summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/ilistScript.sml37
-rw-r--r--backends/hol4/ilistTheory.sig24
-rw-r--r--backends/hol4/primitivesArithScript.sml7
-rw-r--r--backends/hol4/primitivesArithTheory.sig5
-rw-r--r--backends/hol4/primitivesBaseTacLib.sml93
-rw-r--r--backends/hol4/primitivesScript.sml81
-rw-r--r--backends/hol4/primitivesTheory.sig4
-rw-r--r--backends/hol4/testHashmapScript.sml679
-rw-r--r--backends/hol4/testHashmapTheory.sig202
9 files changed, 1041 insertions, 91 deletions
diff --git a/backends/hol4/ilistScript.sml b/backends/hol4/ilistScript.sml
index 3e17dcc8..c871ba04 100644
--- a/backends/hol4/ilistScript.sml
+++ b/backends/hol4/ilistScript.sml
@@ -26,10 +26,25 @@ val len_def = Define ‘
“index (i : int) [] = EL (Num i) []”
*)
val index_def = Define ‘
- index (i : int) [] = EL (Num i) [] ∧
index (i : int) (x :: ls) = if i = 0 then x else (if 0 < i then index (i - 1) ls else ARB)
+(* We use the following theorem as a rewriting theorem for [index]: it performs
+ better with the rewritings.
+
+ TODO: we could even write:
+ if (0 < i) ∨ (i > 0) ∨ ((0 ≤ i ∨ i >= 0) ∧ (i ≠ 0 ∨ 0 ≠ i)) then ...
+ *)
+Theorem index_eq:
+ (∀x ls. index 0 (x :: ls) = x) ∧
+ (∀i x ls. index i (x :: ls) =
+ if (0 < i) ∨ (0 ≤ i ∧ i ≠ 0) then index (i - 1) ls
+ else (if i = 0 then x else ARB))
+Proof
+ rw [index_def] >> fs [] >>
+ exfalso >> cooper_tac
+QED
+
val update_def = Define ‘
update ([] : 'a list) (i : int) (y : 'a) : 'a list = [] ∧
@@ -37,6 +52,20 @@ val update_def = Define ‘
if i = 0 then y :: ls else (if 0 < i then x :: update ls (i - 1) y else x :: ls)
+Theorem update_eq:
+ (∀i y. update ([] : 'a list) (i : int) (y : 'a) : 'a list = []) ∧
+
+ (∀x ls y. update (x :: ls) 0 y = y :: ls) ∧
+
+ (∀x ls i y.
+ update (x :: ls) i y =
+ if (0 < i) ∨ (0 ≤ i ∧ i ≠ 0) then x :: update ls (i - 1) y
+ else if i < 0 then x :: ls else y :: ls)
+Proof
+ rw [update_def] >> fs [] >>
+ exfalso >> cooper_tac
+QED
+
Theorem len_eq_LENGTH:
∀ls. len ls = &(LENGTH ls)
Proof
@@ -49,11 +78,9 @@ Theorem index_eq_EL:
i < len ls ⇒
index i ls = EL (Num i) ls
Proof
- Induct_on ‘ls’ >> rpt strip_tac >> fs [len_def, index_def] >>
+ Induct_on ‘ls’ >> rpt strip_tac >> fs [len_def, index_eq] >- int_tac >>
Cases_on ‘i = 0’ >> fs [] >>
- (* TODO: automate *)
- sg ‘0 < i’ >- cooper_tac >> fs [] >>
- Cases_on ‘Num i’ >- (exfalso >> cooper_tac) >> fs [] >>
+ Cases_on ‘Num i’ >- (int_tac) >> fs [] >>
last_assum (qspec_assume ‘i - 1’) >>
pop_assum sg_premise_tac >- cooper_tac >>
sg ‘n = Num (i - 1)’ >- cooper_tac >> fs [] >>
diff --git a/backends/hol4/ilistTheory.sig b/backends/hol4/ilistTheory.sig
index 9612f063..249b362c 100644
--- a/backends/hol4/ilistTheory.sig
+++ b/backends/hol4/ilistTheory.sig
@@ -9,9 +9,11 @@ sig
(* Theorems *)
val append_len_eq : thm
+ val index_eq : thm
val index_eq_EL : thm
val len_append : thm
val len_eq_LENGTH : thm
+ val update_eq : thm
val ilist_grammars : type_grammar.grammar * term_grammar.grammar
(*
@@ -21,8 +23,7 @@ sig
[index_def] Definition
- ⊢ (∀i. index i [] = EL (Num i) []) ∧
- ∀i x ls.
+ ⊢ ∀i x ls.
index i (x::ls) =
if i = 0 then x else if 0 < i then index (i − 1) ls else ARB
@@ -46,6 +47,15 @@ sig
∀l1 l2 l1' l2'.
len l2 = len l2' ⇒ (l1 ⧺ l2 = l1' ⧺ l2' ⇔ l1 = l1' ∧ l2 = l2')
+ [index_eq] Theorem
+
+ ⊢ (∀x ls. index 0 (x::ls) = x) ∧
+ ∀i x ls.
+ index i (x::ls) =
+ if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then index (i − 1) ls
+ else if i = 0 then x
+ else ARB
+
[index_eq_EL] Theorem
⊢ ∀i ls. 0 ≤ i ⇒ i < len ls ⇒ index i ls = EL (Num i) ls
@@ -58,6 +68,16 @@ sig
⊢ ∀ls. len ls = &LENGTH ls
+ [update_eq] Theorem
+
+ ⊢ (∀i y. update [] i y = []) ∧
+ (∀x ls y. update (x::ls) 0 y = y::ls) ∧
+ ∀x ls i y.
+ update (x::ls) i y =
+ if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then x::update ls (i − 1) y
+ else if i < 0 then x::ls
+ else y::ls
+
*)
end
diff --git a/backends/hol4/primitivesArithScript.sml b/backends/hol4/primitivesArithScript.sml
index eb2548fd..6c96c908 100644
--- a/backends/hol4/primitivesArithScript.sml
+++ b/backends/hol4/primitivesArithScript.sml
@@ -78,6 +78,13 @@ Proof
fs [Num]
QED
+(* TODO: use as rewriting theorem by default? *)
+Theorem add_sub_same_eq:
+ ∀(i j : int). i + j - j = i
+Proof
+ cooper_tac
+QED
+
Theorem num_sub_eq:
!(x y z : int). x = y - z ==> 0 <= x ==> 0 <= z ==> Num y = Num z + Num x
Proof
diff --git a/backends/hol4/primitivesArithTheory.sig b/backends/hol4/primitivesArithTheory.sig
index b2172b7c..e32b49d4 100644
--- a/backends/hol4/primitivesArithTheory.sig
+++ b/backends/hol4/primitivesArithTheory.sig
@@ -3,6 +3,7 @@ sig
type thm = Thm.thm
(* Theorems *)
+ val add_sub_same_eq : thm
val ge_eq_le : thm
val gt_eq_lt : thm
val int_add : thm
@@ -31,6 +32,10 @@ sig
[int_arith] Parent theory of "primitivesArith"
+ [add_sub_same_eq] Theorem
+
+ ⊢ ∀i j. i + j − j = i
+
[ge_eq_le] Theorem
⊢ ∀x y. x ≥ y ⇔ y ≤ x
diff --git a/backends/hol4/primitivesBaseTacLib.sml b/backends/hol4/primitivesBaseTacLib.sml
index bff4f7c9..3f298a04 100644
--- a/backends/hol4/primitivesBaseTacLib.sml
+++ b/backends/hol4/primitivesBaseTacLib.sml
@@ -20,10 +20,12 @@ val pop_ignore_tac = pop_assum ignore_tac
val exfalso : tactic =
SUBGOAL_THEN “F” (fn th => ASSUME_TAC th >> fs[])
+val case_tac = CASE_TAC
val try_tac = TRY
val first_tac = FIRST
-val map_first = MAP_FIRST
+val map_first_tac = MAP_FIRST
val fail_tac = FAIL_TAC
+val map_every_tac = MAP_EVERY
fun qspec_assume x th = qspec_then x assume_tac th
fun qspecl_assume xl th = qspecl_then xl assume_tac th
@@ -31,8 +33,8 @@ fun first_qspec_assume x = first_assum (qspec_assume x)
fun first_qspecl_assume xl = first_assum (qspecl_assume xl)
val all_tac = all_tac
-val cooper_tac = COOPER_TAC
val pure_rewrite_tac = PURE_REWRITE_TAC
+val pure_asm_rewrite_tac = PURE_ASM_REWRITE_TAC
val pure_once_rewrite_tac = PURE_ONCE_REWRITE_TAC
(* Dependent rewrites *)
@@ -419,7 +421,7 @@ apply_dep_rewrites_match_concl_tac
Leaves the premises as subgoals if [prove_premise] doesn't prove them.
*)
-fun apply_dep_rewrites_match_first_premise_tac
+fun apply_dep_rewrites_match_first_premise_with_all_tac
(keep : thm -> bool)
(prove_premise : tactic) (then_tac : thm_tactic) (th : thm) : tactic =
fn (asms, g) =>
@@ -435,7 +437,90 @@ fun apply_dep_rewrites_match_first_premise_tac
end;
in
(* Apply each theorem *)
- MAP_EVERY apply_tac thms (asms, g)
+ map_every_tac apply_tac thms (asms, g)
end
+val cooper_tac = COOPER_TAC
+
+(* TODO: COOPER_TAC fails in the proof below, because of x <> y. We should
+ create an issue/PR for HOL4.
+
+Theorem cooper_fail:
+ ∀(x y : 'a). x ≠ y ==> 0 ≤ i ==> i ≠ 0 ⇒ 0 < i
+Proof
+ rw [] >> cooper_tac
+QED
+
+*)
+
+(* Filter the assumptions in the goal *)
+fun filter_assums_tac (keep : term -> bool) : tactic =
+ fn (asms, g) =>
+ let
+ val kept_asms = filter keep asms
+ (* The validation function *)
+ fun valid thms =
+ case thms of
+ [th] =>
+ let
+ (* Being a bit brutal - will optimize later *)
+ val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
+ val th = prove (list_mk_imp (asms, g), tac)
+ val th = foldl (fn (_, th) => UNDISCH th) th asms
+ in th end
+ | _ => failwith "filter_assums: expected exactly one theorem"
+ in
+ ([(kept_asms, g)], valid)
+ end
+
+(* Destruct the conjunctions in the assumptions *)
+val dest_assums_conjs_tac : tactic =
+ fn (asms, g) =>
+ let
+ (* Destruct the conjunctions *)
+ val dest_asms = flatten (map (rev o strip_conj) asms)
+ (* The validation function *)
+ fun valid thms =
+ case thms of
+ [th] =>
+ let
+ (* Being a bit brutal - will optimize later *)
+ val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
+ val th = prove (list_mk_imp (asms, g), tac)
+ val th = foldl (fn (_, th) => UNDISCH th) th asms
+ in th end
+ | _ => failwith "dest_assums_conjs: expected exactly one theorem"
+ in
+ ([(dest_asms, g)], valid)
+ end
+
+(* Defining those here so that they are evaluated once and for all (parsing
+ depends on the context) *)
+val int_tac_int_ty = “:int”
+val int_tac_pat = “(x : 'a) <> (y : 'a)”
+
+(* We boost COOPER_TAC a bit *)
+fun int_tac (asms, g) =
+ let
+ (* Following the bug we discovered in COOPER_TAC, we filter all the
+ inequalities which terms are not between terms of type “:int”.
+
+ TODO: issue/PR for HOL4
+ *)
+ fun keep (asm : term) : bool =
+ let
+ val (_, s) = match_term int_tac_pat asm
+ in
+ case s of
+ [{redex = _, residue = ty}] => ty = int_tac_int_ty
+ | [] => (* Can happen if the term has exactly the same types as the pattern - unlikely *) false
+ | _ => failwith "int_tac: match error"
+ end
+ handle HOL_ERR _ => true
+ in
+ (dest_assums_conjs_tac >>
+ filter_assums_tac keep >>
+ first_tac [cooper_tac, exfalso >> cooper_tac]) (asms, g)
+ end
+
end
diff --git a/backends/hol4/primitivesScript.sml b/backends/hol4/primitivesScript.sml
index 5dba408e..6dd9f6ec 100644
--- a/backends/hol4/primitivesScript.sml
+++ b/backends/hol4/primitivesScript.sml
@@ -125,8 +125,8 @@ val all_bound_defs = [
]
(* The following bounds are valid for all architectures *)
-val isize_bounds = new_axiom ("isize_bounds", “isize_min <= i16_min /\ isize_max >= i16_max”)
-val usize_bounds = new_axiom ("usize_bounds", “usize_max >= u16_max”)
+val isize_bounds = new_axiom ("isize_bounds", “isize_min <= i16_min /\ i16_max <= isize_max”)
+val usize_bounds = new_axiom ("usize_bounds", “u16_max <= usize_max”)
(* Conversion bounds *)
val isize_to_int_bounds = new_axiom ("isize_to_int_bounds",
@@ -534,7 +534,7 @@ fun prove_arith_op_eq (asms, g) =
val y = (snd o dest_comb) y_to_int;
val rw_thms = int_rem_def :: List.concat [all_rem_defs, all_add_defs, all_sub_defs, all_mul_defs, all_div_defs, all_mk_int_defs, all_to_int_bounds_lemmas, all_conversion_id_lemmas];
fun inst_first_lem arg lems =
- map_first (fn th => (assume_tac (SPEC arg th) handle HOL_ERR _ => fail_tac "")) lems;
+ map_first_tac (fn th => (assume_tac (SPEC arg th) handle HOL_ERR _ => fail_tac "")) lems;
in
(rpt gen_tac >>
rpt disch_tac >>
@@ -661,21 +661,6 @@ Theorem isize_add_eq:
Proof
prove_arith_op_eq
QED
-
-val all_add_eqs = [
- isize_add_eq,
- i8_add_eq,
- i16_add_eq,
- i32_add_eq,
- i64_add_eq,
- i128_add_eq,
- usize_add_eq,
- u8_add_eq,
- u16_add_eq,
- u32_add_eq,
- u64_add_eq,
- u128_add_eq
-]
Theorem u8_sub_eq:
!x y.
@@ -779,21 +764,6 @@ Proof
prove_arith_op_eq
QED
-val all_sub_eqs = [
- isize_sub_eq,
- i8_sub_eq,
- i16_sub_eq,
- i32_sub_eq,
- i64_sub_eq,
- i128_sub_eq,
- usize_sub_eq,
- u8_sub_eq,
- u16_sub_eq,
- u32_sub_eq,
- u64_sub_eq,
- u128_sub_eq
-]
-
Theorem u8_mul_eq:
!x y.
u8_to_int x * u8_to_int y <= u8_max ==>
@@ -896,21 +866,6 @@ Proof
prove_arith_op_eq
QED
-val all_mul_eqs = [
- isize_mul_eq,
- i8_mul_eq,
- i16_mul_eq,
- i32_mul_eq,
- i64_mul_eq,
- i128_mul_eq,
- usize_mul_eq,
- u8_mul_eq,
- u16_mul_eq,
- u32_mul_eq,
- u64_mul_eq,
- u128_mul_eq
-]
-
Theorem u8_div_eq:
!x y.
u8_to_int y <> 0 ==>
@@ -1019,21 +974,6 @@ Proof
prove_arith_op_eq
QED
-val all_div_eqs = [
- isize_div_eq,
- i8_div_eq,
- i16_div_eq,
- i32_div_eq,
- i64_div_eq,
- i128_div_eq,
- usize_div_eq,
- u8_div_eq,
- u16_div_eq,
- u32_div_eq,
- u64_div_eq,
- u128_div_eq
-]
-
Theorem u8_rem_eq:
!x y.
u8_to_int y <> 0 ==>
@@ -1144,21 +1084,6 @@ Proof
prove_arith_op_eq
QED
-val all_rem_eqs = [
- isize_rem_eq,
- i8_rem_eq,
- i16_rem_eq,
- i32_rem_eq,
- i64_rem_eq,
- i128_rem_eq,
- usize_rem_eq,
- u8_rem_eq,
- u16_rem_eq,
- u32_rem_eq,
- u64_rem_eq,
- u128_rem_eq
-]
-
(***
* Vectors
diff --git a/backends/hol4/primitivesTheory.sig b/backends/hol4/primitivesTheory.sig
index 583f66bd..bac7fd4f 100644
--- a/backends/hol4/primitivesTheory.sig
+++ b/backends/hol4/primitivesTheory.sig
@@ -249,11 +249,11 @@ sig
[isize_bounds] Axiom
[oracles: ] [axioms: isize_bounds] []
- ⊢ isize_min ≤ i16_min ∧ isize_max ≥ i16_max
+ ⊢ isize_min ≤ i16_min ∧ i16_max ≤ isize_max
[usize_bounds] Axiom
- [oracles: ] [axioms: usize_bounds] [] ⊢ usize_max ≥ u16_max
+ [oracles: ] [axioms: usize_bounds] [] ⊢ u16_max ≤ usize_max
[isize_to_int_bounds] Axiom
diff --git a/backends/hol4/testHashmapScript.sml b/backends/hol4/testHashmapScript.sml
new file mode 100644
index 00000000..71b0109d
--- /dev/null
+++ b/backends/hol4/testHashmapScript.sml
@@ -0,0 +1,679 @@
+open HolKernel boolLib bossLib Parse
+open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory
+
+open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory
+
+val _ = new_theory "testHashmap"
+
+val primitives_theory_name = "primitives"
+
+(* Small utility: compute the set of assumptions in the context.
+
+ We isolate this code in a utility in order to be able to improve it:
+ for now we simply put all the assumptions in a set, but in the future
+ we might want to split the assumptions which are conjunctions in order
+ to be more precise.
+ *)
+fun compute_asms_set ((asms,g) : goal) : term Redblackset.set =
+ Redblackset.fromList Term.compare asms
+
+val integer_bounds_defs_list = [
+ i8_min_def,
+ i8_max_def,
+ i16_min_def,
+ i16_max_def,
+ i32_min_def,
+ i32_max_def,
+ i64_min_def,
+ i64_max_def,
+ i128_min_def,
+ i128_max_def,
+ u8_max_def,
+ u16_max_def,
+ u32_max_def,
+ u64_max_def,
+ u128_max_def
+]
+
+val integer_bounds_lemmas =
+ Redblackmap.fromList String.compare
+ [
+ ("isize", isize_to_int_bounds),
+ ("i8", i8_to_int_bounds),
+ ("i16", i16_to_int_bounds),
+ ("i32", i32_to_int_bounds),
+ ("i64", i64_to_int_bounds),
+ ("i128", i128_to_int_bounds),
+ ("usize", usize_to_int_bounds),
+ ("u8", u8_to_int_bounds),
+ ("u16", u16_to_int_bounds),
+ ("u32", u32_to_int_bounds),
+ ("u64", u64_to_int_bounds),
+ ("u128", u128_to_int_bounds)
+ ]
+
+val integer_types_names =
+ Redblackset.fromList String.compare
+ (map fst (Redblackmap.listItems integer_bounds_lemmas))
+
+(* See {!assume_bounds_for_all_int_vars}.
+
+ This tactic is in charge of adding assumptions for one variable.
+ *)
+fun assume_bounds_for_int_var
+ (asms_set: term Redblackset.set) (var : string) (ty : string) :
+ tactic =
+ let
+ (* Lookup the lemma to apply *)
+ val lemma = Redblackmap.find (integer_bounds_lemmas, ty);
+ (* Instantiate the lemma *)
+ val ty_t = mk_type (ty, []);
+ val var_t = mk_var (var, ty_t);
+ val lemma = SPEC var_t lemma;
+ (* Split the theorem into a list of conjuncts.
+
+ The bounds are typically a conjunction:
+ {[
+ ⊢ 0 ≤ u32_to_int x ∧ u32_to_int x ≤ u32_max: thm
+ ]}
+ *)
+ val lemmas = CONJUNCTS lemma;
+ (* Filter the conjuncts: some of them might already be in the context,
+ we don't want to introduce them again, as it would pollute it.
+ *)
+ val lemmas = filter (fn lem => not (Redblackset.member (asms_set, concl lem))) lemmas;
+ in
+ (* Introduce the assumptions in the context *)
+ assume_tacl lemmas
+ end
+
+(* Introduce bound assumptions for all the machine integers in the context.
+
+ Exemple:
+ ========
+ If there is “x : u32” in the input set, then we introduce:
+ {[
+ 0 <= u32_to_int x
+ u32_to_int x <= u32_max
+ ]}
+ *)
+fun assume_bounds_for_all_int_vars (asms, g) =
+ let
+ (* Compute the set of integer variables in the context *)
+ val vars = free_varsl (g :: asms);
+ (* Compute the set of assumptions already present in the context *)
+ val asms_set = compute_asms_set (asms, g);
+ val vartys_set = ref (Redblackset.empty String.compare);
+ (* Filter the variables to keep only the ones with type machine integer,
+ decompose the types at the same time *)
+ fun decompose_var (v : term) : (string * string) =
+ let
+ val (v, ty) = dest_var v;
+ val {Args=args, Thy=thy, Tyop=ty} = dest_thy_type ty;
+ val _ = assert null args;
+ val _ = assert (fn thy => thy = primitives_theory_name) thy;
+ val _ = assert (fn ty => Redblackset.member (integer_types_names, ty)) ty;
+ val _ = vartys_set := Redblackset.add (!vartys_set, ty);
+ in (v, ty) end;
+ val vars = mapfilter decompose_var vars;
+ (* Add assumptions for one variable *)
+ fun add_var_asm (v, ty) : tactic =
+ assume_bounds_for_int_var asms_set v ty;
+ (* Add the bounds for isize, usize *)
+ val size_bounds =
+ append
+ (if Redblackset.member (!vartys_set, "usize") then CONJUNCTS usize_bounds else [])
+ (if Redblackset.member (!vartys_set, "isize") then CONJUNCTS isize_bounds else []);
+ val size_bounds =
+ filter (fn th => not (Redblackset.member (asms_set, concl th))) size_bounds;
+ in
+ ((* Add assumptions for all the variables *)
+ map_every_tac add_var_asm vars >>
+ (* Add assumptions about the size bounds *)
+ assume_tacl size_bounds) (asms, g)
+ end
+
+val integer_conversion_lemmas_list = [
+ isize_to_int_int_to_isize,
+ i8_to_int_int_to_i8,
+ i16_to_int_int_to_i16,
+ i32_to_int_int_to_i32,
+ i64_to_int_int_to_i64,
+ i128_to_int_int_to_i128,
+ usize_to_int_int_to_usize,
+ u8_to_int_int_to_u8,
+ u16_to_int_int_to_u16,
+ u32_to_int_int_to_u32,
+ u64_to_int_int_to_u64,
+ u128_to_int_int_to_u128
+]
+
+(* Look for conversions from integers to machine integers and back.
+ {[
+ u32_to_int (int_to_u32 x)
+ ]}
+
+ Attempts to prove and apply equalities of the form:
+ {[
+ u32_to_int (int_to_u32 x) = x
+ ]}
+ *)
+val rewrite_with_dep_int_lemmas : tactic =
+ (* We're not trying to be smart: we just try to rewrite with each theorem at
+ a time *)
+ let
+ val prove_premise = full_simp_tac simpLib.empty_ss integer_bounds_defs_list >> cooper_tac;
+ val then_tac1 = (fn th => full_simp_tac simpLib.empty_ss [th]);
+ val rewr_tac1 = apply_dep_rewrites_match_concl_with_all_tac prove_premise then_tac1;
+ val then_tac2 = (fn th => full_simp_tac simpLib.empty_ss [th]);
+ val rewr_tac2 = apply_dep_rewrites_match_first_premise_with_all_tac (fn _ => true) prove_premise then_tac2;
+ in
+ map_every_tac rewr_tac1 integer_conversion_lemmas_list >>
+ map_every_tac rewr_tac2 []
+ end
+
+(* Massage a bit the goal, for instance by introducing integer bounds in the
+ assumptions.
+*)
+val massage : tactic =
+ assume_bounds_for_all_int_vars >>
+ rewrite_with_dep_int_lemmas
+
+(* Lexicographic order over pairs *)
+fun pair_compare (comp1 : 'a * 'a -> order) (comp2 : 'b * 'b -> order)
+ ((p1, p2) : (('a * 'b) * ('a * 'b))) : order =
+ let
+ val (x1, y1) = p1;
+ val (x2, y2) = p2;
+ in
+ case comp1 (x1, x2) of
+ LESS => LESS
+ | GREATER => GREATER
+ | EQUAL => comp2 (y1, y2)
+ end
+
+(* A constant name (theory, constant name) *)
+type const_name = string * string
+
+val const_name_compare = pair_compare String.compare String.compare
+
+(* The registered spec theorems, that {!progress} will automatically apply.
+
+ The keys are the function names (it is a pair, because constant names
+ are made of the theory name and the name of the constant itself).
+
+ Also note that we can store several specs per definition (in practice, when
+ looking up specs, we will try them all one by one, in a LIFO order).
+
+ We store theorems where all the premises are in the goal, with implications
+ (i.e.: [⊢ H0 ==> ... ==> Hn ==> H], not [H0, ..., Hn ⊢ H]).
+
+ We do this because, when doing proofs by induction, {!progress} might have to
+ handle *unregistered* theorems coming the current goal assumptions and of the shape
+ (the conclusion of the theorem is an assumption, and we want to ignore this assumption):
+ {[
+ [∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...]
+ ⊢ ∀i. u32_to_int i < &LENGTH (list_t_v ls) ⇒
+ case nth ls i of
+ Return x => ...
+ | ... => ...
+ ]}
+ *)
+val reg_spec_thms: (const_name, thm) Redblackmap.dict ref =
+ ref (Redblackmap.mkDict const_name_compare)
+
+(* Retrieve the specified application in a spec theorem.
+
+ A spec theorem for a function [f] typically has the shape:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ (exists ...
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ (exists ... . f y0 ... yp = ... /\ ...) \/
+ ...
+ ]}
+
+ Or:
+ {[
+ !x0 ... xn.
+ H0 ==> ... Hm ==>
+ case f y0 ... yp of
+ ... => ...
+ | ... => ...
+ ]}
+
+ We return: [f y0 ... yp]
+*)
+fun get_spec_app (t : term) : term =
+ let
+ (* Remove the universally quantified variables, the premises and
+ the existentially quantified variables *)
+ val t = (snd o strip_exists o snd o strip_imp o snd o strip_forall) t;
+ (* Remove the exists, take the first disjunct *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Split the conjunctions and take the first conjunct *)
+ val t = (hd o strip_conj) t;
+ (* Remove the case if there is, otherwise destruct the equality *)
+ val t =
+ if TypeBase.is_case t then let val (_, t, _) = TypeBase.dest_case t in t end
+ else (fst o dest_eq) t;
+ in t end
+
+(* Given a function call [f y0 ... yn] return the name of the function *)
+fun get_fun_name_from_app (t : term) : const_name =
+ let
+ val f = (fst o strip_comb) t;
+ val {Name=name, Thy=thy, Ty=_} = dest_thy_const f;
+ val cn = (thy, name);
+ in cn end
+
+(* Register a spec theorem in the spec database.
+
+ For the shape of spec theorems, see {!get_spec_thm_app}.
+ *)
+fun register_spec_thm (th: thm) : unit =
+ let
+ (* Transform the theroem a bit before storing it *)
+ val th = SPEC_ALL th;
+ (* Retrieve the app ([f x0 ... xn]) *)
+ val f = get_spec_app (concl th);
+ (* Retrieve the function name *)
+ val cn = get_fun_name_from_app f;
+ in
+ (* Store *)
+ reg_spec_thms := Redblackmap.insert (!reg_spec_thms, cn, th)
+ end
+
+val all_add_eqs = [
+ isize_add_eq,
+ i8_add_eq,
+ i16_add_eq,
+ i32_add_eq,
+ i64_add_eq,
+ i128_add_eq,
+ usize_add_eq,
+ u8_add_eq,
+ u16_add_eq,
+ u32_add_eq,
+ u64_add_eq,
+ u128_add_eq
+]
+val _ = app register_spec_thm all_add_eqs
+
+val all_sub_eqs = [
+ isize_sub_eq,
+ i8_sub_eq,
+ i16_sub_eq,
+ i32_sub_eq,
+ i64_sub_eq,
+ i128_sub_eq,
+ usize_sub_eq,
+ u8_sub_eq,
+ u16_sub_eq,
+ u32_sub_eq,
+ u64_sub_eq,
+ u128_sub_eq
+]
+val _ = app register_spec_thm all_sub_eqs
+
+val all_mul_eqs = [
+ isize_mul_eq,
+ i8_mul_eq,
+ i16_mul_eq,
+ i32_mul_eq,
+ i64_mul_eq,
+ i128_mul_eq,
+ usize_mul_eq,
+ u8_mul_eq,
+ u16_mul_eq,
+ u32_mul_eq,
+ u64_mul_eq,
+ u128_mul_eq
+]
+val _ = app register_spec_thm all_mul_eqs
+
+val all_div_eqs = [
+ isize_div_eq,
+ i8_div_eq,
+ i16_div_eq,
+ i32_div_eq,
+ i64_div_eq,
+ i128_div_eq,
+ usize_div_eq,
+ u8_div_eq,
+ u16_div_eq,
+ u32_div_eq,
+ u64_div_eq,
+ u128_div_eq
+]
+val _ = app register_spec_thm all_div_eqs
+
+val all_rem_eqs = [
+ isize_rem_eq,
+ i8_rem_eq,
+ i16_rem_eq,
+ i32_rem_eq,
+ i64_rem_eq,
+ i128_rem_eq,
+ usize_rem_eq,
+ u8_rem_eq,
+ u16_rem_eq,
+ u32_rem_eq,
+ u64_rem_eq,
+ u128_rem_eq
+]
+val _ = app register_spec_thm all_rem_eqs
+
+val all_vec_lems = [
+ vec_len_spec,
+ vec_insert_back_spec
+]
+val _ = app register_spec_thm all_vec_lems
+
+(* Repeatedly destruct cases and return the last scrutinee we get *)
+fun strip_all_cases_get_scrutinee (t : term) : term =
+ if TypeBase.is_case t
+ then (strip_all_cases_get_scrutinee o fst o TypeBase.strip_case) t
+ else t
+
+(*
+TypeBase.dest_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case ls of [] => T | _ => F”
+TypeBase.strip_case “case (if b then [] else [0, 1]) of [] => T | _ => F”
+TypeBase.strip_case “3”
+TypeBase.dest_case “3”
+
+strip_all_cases_get_scrutinee “case ls of [] => T | _ => F”
+strip_all_cases_get_scrutinee “case (if b then [] else [0, 1]) of [] => T | _ => F”
+strip_all_cases_get_scrutinee “3”
+*)
+
+
+(* Provided the goal contains a call to a monadic function, return this function call.
+
+ The goal should be of the shape:
+ 1.
+ {[
+ case (* potentially expanded function body *) of
+ ... => ...
+ | ... => ...
+ ]}
+
+ 2. Or:
+ {[
+ exists ... .
+ ... (* potentially expanded function body *) = Return ... /\
+ ... (* Various properties *)
+ ]}
+
+ 3. Or a disjunction of cases like the one above, below existential binders
+ (actually: note sure this last case exists in practice):
+ {[
+ exists ... .
+ (exists ... . (* body *) = Return ... /\ ...) \/
+ ...
+ ]}
+
+ The function body should be of the shape:
+ {[
+ x <- f y0 ... yn;
+ ...
+ ]}
+
+ Or (typically if we expanded the monadic binds):
+ {[
+ case f y0 ... yn of
+ ...
+ ]}
+
+ Or simply (typically if we reached the end of the function we're analyzing):
+ {[
+ f y0 ... yn
+ ]}
+
+ For all the above cases we would return [f y0 ... yn].
+ *)
+fun get_monadic_app_call (t : term) : term =
+ (* We do something slightly imprecise but hopefully general and robut *)
+ let
+ (* Case 3.: strip the existential binders, and take the first disjuntion *)
+ val t = (hd o strip_disj o snd o strip_exists) t;
+ (* Case 2.: strip the existential binders, and take the first conjunction *)
+ val t = (hd o strip_conj o snd o strip_exists) t;
+ (* If it is an equality, take the lhs *)
+ val t = if is_eq t then lhs t else t;
+ (* Expand the binders to transform them to cases *)
+ val t =
+ (rhs o concl) (REWRITE_CONV [bind_def] t)
+ handle UNCHANGED => t;
+ (* Strip all the cases *)
+ val t = strip_all_cases_get_scrutinee t;
+ in t end
+
+(* Use the given theorem to progress by one step (we use this when
+ analyzing a function body: this goes forward by one call to a monadic function).
+
+ We transform the goal by:
+ - pushing the theorem premises to a subgoal
+ - adding the theorem conclusion in the assumptions in another goal, and
+ getting rid of the monadic call
+
+ Then [then_tac] receives as paramter the monadic call on which we applied
+ the lemma. This can be useful, for instance, to make a case disjunction.
+
+ This function is the most primitive of the [progress...] functions.
+ *)
+fun pure_progress_with (premise_tac : tactic)
+ (then_tac : term -> thm_tactic) (th : thm) : tactic =
+ fn (asms,g) =>
+ let
+ (* Remove all the universally quantified variables from the theorem *)
+ val th = SPEC_ALL th;
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ (* Retrieve the app call from the theroem *)
+ val gth = get_spec_app (concl th);
+ (* Match and instantiate *)
+ val (var_s, ty_s) = match_term gth fgoal;
+ (* Instantiate the theorem *)
+ val th = INST var_s (INST_TYPE ty_s th);
+ (* Retrieve the premises of the theorem *)
+ val th = PURE_REWRITE_RULE [GSYM satTheory.AND_IMP] th;
+ in
+ (* Apply the theorem *)
+ sg_premise_then premise_tac (then_tac fgoal) th (asms, g)
+ end
+
+(*
+val (asms, g) = top_goal ()
+val t = g
+
+val th = U32_SUB_EQ
+
+val premise_tac = massage >> TRY COOPER_TAC
+fun then_tac fgoal =
+ fn thm => ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
+ rw [] >> fs [st_ex_bind_def] >> massage >> fs []
+
+pure_progress_with premise_tac then_tac th
+*)
+
+fun progress_with (th : thm) : tactic =
+ let
+ val premise_tac = massage >> fs [] >> rw [] >> TRY COOPER_TAC;
+ fun then_tac fgoal thm =
+ ASSUME_TAC thm >> Cases_on ‘^fgoal’ >>
+ rw [] >> fs [bind_def] >> massage >> fs [];
+ in
+ pure_progress_with premise_tac then_tac th
+ end
+
+(*
+progress_with U32_SUB_EQ
+*)
+
+(* This function lookups the theorem to use to make progress *)
+val progress : tactic =
+ fn (asms, g) =>
+ let
+ (* Retrieve the monadic call from the goal *)
+ val fgoal = get_monadic_app_call g;
+ val fname = get_fun_name_from_app fgoal;
+ (* Lookup the theorem: first look in the assumptions (we might want to
+ use the inductive hypothesis for instance) *)
+ fun asm_to_spec asm =
+ let
+ (* Fail if there are no universal quantifiers *)
+ val _ =
+ if is_forall asm then asm
+ else assert is_forall ((snd o strip_imp) asm);
+ val asm_fname = (get_fun_name_from_app o get_spec_app) asm;
+ (* Fail if the name is not the one we're looking for *)
+ val _ = assert (fn n => fname = n) asm_fname;
+ in
+ ASSUME asm
+ end
+ val asms_thl = mapfilter asm_to_spec asms;
+ (* Lookup a spec in the database *)
+ val thl =
+ case Redblackmap.peek (!reg_spec_thms, fname) of
+ NONE => asms_thl
+ | SOME spec => spec :: asms_thl;
+ val _ =
+ if null thl then
+ raise (failwith "progress: could not find a suitable theorem to apply")
+ else ();
+ in
+ (* Attempt to use the theorems one by one *)
+ map_first_tac progress_with thl (asms, g)
+ end
+
+(*
+ * Examples of proofs
+ *)
+
+Datatype:
+ list_t =
+ ListCons 't list_t
+ | ListNil
+End
+
+val nth_mut_fwd_def = Define ‘
+ nth_mut_fwd (ls : 't list_t) (i : u32) : 't result =
+ case ls of
+ | ListCons x tl =>
+ if u32_to_int i = (0:int)
+ then Return x
+ else
+ do
+ i0 <- u32_sub i (int_to_u32 1);
+ nth_mut_fwd tl i0
+ od
+ | ListNil =>
+ Fail Failure
+’
+
+(*** Examples of proofs on [nth] *)
+val list_t_v_def = Define ‘
+ list_t_v ListNil = [] /\
+ list_t_v (ListCons x tl) = x :: list_t_v tl
+’
+
+(* TODO: move *)
+Theorem index_eq:
+ (∀x ls. index 0 (x :: ls) = x) ∧
+ (∀i x ls. index i (x :: ls) =
+ if (0 < i) ∨ (0 ≤ i ∧ i ≠ 0) then index (i - 1) ls
+ else (if i = 0 then x else ARB))
+Proof
+ rw [index_def] >> fs [] >>
+ exfalso >> cooper_tac
+QED
+
+Theorem nth_mut_fwd_lem:
+ !(ls : 't list_t) (i : u32).
+ u32_to_int i < len (list_t_v ls) ==>
+ case nth_mut_fwd ls i of
+ | Return x => x = index (u32_to_int i) (list_t_v ls)
+ | Fail _ => F
+ | Loop => F
+Proof
+ Induct_on ‘ls’ >> rw [list_t_v_def, len_def] >~ [‘ListNil’]
+ >-(massage >> exfalso >> cooper_tac) >>
+ pure_once_rewrite_tac [nth_mut_fwd_def] >> rw [] >>
+ fs [index_eq] >>
+ progress >> progress
+QED
+
+val _ = new_constant ("insert", “: u32 -> 't -> (u32 # 't) list_t -> (u32 # 't) list_t result”)
+val insert_def = new_axiom ("insert_def", “
+ insert (key : u32) (value : 't) (ls : (u32 # 't) list_t) : (u32 # 't) list_t result =
+ case ls of
+ | ListCons (ckey, cvalue) tl =>
+ if ckey = key
+ then Return (ListCons (ckey, value) tl)
+ else
+ do
+ tl0 <- insert key value tl;
+ Return (ListCons (ckey, cvalue) tl0)
+ od
+ | ListNil => Return (ListCons (key, value) ListNil)
+ ”)
+
+(* Property that keys are pairwise distinct *)
+val distinct_keys_def = Define ‘
+ distinct_keys (ls : (u32 # 't) list) =
+ !i j.
+ 0 < i ⇒ i < len ls ==>
+ 0 < j ⇒ j < len ls ==>
+ FST (index i ls) = FST (index j ls) ⇒
+ i = j
+’
+
+val lookup_raw_def = Define ‘
+ lookup_raw key [] = NONE /\
+ lookup_raw key ((k, v) :: ls) =
+ if k = key then SOME v else lookup_raw key ls
+’
+
+val lookup_def = Define ‘
+ lookup key ls = lookup_raw key (list_t_v ls)
+’
+
+Theorem insert_lem:
+ !ls key value.
+ (* The keys are pairwise distinct *)
+ distinct_keys (list_t_v ls) ==>
+ case insert key value ls of
+ | Return ls1 =>
+ (* We updated the binding *)
+ lookup key ls1 = SOME value /\
+ (* The other bindings are left unchanged *)
+ (!k. k <> key ==> lookup k ls = lookup k ls1)
+ | Fail _ => F
+ | Loop => F
+Proof
+ Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >>
+ pure_once_rewrite_tac [insert_def] >> rw []
+ >- (rw [lookup_def, lookup_raw_def, list_t_v_def])
+ >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >>
+ case_tac >> rw []
+ >- (rw [lookup_def, lookup_raw_def, list_t_v_def])
+ >- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >>
+ progress
+ >- (
+ (* Disctinct keys *)
+ fs [distinct_keys_def] >>
+ rpt strip_tac >>
+ first_x_assum (qspecl_assume [‘i + 1’, ‘j + 1’]) >> fs [] >>
+ pop_assum irule >>
+ fs [index_eq, add_sub_same_eq, len_def] >>
+ int_tac) >>
+ fs [lookup_def, lookup_raw_def, list_t_v_def]
+QED
+
+val _ = export_theory ()
diff --git a/backends/hol4/testHashmapTheory.sig b/backends/hol4/testHashmapTheory.sig
new file mode 100644
index 00000000..a08511cd
--- /dev/null
+++ b/backends/hol4/testHashmapTheory.sig
@@ -0,0 +1,202 @@
+signature testHashmapTheory =
+sig
+ type thm = Thm.thm
+
+ (* Axioms *)
+ val insert_def : thm
+
+ (* Definitions *)
+ val distinct_keys_def : thm
+ val list_t_TY_DEF : thm
+ val list_t_case_def : thm
+ val list_t_size_def : thm
+ val list_t_v_def : thm
+ val lookup_def : thm
+
+ (* Theorems *)
+ val datatype_list_t : thm
+ val index_eq : thm
+ val insert_lem : thm
+ val list_t_11 : thm
+ val list_t_Axiom : thm
+ val list_t_case_cong : thm
+ val list_t_case_eq : thm
+ val list_t_distinct : thm
+ val list_t_induction : thm
+ val list_t_nchotomy : thm
+ val lookup_raw_def : thm
+ val lookup_raw_ind : thm
+ val nth_mut_fwd_def : thm
+ val nth_mut_fwd_ind : thm
+ val nth_mut_fwd_lem : thm
+
+ val testHashmap_grammars : type_grammar.grammar * term_grammar.grammar
+(*
+ [primitives] Parent theory of "testHashmap"
+
+ [insert_def] Axiom
+
+ [oracles: ] [axioms: insert_def] []
+ ⊢ insert key value ls =
+ case ls of
+ ListCons (ckey,cvalue) tl =>
+ if ckey = key then Return (ListCons (ckey,value) tl)
+ else
+ do
+ tl0 <- insert key value tl;
+ Return (ListCons (ckey,cvalue) tl0)
+ od
+ | ListNil => Return (ListCons (key,value) ListNil)
+
+ [distinct_keys_def] Definition
+
+ ⊢ ∀ls.
+ distinct_keys ls ⇔
+ ∀i j.
+ 0 < i ⇒
+ i < len ls ⇒
+ 0 < j ⇒
+ j < len ls ⇒
+ FST (index i ls) = FST (index j ls) ⇒
+ i = j
+
+ [list_t_TY_DEF] Definition
+
+ ⊢ ∃rep.
+ TYPE_DEFINITION
+ (λa0'.
+ ∀ $var$('list_t').
+ (∀a0'.
+ (∃a0 a1.
+ a0' =
+ (λa0 a1.
+ ind_type$CONSTR 0 a0
+ (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
+ a0 a1 ∧ $var$('list_t') a1) ∨
+ a0' =
+ ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
+ $var$('list_t') a0') ⇒
+ $var$('list_t') a0') rep
+
+ [list_t_case_def] Definition
+
+ ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
+ ∀f v. list_t_CASE ListNil f v = v
+
+ [list_t_size_def] Definition
+
+ ⊢ (∀f a0 a1.
+ list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
+ ∀f. list_t_size f ListNil = 0
+
+ [list_t_v_def] Definition
+
+ ⊢ list_t_v ListNil = [] ∧
+ ∀x tl. list_t_v (ListCons x tl) = x::list_t_v tl
+
+ [lookup_def] Definition
+
+ ⊢ ∀key ls. lookup key ls = lookup_raw key (list_t_v ls)
+
+ [datatype_list_t] Theorem
+
+ ⊢ DATATYPE (list_t ListCons ListNil)
+
+ [index_eq] Theorem
+
+ ⊢ (∀x ls. index 0 (x::ls) = x) ∧
+ ∀i x ls.
+ index i (x::ls) =
+ if 0 < i ∨ 0 ≤ i ∧ i ≠ 0 then index (i − 1) ls
+ else if i = 0 then x
+ else ARB
+
+ [insert_lem] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀ls key value.
+ distinct_keys (list_t_v ls) ⇒
+ case insert key value ls of
+ Return ls1 =>
+ lookup key ls1 = SOME value ∧
+ ∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
+ | Fail v1 => F
+ | Loop => F
+
+ [list_t_11] Theorem
+
+ ⊢ ∀a0 a1 a0' a1'.
+ ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
+
+ [list_t_Axiom] Theorem
+
+ ⊢ ∀f0 f1. ∃fn.
+ (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
+ fn ListNil = f1
+
+ [list_t_case_cong] Theorem
+
+ ⊢ ∀M M' f v.
+ M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
+ (M' = ListNil ⇒ v = v') ⇒
+ list_t_CASE M f v = list_t_CASE M' f' v'
+
+ [list_t_case_eq] Theorem
+
+ ⊢ list_t_CASE x f v = v' ⇔
+ (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
+
+ [list_t_distinct] Theorem
+
+ ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
+
+ [list_t_induction] Theorem
+
+ ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
+
+ [list_t_nchotomy] Theorem
+
+ ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
+
+ [lookup_raw_def] Theorem
+
+ ⊢ (∀key. lookup_raw key [] = NONE) ∧
+ ∀v ls key k.
+ lookup_raw key ((k,v)::ls) =
+ if k = key then SOME v else lookup_raw key ls
+
+ [lookup_raw_ind] Theorem
+
+ ⊢ ∀P. (∀key. P key []) ∧
+ (∀key k v ls. (k ≠ key ⇒ P key ls) ⇒ P key ((k,v)::ls)) ⇒
+ ∀v v1. P v v1
+
+ [nth_mut_fwd_def] Theorem
+
+ ⊢ ∀ls i.
+ nth_mut_fwd ls i =
+ case ls of
+ ListCons x tl =>
+ if u32_to_int i = 0 then Return x
+ else do i0 <- u32_sub i (int_to_u32 1); nth_mut_fwd tl i0 od
+ | ListNil => Fail Failure
+
+ [nth_mut_fwd_ind] Theorem
+
+ ⊢ ∀P. (∀ls i.
+ (∀x tl i0. ls = ListCons x tl ∧ u32_to_int i ≠ 0 ⇒ P tl i0) ⇒
+ P ls i) ⇒
+ ∀v v1. P v v1
+
+ [nth_mut_fwd_lem] Theorem
+
+ ⊢ ∀ls i.
+ u32_to_int i < len (list_t_v ls) ⇒
+ case nth_mut_fwd ls i of
+ Return x => x = index (u32_to_int i) (list_t_v ls)
+ | Fail v1 => F
+ | Loop => F
+
+
+*)
+end