summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--tests/hashmap/Hashmap.Properties.fst149
1 files changed, 137 insertions, 12 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst
index 1cf5fc88..08ae5714 100644
--- a/tests/hashmap/Hashmap.Properties.fst
+++ b/tests/hashmap/Hashmap.Properties.fst
@@ -247,6 +247,14 @@ let rec map_same_f_eq #a #b f g ls =
| x :: ls' -> map_same_f_eq f g ls'
#pop-options
+/// Filter a list, stopping after we removed one element
+val filter_one (#a : Type) (f : a -> bool) (ls : list a) : list a
+
+let rec filter_one #a f ls =
+ match ls with
+ | [] -> []
+ | x :: ls' -> if f x then x :: filter_one f ls' else ls'
+
(*** Lemmas about Primitives *)
/// TODO: move those lemmas
@@ -517,6 +525,7 @@ let hash_key (k : key) : hash =
let hash_mod_key (k : key) (len : usize{len > 0}) : hash =
(hash_key k) % len
+let not_same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b <> k
let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k
// We take a [nat] instead of a [hash] on purpose
@@ -1454,7 +1463,7 @@ let hash_map_insert_no_resize_s
if None? (hash_map_slots_s_find hm key) && num_entries = usize_max then Fail
else Return (hash_map_insert_no_fail_s hm key value)
-/// Prove that [hash_map_insert_no_resize_s] is a refinement of
+/// Prove that [hash_map_insert_no_resize_s] is refined by
/// [hash_map_insert_no_resize'fwd_back]
val hash_map_insert_no_resize_fwd_back_lem_s
(t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
@@ -1665,7 +1674,7 @@ let hash_map_insert_no_resize_s_get_diff_lem #t hm key value key' =
/// return type for [hash_map_move_elements_from_list_s] instead of having this
/// awkward match, the proof of [hash_map_move_elements_fwd_back_lem_refin] fails.
/// I guess it comes from F*'s poor subtyping.
-/// Followingly, I'm not taking any change and using [result_hash_map_slots_s]
+/// Followingly, I'm not taking any chance and using [result_hash_map_slots_s]
/// everywhere.
type result_hash_map_slots_s_nes (t : Type0) : Type0 =
res:result (hash_map_slots_s t) {
@@ -1742,7 +1751,7 @@ let rec hash_map_move_elements_from_list_fwd_back_lem t ntable ls =
/// [hash_map_move_elements_fwd] refines this function, which is actually almost
/// the same (just a little bit shorter and cleaner, and has a pre).
///
-/// The way I wrote the refinement is the following:
+/// The way I wrote the high-level model is the following:
/// - I copy-pasted the definition of [hash_map_move_elements_fwd], wrote the
/// signature which links this new definition to [hash_map_move_elements_fwd] and
/// checked that the proof passed
@@ -1777,7 +1786,7 @@ let rec hash_map_move_elements_s_simpl
(**** move_elements: refinement 1 *)
/// We prove a second refinement lemma: calling [move_elements] refines a function
-/// which, for every slot, moves the element out of the slot. This first version is
+/// which, for every slot, moves the element out of the slot. This first model is
/// almost exactly the translated function, it just uses `list` instead of `list_t`.
// Note that we ignore the returned slots (we thus don't return a pair:
@@ -1861,8 +1870,8 @@ val hash_map_move_elements_fwd_back_lem_refin
// The terrible thing is that this refinement proof is conceptually super simple:
// - there are maybe two arithmetic proofs, which are directly solved by the
// precondition
-// - we need to refine the call to [hash_map_move_elements_from_list_fwd_back]:
-// this is proven by another refinement lemma we proved above
+// - we need to prove the call to [hash_map_move_elements_from_list_fwd_back]
+// refines its model: this is proven by another refinement lemma we proved above
// - there is the recursive call (trivial)
#restart-solver
#push-options "--fuel 1"
@@ -2080,6 +2089,7 @@ let rec flatten_i_same_suffix #a l0 l1 i =
/// Refinement lemma:
/// [hash_map_move_elements_s] refines [hash_map_move_elements_s_flat]
+/// (actually the functions are equal on all inputs).
val hash_map_move_elements_s_lem_refin_flat
(#t : Type0) (hm : hash_map_slots_s_nes t)
(slots : slots_s t)
@@ -2426,8 +2436,8 @@ let hash_map_move_elements_fwd_back_lem t ntable slots =
(*** try_resize *)
-/// Refinement 1.
-/// This one is slightly "crude": we just simplify a bit the function.
+/// High-level model 1.
+/// This is one is slightly "crude": we just simplify a bit the function.
let hash_map_try_resize_s_simpl
(#t : Type0)
@@ -2684,7 +2694,7 @@ let hash_map_try_resize_fwd_back_lem #t hm =
(*** insert *)
-/// The refinement (very close to the original function: we don't need something
+/// The high-level model (very close to the original function: we don't need something
/// very high level, just to clean it a bit)
let hash_map_insert_s
(#t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
@@ -2725,9 +2735,6 @@ val hash_map_insert_fwd_back_lem
hash_map_t_inv hm' /\
// [key] maps to [value] and the other bindings are preserved
hash_map_t_updated_binding (hash_map_t_slots_v self) key value (hash_map_t_slots_v hm') /\
-// hash_map_t_find_s hm' key == Some value /\
- // The other bindings are preserved- TODO
-// (forall k'. k' <> key ==> hash_map_t_find_s hm' k' == hash_map_t_find_s self k') /\
// The length is incremented, iff we inserted a new key
(match hash_map_t_find_s self key with
| None -> hash_map_t_len_s hm' = hash_map_t_len_s self + 1
@@ -3172,3 +3179,121 @@ let hash_map_remove_fwd_lem t self key =
end
(*** remove'back *)
+
+/// High-level model for [remove_from_list'back]
+let hash_map_remove_from_list_s
+ (#t : Type0) (key : usize) (ls : slot_s t) :
+ slot_s t =
+ filter_one (not_same_key key) ls
+
+/// Refinement lemma
+val hash_map_remove_from_list_back_lem
+ (#t : Type0) (key : usize) (ls : list_t t) :
+ Lemma
+ (ensures (
+ match hash_map_remove_from_list_back t key ls with
+ | Fail -> False
+ | Return ls' -> list_t_v ls' == hash_map_remove_from_list_s key (list_t_v ls)))
+
+#push-options "--fuel 1"
+let rec hash_map_remove_from_list_back_lem #t key ls =
+ begin match ls with
+ | ListCons ckey x tl ->
+ let b = ckey = key in
+ if b
+ then
+ let mv_ls = mem_replace_fwd (list_t t) (ListCons ckey x tl) ListNil in
+ begin match mv_ls with
+ | ListCons i cvalue tl0 -> ()
+ | ListNil -> ()
+ end
+ else
+ begin
+ hash_map_remove_from_list_back_lem key tl;
+ match hash_map_remove_from_list_back t key tl with
+ | Fail -> ()
+ | Return l -> let ls0 = ListCons ckey x l in ()
+ end
+ | ListNil -> ()
+ end
+#pop-options
+
+/// High-level model for [remove_from_list'back]
+let hash_map_remove_s
+ (#t : Type0) (self : hash_map_slots_s_nes t) (key : usize) :
+ hash_map_slots_s t =
+ let len = length self in
+ let hash = hash_mod_key key len in
+ let slot = index self hash in
+ let slot' = hash_map_remove_from_list_s key slot in
+ list_update self hash slot'
+
+/// Refinement lemma
+val hash_map_remove_back_lem
+ (#t : Type0) (self : hash_map_t_nes t) (key : usize) :
+ Lemma
+ (requires (
+ // We need the invariant to prove that upon decrementing the entries counter,
+ // the counter doesn't become negative
+ hash_map_t_inv self))
+ (ensures (
+ match hash_map_remove_back t self key with
+ | Fail -> False
+ | Return hm' -> hash_map_t_slots_v hm' == hash_map_remove_s (hash_map_t_slots_v self) key))
+
+let hash_map_remove_back_lem #t self key =
+ begin match hash_key_fwd key with
+ | Fail -> ()
+ | Return i ->
+ let i0 = self.hash_map_num_entries in
+ let p = self.hash_map_max_load_factor in
+ let i1 = self.hash_map_max_load in
+ let v = self.hash_map_slots in
+ let i2 = vec_len (list_t t) v in
+ begin match usize_rem i i2 with
+ | Fail -> ()
+ | Return hash_mod ->
+ begin match vec_index_mut_fwd (list_t t) v hash_mod with
+ | Fail -> ()
+ | Return l ->
+ begin
+ hash_map_remove_from_list_fwd_lem key l;
+ match hash_map_remove_from_list_fwd t key l with
+ | Fail -> ()
+ | Return x ->
+ begin match x with
+ | None ->
+ begin
+ hash_map_remove_from_list_back_lem key l;
+ match hash_map_remove_from_list_back t key l with
+ | Fail -> ()
+ | Return l0 ->
+ begin match vec_index_mut_back (list_t t) v hash_mod l0 with
+ | Fail -> ()
+ | Return v0 -> ()
+ end
+ end
+ | Some x0 ->
+ begin
+ assert(l == index v hash_mod);
+ assert(length (list_t_v #t l) > 0);
+ length_flatten_index (hash_map_t_slots_v self) hash_mod;
+ match usize_sub i0 1 with
+ | Fail -> ()
+ | Return i3 ->
+ begin
+ hash_map_remove_from_list_back_lem key l;
+ match hash_map_remove_from_list_back t key l with
+ | Fail -> ()
+ | Return l0 ->
+ begin match vec_index_mut_back (list_t t) v hash_mod l0 with
+ | Fail -> ()
+ | Return v0 -> ()
+ end
+ end
+ end
+ end
+ end
+ end
+ end
+ end