summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--backends/hol4/ilistScript.sml8
-rw-r--r--backends/hol4/ilistTheory.sig5
-rw-r--r--backends/hol4/primitivesBaseTacLib.sml65
-rw-r--r--backends/hol4/testHashmapScript.sml196
-rw-r--r--backends/hol4/testHashmapTheory.sig72
5 files changed, 300 insertions, 46 deletions
diff --git a/backends/hol4/ilistScript.sml b/backends/hol4/ilistScript.sml
index c871ba04..f382d95d 100644
--- a/backends/hol4/ilistScript.sml
+++ b/backends/hol4/ilistScript.sml
@@ -72,6 +72,14 @@ Proof
Induct_on ‘ls’ >> fs [len_def] >> cooper_tac
QED
+Theorem len_pos:
+ ∀ls. 0 ≤ len ls
+Proof
+ strip_tac >>
+ qspec_assume ‘ls’ len_eq_LENGTH >>
+ cooper_tac
+QED
+
Theorem index_eq_EL:
∀(i: int) ls.
0 ≤ i ⇒
diff --git a/backends/hol4/ilistTheory.sig b/backends/hol4/ilistTheory.sig
index 249b362c..f155a328 100644
--- a/backends/hol4/ilistTheory.sig
+++ b/backends/hol4/ilistTheory.sig
@@ -13,6 +13,7 @@ sig
val index_eq_EL : thm
val len_append : thm
val len_eq_LENGTH : thm
+ val len_pos : thm
val update_eq : thm
val ilist_grammars : type_grammar.grammar * term_grammar.grammar
@@ -68,6 +69,10 @@ sig
⊢ ∀ls. len ls = &LENGTH ls
+ [len_pos] Theorem
+
+ ⊢ ∀ls. 0 ≤ len ls
+
[update_eq] Theorem
⊢ (∀i y. update [] i y = []) ∧
diff --git a/backends/hol4/primitivesBaseTacLib.sml b/backends/hol4/primitivesBaseTacLib.sml
index a718392b..0363ad41 100644
--- a/backends/hol4/primitivesBaseTacLib.sml
+++ b/backends/hol4/primitivesBaseTacLib.sml
@@ -476,7 +476,16 @@ fun filter_assums_tac (keep : term -> bool) : tactic =
[th] =>
let
(* Being a bit brutal - will optimize later *)
- val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
+ val tac = ntac (length asms) strip_tac >>
+ (* Small subtlety: we have to use the primitive irule here,
+ because otherwise it won't work with goals of the shape
+ “x <> y”, as those are actually of the shape: “x = y ==> F”:
+ irule will attempt to match “F” with the goal, which will fail.
+ *)
+ prim_irule th >>
+ (* Prove the assumptions of the theorem by using the assumptions
+ in goal. TODO: simply use ‘simp []’? *)
+ pure_asm_rewrite_tac [] >> SIMP_TAC bool_ss []
val th = prove (list_mk_imp (asms, g), tac)
val th = foldl (fn (_, th) => UNDISCH th) th asms
in th end
@@ -497,7 +506,16 @@ val dest_assums_conjs_tac : tactic =
[th] =>
let
(* Being a bit brutal - will optimize later *)
- val tac = ntac (length asms) strip_tac >> irule th >> pure_asm_rewrite_tac []
+ val tac = ntac (length asms) strip_tac >>
+ (* Small subtlety: we have to use the primitive irule here,
+ because otherwise it won't work with goals of the shape
+ “x <> y”, as those are actually of the shape: “x = y ==> F”:
+ irule will attempt to match “F” with the goal, which will fail.
+ *)
+ prim_irule th >>
+ (* Prove the assumptions of the theorem by using the assumptions
+ in goal. TODO: simply use ‘simp []’? *)
+ pure_asm_rewrite_tac [] >> SIMP_TAC bool_ss []
val th = prove (list_mk_imp (asms, g), tac)
val th = foldl (fn (_, th) => UNDISCH th) th asms
in th end
@@ -508,32 +526,37 @@ val dest_assums_conjs_tac : tactic =
(* Defining those here so that they are evaluated once and for all (parsing
depends on the context) *)
-val int_tac_int_ty = “:int”
-val int_tac_num_ty = “:num”
-val int_tac_pat1 = “(x : 'a) <> (y : 'a)”
-val int_tac_pat2 = “(x : 'a) = (y : 'a)”
+val int_tac_pats = [
+ “x: int = y”,
+ “x: int <= y”,
+ “x: int < y”,
+ “x: int >= y”,
+ “x: int > y”,
+ “x: num = y”,
+ “x: num <= y”,
+ “x: num < y”,
+ “x: num >= y”,
+ “x: num > y”
+]
+val int_tac_ops = Redblackset.fromList Term.compare (map (fst o strip_comb) int_tac_pats)
(* We boost COOPER_TAC a bit *)
fun int_tac (asms, g) =
let
- (* Following the bug we discovered in COOPER_TAC, we filter all the
- inequalities/equalities which terms are not between terms of type “:int”
- or “:num”.
+ (* Following the bug we discovered in COOPER_TAC, we keep only the terms:
+ - which are inequalities/equalities between terms of type “:int” or “:num”.
+ - which are comparisons of terms of tyep “:int” or “:num”
TODO: issue/PR for HOL4
*)
- fun keep_with_pat (asm : term) (pat : term) : bool =
- let
- val (_, s) = match_term pat asm
- in
- case s of
- [{redex = _, residue = ty}] => (ty = int_tac_int_ty orelse ty = int_tac_num_ty)
- | [] => (* Can happen if the term has exactly the same types as the pattern - unlikely *) false
- | _ => failwith "int_tac: match error"
- end
- handle HOL_ERR _ => true
- fun keep (asm : term) : bool =
- forall (keep_with_pat asm) [int_tac_pat1, int_tac_pat2]
+ fun keep (x : term) : bool =
+ let
+ val x = if is_neg x then dest_neg x else x
+ in
+ case strip_comb x of
+ (y, [_, _]) => Redblackset.member (int_tac_ops, y)
+ | _ => false
+ end
in
(dest_assums_conjs_tac >>
filter_assums_tac keep >>
diff --git a/backends/hol4/testHashmapScript.sml b/backends/hol4/testHashmapScript.sml
index 77c97651..7108776d 100644
--- a/backends/hol4/testHashmapScript.sml
+++ b/backends/hol4/testHashmapScript.sml
@@ -43,7 +43,7 @@ Theorem nth_mut_fwd_spec:
case nth_mut_fwd ls i of
| Return x => x = index (u32_to_int i) (list_t_v ls)
| Fail _ => F
- | Loop => F
+ | Diverge => F
Proof
Induct_on ‘ls’ >> rw [list_t_v_def, len_def] >~ [‘ListNil’]
>-(massage >> int_tac) >>
@@ -52,6 +52,8 @@ Proof
progress >> progress
QED
+val _ = register_spec_thm nth_mut_fwd_spec
+
val _ = new_constant ("insert", “: u32 -> 't -> (u32 # 't) list_t -> (u32 # 't) list_t result”)
val insert_def = new_axiom ("insert_def", “
insert (key : u32) (value : 't) (ls : (u32 # 't) list_t) : (u32 # 't) list_t result =
@@ -71,10 +73,8 @@ val insert_def = new_axiom ("insert_def", “
val distinct_keys_def = Define ‘
distinct_keys (ls : (u32 # 't) list) =
!i j.
- 0 < i ⇒ i < len ls ==>
- 0 < j ⇒ j < len ls ==>
- FST (index i ls) = FST (index j ls) ⇒
- i = j
+ 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒
+ FST (index i ls) ≠ FST (index j ls)
val lookup_raw_def = Define ‘
@@ -87,19 +87,18 @@ val lookup_def = Define ‘
lookup key ls = lookup_raw key (list_t_v ls)
-Theorem insert_lem:
+(* Lemma about ‘insert’, without the invariant *)
+Theorem insert_lem_aux:
!ls key value.
(* The keys are pairwise distinct *)
- distinct_keys (list_t_v ls) ==>
case insert key value ls of
| Return ls1 =>
(* We updated the binding *)
lookup key ls1 = SOME value /\
(* The other bindings are left unchanged *)
(!k. k <> key ==> lookup k ls = lookup k ls1)
- (* TODO: invariant *)
| Fail _ => F
- | Loop => F
+ | Diverge => F
Proof
Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >>
pure_once_rewrite_tac [insert_def] >> rw []
@@ -108,16 +107,177 @@ Proof
case_tac >> rw []
>- (rw [lookup_def, lookup_raw_def, list_t_v_def])
>- (rw [lookup_def, lookup_raw_def, list_t_v_def]) >>
- progress
- >- (
- (* Disctinct keys *)
- fs [distinct_keys_def] >>
- rpt strip_tac >>
- first_x_assum (qspecl_assume [‘i + 1’, ‘j + 1’]) >> fs [] >>
- pop_assum irule >>
- fs [index_eq, add_sub_same_eq, len_def] >>
- int_tac) >>
+ progress >>
fs [lookup_def, lookup_raw_def, list_t_v_def]
QED
+Theorem distinct_keys_cons:
+ ∀ k v ls.
+ (∀ i. 0 ≤ i ⇒ i < len ls ⇒ FST (index i ls) ≠ k) ⇒
+ distinct_keys ls ⇒
+ distinct_keys ((k,v) :: ls)
+Proof
+ rw [] >>
+ rw [distinct_keys_def] >>
+ Cases_on ‘i = 0’ >> fs []
+ >-(
+ (* Use the first hypothesis *)
+ fs [index_eq] >>
+ last_x_assum (qspecl_assume [‘j - 1’]) >>
+ sg ‘0 ≤ j - 1’ >- int_tac >>
+ fs [len_def] >>
+ sg ‘j - 1 < len ls’ >- int_tac >>
+ fs []
+ ) >>
+ (* Use the second hypothesis *)
+ sg ‘0 < i’ >- int_tac >>
+ sg ‘0 < j’ >- int_tac >>
+ fs [distinct_keys_def, index_eq, len_def] >>
+ first_x_assum (qspecl_assume [‘i - 1’, ‘j - 1’]) >>
+ sg ‘0 ≤ i - 1 ∧ i - 1 < j - 1 ∧ j - 1 < len ls’ >- int_tac >>
+ fs []
+QED
+
+Theorem distinct_keys_tail:
+ ∀ k v ls.
+ distinct_keys ((k,v) :: ls) ⇒
+ distinct_keys ls
+Proof
+ rw [distinct_keys_def] >>
+ last_x_assum (qspecl_assume [‘i + 1’, ‘j + 1’]) >>
+ fs [len_def] >>
+ sg ‘0 ≤ i + 1 ∧ i + 1 < j + 1 ∧ j + 1 < 1 + len ls’ >- int_tac >> fs [] >>
+ sg ‘0 < i + 1 ∧ 0 < j + 1’ >- int_tac >> fs [index_eq] >>
+ sg ‘i + 1 - 1 = i ∧ j + 1 - 1 = j’ >- int_tac >> fs []
+QED
+
+Theorem insert_index_neq:
+ ∀ q k v ls0 ls1 i.
+ (∀ j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒ q ≠ FST (index j (list_t_v ls0))) ⇒
+ q ≠ k ⇒
+ insert k v ls0 = Return ls1 ⇒
+ 0 ≤ i ⇒
+ i < len (list_t_v ls1) ⇒
+ FST (index i (list_t_v ls1)) ≠ q
+Proof
+ ntac 3 strip_tac >>
+ Induct_on ‘ls0’ >> rw [] >~ [‘ListNil’]
+ >-(
+ fs [insert_def] >>
+ sg ‘ls1 = ListCons (k,v) ListNil’ >- fs [] >> fs [list_t_v_def, len_def] >>
+ sg ‘i = 0’ >- int_tac >> fs [index_eq]) >>
+ Cases_on ‘t’ >>
+ Cases_on ‘i = 0’ >> fs []
+ >-(
+ qpat_x_assum ‘insert _ _ _ = _’ mp_tac >>
+ simp [MK_BOUNDED insert_def 1, bind_def] >>
+ Cases_on ‘q' = k’ >> rw []
+ >- (fs [list_t_v_def, index_eq]) >>
+ Cases_on ‘insert k v ls0’ >> fs [] >>
+ (* TODO: would be good to have a tactic which inverts equalities of the
+ shape ‘ListCons (q',r) a = ls1’ *)
+ sg ‘ls1 = ListCons (q',r) a’ >- fs [] >> fs [list_t_v_def, index_eq] >>
+ first_x_assum (qspec_assume ‘0’) >>
+ fs [len_def] >>
+ strip_tac >>
+ qspec_assume ‘list_t_v ls0’ len_pos >>
+ sg ‘0 < 1 + len (list_t_v ls0)’ >- int_tac >>
+ fs []) >>
+ qpat_x_assum ‘insert _ _ _ = _’ mp_tac >>
+ simp [MK_BOUNDED insert_def 1, bind_def] >>
+ Cases_on ‘q' = k’ >> rw []
+ >-(
+ fs [list_t_v_def, index_eq, len_def] >>
+ first_x_assum (qspec_assume ‘i’) >> rfs []) >>
+ Cases_on ‘insert k v ls0’ >> fs [] >>
+ sg ‘ls1 = ListCons (q',r) a’ >- fs [] >> fs [list_t_v_def, index_eq] >>
+ last_x_assum (qspec_assume ‘i - 1’) >>
+ fs [len_def] >>
+ sg ‘0 ≤ i - 1 ∧ i - 1 < len (list_t_v a)’ >- int_tac >> fs [] >>
+ first_x_assum irule >>
+ rw [] >>
+ last_x_assum (qspec_assume ‘j + 1’) >>
+ rfs [] >>
+ sg ‘j + 1 < 1 + len (list_t_v ls0) ∧ j + 1 − 1 = j ∧ j + 1 ≠ 0’ >- int_tac >> fs []
+QED
+
+Theorem distinct_keys_insert_index_neq:
+ ∀ k v q r ls0 ls1 i.
+ distinct_keys ((q,r)::list_t_v ls0) ⇒
+ q ≠ k ⇒
+ insert k v ls0 = Return ls1 ⇒
+ 0 ≤ i ⇒
+ i < len (list_t_v ls1) ⇒
+ FST (index i (list_t_v ls1)) ≠ q
+Proof
+ rw [] >>
+ (* Use the first assumption to prove the following assertion *)
+ sg ‘∀ j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒ q ≠ FST (index j (list_t_v ls0))’
+ >-(
+ strip_tac >>
+ fs [distinct_keys_def] >>
+ last_x_assum (qspecl_assume [‘0’, ‘j + 1’]) >>
+ fs [index_eq] >>
+ sg ‘j + 1 - 1 = j’ >- int_tac >> fs [len_def] >>
+ rw []>>
+ first_x_assum irule >> int_tac) >>
+ qspecl_assume [‘q’, ‘k’, ‘v’, ‘ls0’, ‘ls1’, ‘i’] insert_index_neq >>
+ fs []
+QED
+
+Theorem distinct_keys_insert:
+ ∀ k v ls0 ls1.
+ distinct_keys (list_t_v ls0) ⇒
+ insert k v ls0 = Return ls1 ⇒
+ distinct_keys (list_t_v ls1)
+Proof
+ Induct_on ‘ls0’ >~ [‘ListNil’]
+ >-(
+ rw [distinct_keys_def, list_t_v_def, insert_def] >>
+ fs [list_t_v_def, len_def] >>
+ int_tac) >>
+ Cases >>
+ pure_once_rewrite_tac [insert_def] >> fs[] >>
+ rw [] >> fs []
+ >-(
+ (* k = q *)
+ last_x_assum ignore_tac >>
+ fs [distinct_keys_def] >>
+ rw [] >>
+ last_x_assum (qspecl_assume [‘i’, ‘j’]) >>
+ rfs [list_t_v_def, len_def] >>
+ sg ‘0 < j’ >- int_tac >>
+ Cases_on ‘i = 0’ >> fs [index_eq] >>
+ sg ‘0 < i’ >- int_tac >> fs []) >>
+ (* k ≠ q: recursion *)
+ Cases_on ‘insert k v ls0’ >> fs [bind_def] >>
+ last_x_assum (qspecl_assume [‘k’, ‘v’, ‘a’]) >>
+ rfs [] >>
+ sg ‘ls1 = ListCons (q,r) a’ >- fs [] >> fs [list_t_v_def] >>
+ imp_res_tac distinct_keys_tail >> fs [] >>
+ irule distinct_keys_cons >> rw [] >>
+ metis_tac [distinct_keys_insert_index_neq]
+QED
+
+Theorem insert_lem:
+ !ls key value.
+ (* The keys are pairwise distinct *)
+ distinct_keys (list_t_v ls) ==>
+ case insert key value ls of
+ | Return ls1 =>
+ (* We updated the binding *)
+ lookup key ls1 = SOME value /\
+ (* The other bindings are left unchanged *)
+ (!k. k <> key ==> lookup k ls = lookup k ls1) ∧
+ (* The keys are still pairwise disjoint *)
+ distinct_keys (list_t_v ls1)
+ | Fail _ => F
+ | Diverge => F
+Proof
+ rw [] >>
+ qspecl_assume [‘ls’, ‘key’, ‘value’] insert_lem_aux >>
+ case_tac >> fs [] >>
+ metis_tac [distinct_keys_insert]
+QED
+
val _ = export_theory ()
diff --git a/backends/hol4/testHashmapTheory.sig b/backends/hol4/testHashmapTheory.sig
index fd22e05b..16031716 100644
--- a/backends/hol4/testHashmapTheory.sig
+++ b/backends/hol4/testHashmapTheory.sig
@@ -15,7 +15,13 @@ sig
(* Theorems *)
val datatype_list_t : thm
+ val distinct_keys_cons : thm
+ val distinct_keys_insert : thm
+ val distinct_keys_insert_index_neq : thm
+ val distinct_keys_tail : thm
+ val insert_index_neq : thm
val insert_lem : thm
+ val insert_lem_aux : thm
val list_t_11 : thm
val list_t_Axiom : thm
val list_t_case_cong : thm
@@ -52,12 +58,10 @@ sig
⊢ ∀ls.
distinct_keys ls ⇔
∀i j.
- 0 < i ⇒
- i < len ls ⇒
- 0 < j ⇒
+ 0 ≤ i ⇒
+ i < j ⇒
j < len ls ⇒
- FST (index i ls) = FST (index j ls) ⇒
- i = j
+ FST (index i ls) ≠ FST (index j ls)
[list_t_TY_DEF] Definition
@@ -101,6 +105,48 @@ sig
⊢ DATATYPE (list_t ListCons ListNil)
+ [distinct_keys_cons] Theorem
+
+ ⊢ ∀k v ls.
+ (∀i. 0 ≤ i ⇒ i < len ls ⇒ FST (index i ls) ≠ k) ⇒
+ distinct_keys ls ⇒
+ distinct_keys ((k,v)::ls)
+
+ [distinct_keys_insert] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀k v ls0 ls1.
+ distinct_keys (list_t_v ls0) ⇒
+ insert k v ls0 = Return ls1 ⇒
+ distinct_keys (list_t_v ls1)
+
+ [distinct_keys_insert_index_neq] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀k v q r ls0 ls1 i.
+ distinct_keys ((q,r)::list_t_v ls0) ⇒
+ q ≠ k ⇒
+ insert k v ls0 = Return ls1 ⇒
+ 0 ≤ i ⇒
+ i < len (list_t_v ls1) ⇒
+ FST (index i (list_t_v ls1)) ≠ q
+
+ [distinct_keys_tail] Theorem
+
+ ⊢ ∀k v ls. distinct_keys ((k,v)::ls) ⇒ distinct_keys ls
+
+ [insert_index_neq] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀q k v ls0 ls1 i.
+ (∀j. 0 ≤ j ∧ j < len (list_t_v ls0) ⇒
+ q ≠ FST (index j (list_t_v ls0))) ⇒
+ q ≠ k ⇒
+ insert k v ls0 = Return ls1 ⇒
+ 0 ≤ i ⇒
+ i < len (list_t_v ls1) ⇒
+ FST (index i (list_t_v ls1)) ≠ q
+
[insert_lem] Theorem
[oracles: DISK_THM] [axioms: insert_def] []
@@ -109,8 +155,20 @@ sig
case insert key value ls of
Return ls1 =>
lookup key ls1 = SOME value ∧
+ (∀k. k ≠ key ⇒ lookup k ls = lookup k ls1) ∧
+ distinct_keys (list_t_v ls1)
+ | Fail v1 => F
+ | Diverge => F
+
+ [insert_lem_aux] Theorem
+
+ [oracles: DISK_THM] [axioms: insert_def] []
+ ⊢ ∀ls key value.
+ case insert key value ls of
+ Return ls1 =>
+ lookup key ls1 = SOME value ∧
∀k. k ≠ key ⇒ lookup k ls = lookup k ls1
- | Fail v3 => F
+ | Fail v1 => F
| Diverge => F
[list_t_11] Theorem
@@ -184,7 +242,7 @@ sig
u32_to_int i < len (list_t_v ls) ⇒
case nth_mut_fwd ls i of
Return x => x = index (u32_to_int i) (list_t_v ls)
- | Fail v3 => F
+ | Fail v1 => F
| Diverge => F