summaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorSon Ho2023-12-23 00:16:53 +0100
committerSon Ho2023-12-23 00:16:53 +0100
commit091f9f0f49db3c581a33d29470323ab417744845 (patch)
treed8ddc513dc5c4ca3d94640bdb765fd437836f60f /tests
parenta0c58326c43a7a8026b3d4c158017bf126180e90 (diff)
Update the proof of the hashmap in Lean
Diffstat (limited to 'tests')
-rw-r--r--tests/lean/Hashmap/Properties.lean144
1 files changed, 44 insertions, 100 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean
index e79c422d..7215e286 100644
--- a/tests/lean/Hashmap/Properties.lean
+++ b/tests/lean/Hashmap/Properties.lean
@@ -55,71 +55,6 @@ theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
(x == y) = (if x = y then true else false) := by
split <;> simp_all
-@[pspec]
-theorem insert_in_list_spec0 {α : Type} (key: Usize) (value: α) (ls: List α) :
- ∃ b,
- insert_in_list α key value ls = ret b ∧
- (b ↔ ls.lookup key = none)
- := match ls with
- | .Nil => by simp [insert_in_list, insert_in_list_loop]
- | .Cons k v tl =>
- if h: k = key then -- TODO: The order of k/key matters
- by
- simp [insert_in_list]
- rw [insert_in_list_loop]
- simp [h]
- else
- have ⟨ b, hi ⟩ := insert_in_list_spec0 key value tl
- by
- exists b
- simp [insert_in_list]
- rw [insert_in_list_loop] -- TODO: Using simp leads to infinite recursion
- simp only [insert_in_list] at hi
- simp [*]
-
--- Variation: use progress
-theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) :
- ∃ b,
- insert_in_list α key value ls = ret b ∧
- (b ↔ ls.lookup key = none)
- := match ls with
- | .Nil => by simp [insert_in_list, insert_in_list_loop]
- | .Cons k v tl =>
- if h: k = key then -- TODO: The order of k/key matters
- by
- simp [insert_in_list]
- rw [insert_in_list_loop]
- simp [h]
- else
- by
- simp only [insert_in_list]
- rw [insert_in_list_loop]
- conv => rhs; ext; simp [*]
- progress keep heq as ⟨ b, hi ⟩
- simp only [insert_in_list] at heq
- exists b
-
--- Variation: use tactics from the beginning
-theorem insert_in_list_spec2 {α : Type} (key: Usize) (value: α) (ls: List α) :
- ∃ b,
- insert_in_list α key value ls = ret b ∧
- (b ↔ (ls.lookup key = none))
- := by
- induction ls
- case Nil => simp [insert_in_list, insert_in_list_loop]
- case Cons k v tl ih =>
- simp only [insert_in_list]
- rw [insert_in_list_loop]
- simp only
- if h: k = key then
- simp [h]
- else
- conv => rhs; ext; left; simp [h] -- TODO: Simplify
- simp only [insert_in_list] at ih;
- -- TODO: give the possibility of using underscores
- progress as ⟨ b, h ⟩
- simp [*]
-
def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst)
def hash_mod_key (k : Usize) (l : Int) : Int :=
@@ -175,11 +110,16 @@ def inv (hm : HashMap α) : Prop :=
base_inv hm
-- TODO: either the hashmap is not overloaded, or we can't resize it
-theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
+-- This rewriting lemma is problematic below
+attribute [-simp] Bool.exists_bool
+
+theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
- ∃ l1,
- insert_in_list_back α key value l0 = ret l1 ∧
+ ∃ b l1,
+ insert_in_list α key value l0 = ret (b, l1) ∧
+ -- The boolean is true ↔ we inserted a new binding
+ (b ↔ (l0.lookup key = none)) ∧
-- We update the binding
l1.lookup key = value ∧
(∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
@@ -193,16 +133,19 @@ theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value:
distinct_keys l1.v ∧
-- We need this auxiliary property to prove that the keys distinct properties is preserved
(∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1))
- := match l0 with
- | .Nil => by checkpoint
+ :=
+ match l0 with
+ | .Nil => by
+ exists true -- TODO: why do we need to do this?
simp (config := {contextual := true})
- [insert_in_list_back, insert_in_list_loop_back,
+ [insert_in_list, insert_in_list_loop,
List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
| .Cons k v tl0 =>
- if h: k = key then by checkpoint
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
+ if h: k = key then by
+ rw [insert_in_list]
+ rw [insert_in_list_loop]
simp [h]
+ exists false; simp -- TODO: why do we need to do this?
split_conjs
. intros; simp [*]
. simp [List.v, slot_s_inv_hash] at *
@@ -210,17 +153,17 @@ theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value:
. simp [*, distinct_keys] at *
apply hdk
. tauto
- else by checkpoint
- simp [insert_in_list_back]
- rw [insert_in_list_loop_back]
+ else by
+ rw [insert_in_list]
+ rw [insert_in_list_loop]
simp [h]
have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
simp_all [List.v, slot_s_inv_hash]
have : distinct_keys (List.v tl0) := by checkpoint
simp [distinct_keys] at hdk
simp [hdk, distinct_keys]
- progress keep heq as ⟨ tl1 .. ⟩
- simp only [insert_in_list_back] at heq
+ progress keep heq as ⟨ b, tl1 .. ⟩
+ simp only [insert_in_list] at heq
have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
simp [List.v, slot_s_inv_hash] at *
simp [*]
@@ -228,14 +171,16 @@ theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value:
simp [distinct_keys] at *
simp [*]
-- TODO: canonize addition by default?
+ exists b
simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
@[pspec]
-theorem insert_in_list_back_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
+theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
- ∃ l1,
- insert_in_list_back α key value l0 = ret l1 ∧
+ ∃ b l1,
+ insert_in_list α key value l0 = ret (b, l1) ∧
+ (b ↔ (l0.lookup key = none)) ∧
-- We update the binding
l1.lookup key = value ∧
(∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
@@ -248,7 +193,8 @@ theorem insert_in_list_back_spec {α : Type} (l : Int) (key: Usize) (value: α)
-- The keys are distinct
distinct_keys l1.v
:= by
- progress with insert_in_list_back_spec_aux as ⟨ l1 .. ⟩
+ progress with insert_in_list_spec_aux as ⟨ b, l1 .. ⟩
+ exists b
exists l1
@[simp]
@@ -286,7 +232,7 @@ set_option pp.coercions false -- do not print coercions with ↑ (this doesn't p
-- The proof below is a bit expensive, so we need to increase the maximum number
-- of heart beats
-set_option maxHeartbeats 400000
+set_option maxHeartbeats 1000000
theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value : α)
(hinv : hm.inv) (hnsat : hm.lookup key = none → hm.len_s < Usize.max) :
@@ -315,9 +261,19 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
simp [hinv]
-- TODO: we want to automate that
simp [*, Int.emod_lt_of_pos]
- progress as ⟨ l, h_leq ⟩
- -- TODO: make progress use the names written in the goal
- progress as ⟨ inserted ⟩
+ progress as ⟨ l, index_mut_back, h_leq, h_index_mut_back ⟩
+ simp [h_index_mut_back] at *; clear h_index_mut_back index_mut_back
+ have h_slot :
+ slot_s_inv_hash hm.slots.length (hash_mod_key key hm.slots.length) l.v := by
+ simp [inv] at hinv
+ have h := (hinv.right.left hash_mod.val (by assumption) (by assumption)).right
+ simp [slot_t_inv, hhm] at h
+ simp [h, hhm, h_leq]
+ have hd : distinct_keys l.v := by
+ simp [inv, slots_t_inv, slot_t_inv] at hinv
+ have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
+ simp [h, h_leq]
+ progress as ⟨ inserted, l0, _, _, _, _, hlen .. ⟩
rw [if_update_eq] -- TODO: necessary because we don't have a join
-- TODO: progress to ...
have hipost :
@@ -336,20 +292,9 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
else
simp [*, Pure.pure]
progress as ⟨ i0 ⟩
- have h_slot : slot_s_inv_hash hm.slots.length (hash_mod_key key hm.slots.length) l.v
- := by
- simp [inv] at hinv
- have h := (hinv.right.left hash_mod.val (by assumption) (by assumption)).right
- simp [slot_t_inv, hhm] at h
- simp [h, hhm, h_leq]
- have hd : distinct_keys l.v := by checkpoint
- simp [inv, slots_t_inv, slot_t_inv] at hinv
- have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
- simp [h, h_leq]
-- TODO: hide the variables and only keep the props
-- TODO: allow providing terms to progress to instantiate the meta variables
-- which are not propositions
- progress as ⟨ l0, _, _, _, hlen .. ⟩
progress keep hv as ⟨ v, h_veq ⟩
-- TODO: update progress to automate that
-- TODO: later I don't want to inline nhm - we need to control simp: deactivate
@@ -428,8 +373,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
simp [*]
else
simp [*]
- . -- TODO: simp[*] fails: "(deterministic) timeout at 'whnf'"
- simp [hinv, h_veq, nhm_eq]
+ . simp [hinv, h_veq, nhm_eq]
simp_all
end HashMap