 true 0#i32 0#i32
let z1 ← z + 1#i32
- if not (z1 = 1#i32)
+ if ¬ (z1 = 1#i32)
then Result.fail .panic
else
do
let (x, y) ← choose_back z1
- if not (x = 1#i32)
+ if ¬ (x = 1#i32)
then Result.fail .panic
- else if not (y = 0#i32)
+ else if ¬ (y = 0#i32)
then Result.fail .panic
else Result.ret ()
@@ -101,7 +101,7 @@ def test_nth : Result Unit :=
let x1 ← x + 1#i32
let l2 ← list_nth_mut_back x1
let i ← sum l2
- if not (i = 7#i32)
+ if ¬ (i = 7#i32)
then Result.fail .panic
else Result.ret ()
diff --git a/tests/lean/Traits.lean b/tests/lean/Traits.lean
index 3ef4febc..f83fbc2f 100644
--- a/tests/lean/Traits.lean
+++ b/tests/lean/Traits.lean
@@ -248,8 +248,7 @@ def traits.ToTypetraitsBoolWrapperTInst (T : Type) (ToTypeBoolTInst : ToType
/- [traits::WithConstTy::LEN2]
Source: 'src/traits.rs', lines 164:4-164:21 -/
def with_const_ty_len2_body : Result Usize := Result.ret 32#usize
-def with_const_ty_len2_c : Usize :=
- eval_global with_const_ty_len2_body (by decide)
+def with_const_ty_len2_c : Usize := eval_global with_const_ty_len2_body
/- Trait declaration: [traits::WithConstTy]
Source: 'src/traits.rs', lines 161:0-161:39 -/
@@ -264,7 +263,7 @@ structure WithConstTy (Self : Type) (LEN : Usize) where
/- [traits::{bool#8}::LEN1]
Source: 'src/traits.rs', lines 175:4-175:21 -/
def bool_len1_body : Result Usize := Result.ret 12#usize
-def bool_len1_c : Usize := eval_global bool_len1_body (by decide)
+def bool_len1_c : Usize := eval_global bool_len1_body
/- [traits::{bool#8}::f]:
Source: 'src/traits.rs', lines 180:4-180:39 -/