diff options
-rw-r--r-- | backends/lean/Base/Diverge.lean | 213 |
1 files changed, 5 insertions, 208 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean index 2c764c5e..0e3e96c3 100644 --- a/backends/lean/Base/Diverge.lean +++ b/backends/lean/Base/Diverge.lean @@ -497,33 +497,8 @@ namespace Ex1 if i = 0 then .ret hd else f (tl, i - 1) - theorem list_nth_body_mono : is_mono (@list_nth_body a) := by - simp [is_mono]; intro g h Hr (ls, i); simp [result_rel, list_nth_body] - cases ls <;> simp - rename_i hd tl - -- TODO: making a case disjunction over `i = 0` is annoying, we need a more - -- general tactic for this - cases (Classical.em (Eq i 0)) <;> simp [*] at * - apply Hr - - theorem list_nth_body_cont : is_cont (@list_nth_body a) := by - rw [is_cont]; intro (ls, i) Hdiv; simp [list_nth_body, fix_fuel] at * - cases ls <;> simp at * - -- TODO: automate this - cases (Classical.em (Eq i 0)) <;> simp [*] at * - -- Recursive call - apply Hdiv - - /- Making the monotonicity/continuity proofs more systematic -/ - - theorem list_nth_body_mono2 : ∀ x, is_mono_p (λ f => @list_nth_body a f x) := by - intro x - simp [list_nth_body] - split <;> simp - split <;> simp - - theorem list_nth_body_cont2: ∀ f x, is_cont_p f (λ f => @list_nth_body a f x) := by - intro f x + theorem list_nth_body_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by + intro k x simp [list_nth_body] split <;> simp split <;> simp @@ -539,12 +514,9 @@ namespace Ex1 if i = 0 then .ret hd else list_nth tl (i - 1) := by - have Hvalid : is_valid (@list_nth_body a) := - is_valid.intro list_nth_body_mono list_nth_body_cont - have Heq := fix_fixed_eq Hvalid - simp [Heq, list_nth] - conv => lhs; rw [list_nth_body] - simp [Heq] + have Heq := is_valid_p_fix_fixed_eq (@list_nth_body_valid a) + simp [list_nth] + conv => lhs; rw [Heq] end Ex1 @@ -592,181 +564,6 @@ namespace Ex2 end Ex2 -namespace Ex3 - /- Higher-order example -/ - open Primitives Fix - - variable {a b : Type} - - /- An auxiliary function, which doesn't require the fixed-point -/ - def map (f : a → Result b) (ls : List a) : Result (List b) := - match ls with - | [] => .ret [] - | hd :: tl => - do - -- TODO: monadic syntax - match f hd with - | .ret hd => - match map f tl with - | .ret tl => - .ret (hd :: tl) - | r => r - | .fail e => .fail e - | .div => .div - - theorem map_is_mono {{f g : a → Result b}} (Hr : marrow_rel f g) : - ∀ ls, result_rel (map f ls) (map g ls) := by - intro ls; induction ls <;> simp [result_rel, map] - case cons hd tl Hi => - have Hr1 := Hr hd; simp [result_rel] at Hr1 - -- TODO: reverting is annoying - revert Hr1 - cases f hd <;> intro Hr1 <;> simp [*] - -- ret case - simp [result_rel] at Hi - -- TODO: annoying - revert Hi - cases map f tl <;> intro Hi <;> simp [*] - - -- Auxiliary definition - def map_fix_fuel (n0 n1 : Nat) (f : (a → Result b) → a → Result b) (ls : List a) : Result (List b) := - match ls with - | [] => .ret [] - | hd :: tl => - do - match fix_fuel n0 f hd with - | .ret hd => - match map (fix_fuel n1 f) tl with - | .ret tl => - .ret (hd :: tl) - | r => r - | .fail e => .fail e - | .div => .div - - def exists_map_fix_fuel_not_div_imp {{f : (a → Result b) → a → Result b}} {{ls : List a}} - (Hmono : is_mono f) : - (∃ n0 n1, map_fix_fuel n0 n1 f ls ≠ .div) → - ∃ n2, map (fix_fuel n2 f) ls ≠ .div := by - intro ⟨ n0, n1, Hnd ⟩ - exists n0 + n1 - have Hineq0 : n0 ≤ n0 + n1 := by linarith - have Hineq1 : n1 ≤ n0 + n1 := by linarith - simp [map_fix_fuel] at Hnd - -- TODO: I would like a rewrite_once tactic - unfold map; simp - -- - revert Hnd - cases ls <;> simp - rename_i hd tl - -- Use the monotonicity of fix_fuel - have Hfmono := fix_fuel_mono Hmono Hineq0 hd - simp [result_rel] at Hfmono; revert Hfmono - cases fix_fuel n0 f hd <;> intro <;> simp [*] - -- Use the monotonicity of map - have Hfmono := fix_fuel_mono Hmono Hineq1 - have Hmmono := map_is_mono Hfmono tl - simp [result_rel] at Hmmono; revert Hmmono - cases map (fix_fuel n1 f) tl <;> intro <;> simp [*] - - -- TODO: it is simpler to prove the contrapositive of is_cont than is_cont itself. - -- The proof is still quite technical: think of a criteria whose proof is simpler - -- to automate. - theorem map_is_cont_contra_aux {{f : (a → Result b) → a → Result b}} (Hmono : is_mono f) : - ∀ ls, map (fix f) ls ≠ .div → - ∃ n0 n1, map_fix_fuel n0 n1 f ls ≠ .div - := by - intro ls; induction ls <;> simp [result_rel, map_fix_fuel, map] - simp [fix] - case cons hd tl Hi => - -- Instantiate the first n and do a case disjunction - intro Hf; exists (least (fix_fuel_P f hd)); revert Hf - cases fix_fuel (least (fix_fuel_P f hd)) f hd <;> simp - -- Use the induction hyp - have Hr := Classical.em (map (fix f) tl = .div) - simp [fix] at * - cases Hr <;> simp_all - have Hj : ∃ n2, map (fix_fuel n2 f) tl ≠ .div := exists_map_fix_fuel_not_div_imp Hmono Hi - revert Hj; intro ⟨ n2, Hj ⟩ - intro Hf; exists n2; revert Hf - revert Hj; cases map (fix_fuel n2 f) tl <;> simp_all - - theorem map_is_cont_contra {{f : (a → Result b) → a → Result b}} (Hmono : is_mono f) : - ∀ ls, map (fix f) ls ≠ .div → - ∃ n, map (fix_fuel n f) ls ≠ .div - := by - intro ls Hf - have Hc := map_is_cont_contra_aux Hmono ls Hf - apply exists_map_fix_fuel_not_div_imp <;> assumption - - theorem map_is_cont {{f : (a → Result b) → a → Result b}} (Hmono : is_mono f) : - ∀ ls, (Hc : ∀ n, map (fix_fuel n f) ls = .div) → - map (fix f) ls = .div - := by - intro ls Hc - -- TODO: is there a tactic for proofs by contraposition? - apply Classical.byContradiction; intro Hndiv - let ⟨ n, Hcc ⟩ := map_is_cont_contra Hmono ls Hndiv - simp_all - - /- An example which uses map -/ - inductive Tree (a : Type) := - | leaf (x : a) - | node (tl : List (Tree a)) - - def id_body (f : Tree a → Result (Tree a)) (t : Tree a) : Result (Tree a) := - match t with - | .leaf x => .ret (.leaf x) - | .node tl => - match map f tl with - | .div => .div - | .fail e => .fail e - | .ret tl => .ret (.node tl) - - theorem id_body_mono : is_mono (@id_body a) := by - simp [is_mono]; intro g h Hr t; simp [result_rel, id_body] - cases t <;> simp - rename_i tl - have Hmmono := map_is_mono Hr tl - revert Hmmono; simp [result_rel] - cases map g tl <;> simp_all - - theorem id_body_cont : is_cont (@id_body a) := by - rw [is_cont]; intro t Hdiv - simp [fix_fuel] at * - -- TODO: weird things are happening with the rewriter and the simplifier here - rw [id_body] - simp [id_body] at Hdiv - -- - cases t <;> simp at * - rename_i tl - -- TODO: automate this - have Hmc := map_is_cont id_body_mono tl - have Hdiv : ∀ (n : ℕ), map (fix_fuel n id_body) tl = Result.div := by - intro n - have Hdiv := Hdiv n; revert Hdiv - cases map (fix_fuel n id_body) tl <;> simp_all - have Hmc := Hmc Hdiv; revert Hmc - cases map (fix id_body) tl <;> simp_all - - noncomputable def id (t : Tree a) := fix id_body t - - theorem id_eq (t : Tree a) : - id t = - match t with - | .leaf x => .ret (.leaf x) - | .node tl => - match map id tl with - | .div => .div - | .fail e => .fail e - | .ret tl => .ret (.node tl) - := by - have Hvalid : is_valid (@id_body a) := - is_valid.intro id_body_mono id_body_cont - have Heq := fix_fixed_eq Hvalid - conv => lhs; rw [id, Heq, id_body] - -end Ex3 - namespace Ex4 /- Higher-order example -/ open Primitives Fix |