diff options
author | Son Ho | 2022-02-13 19:42:34 +0100 |
---|---|---|
committer | Son Ho | 2022-02-13 19:42:34 +0100 |
commit | f3cb86b9ea93000fa4e26c618dc34ed5133a3c78 (patch) | |
tree | e9443fadfc244d3f3f05a5793db40afe375be4da /tests | |
parent | adbb6f2238f3ce7fbade5a7f659c6d3a63c9fb2b (diff) |
Start cleaning up
Diffstat (limited to '')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 208 |
1 files changed, 20 insertions, 188 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index 2339d6af..649334c8 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -7,9 +7,6 @@ open Hashmap.Types open Hashmap.Clauses open Hashmap.Funs -// To help with the proofs - TODO: remove -module InteractiveHelpers = FStar.InteractiveHelpers - #set-options "--z3rlimit 50 --fuel 0 --ifuel 1" /// The proofs actually caused a lot more trouble than expected, because of the @@ -218,28 +215,6 @@ let rec index_map_lem #a #b f ls i = else index_map_lem f ls' (i-1) #pop-options -// TODO: remove? -// Returns the index of the value which satisfies the predicate -val find_index : - #a:Type - -> f:(a -> Tot bool) - -> ls:list a{Some? (find f ls)} - -> Tot (i:nat{ - i < length ls /\ - begin match find f ls with - | None -> False - | Some x -> x == index ls i - end}) - -#push-options "--fuel 1" -let rec find_index #a f ls = - match ls with - | [] -> assert(False); 0 - | x :: ls' -> - if f x then 0 - else 1 + find_index f ls' -#pop-options - val for_all_append (#a : Type0) (f : a -> Tot bool) (ls0 ls1 : list a) : Lemma (for_all f (ls0 @ ls1) = (for_all f ls0 && for_all f ls1)) @@ -368,7 +343,6 @@ let rec length_flatten_update #a ls i x = end #pop-options - val length_flatten_index : #a:Type -> ls:list (list a) @@ -424,12 +398,15 @@ let rec pairwise_distinct (#a : eqtype) (ls : list a) : Tot bool = | [] -> true | x :: ls' -> List.Tot.for_all (fun y -> x <> y) ls' && pairwise_distinct ls' +(* val for_allP: #a:Type -> f:(a -> Tot Type0) -> list a -> Tot Type0 let rec for_allP (f : 'a -> Tot Type0) (l : list 'a) : Tot Type0 = match l with | [] -> True | hd::tl -> f hd /\ for_allP f tl +*) +(* val for_all_i_aux: #a:Type -> f:(nat -> a -> Tot bool) -> list a -> nat -> Tot bool let rec for_all_i_aux (f : nat -> 'a -> Tot bool) (l : list 'a) (i : nat) : Tot bool = match l with @@ -439,13 +416,15 @@ let rec for_all_i_aux (f : nat -> 'a -> Tot bool) (l : list 'a) (i : nat) : Tot val for_all_i: #a:Type -> f:(nat -> a -> Tot bool) -> list a -> Tot bool let for_all_i (f : nat -> 'a -> Tot bool) (l : list 'a) : Tot bool = for_all_i_aux f l 0 +*) -val pairwise_relP : #a:Type -> pred:(a -> a -> Tot Type0) -> ls:list a -> Tot Type0 +(*val pairwise_relP : #a:Type -> pred:(a -> a -> Tot Type0) -> ls:list a -> Tot Type0 let rec pairwise_relP #a pred ls = match ls with | [] -> True | x :: ls' -> for_allP (pred x) ls' /\ pairwise_relP pred ls' +*) val pairwise_rel : #a:Type -> pred:(a -> a -> Tot bool) -> ls:list a -> Tot bool let rec pairwise_rel #a pred ls = @@ -574,9 +553,6 @@ let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k let same_hash_mod_key (#t : Type0) (len : usize{len > 0}) (h : nat) (b : binding t) : bool = hash_mod_key (fst b) len = h -// We take a [nat] instead of a [hash] on purpose -(*let same_hash (#t : Type0) (h : nat) (b : binding t) : bool = hash_key (fst b) = h *) - let binding_neq (#t : Type0) (b0 b1 : binding t) : bool = fst b0 <> fst b1 let has_same_binding (#t : Type0) (al : assoc_list t) ((k,v) : binding t) : Type0 = @@ -605,7 +581,6 @@ let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t = // This is a simpler version of the "find" function, which captures the essence // of what happens and operates on [hash_map_slots_s]. -// TODO: useful? let hash_map_slots_s_find (#t : Type0) (hm : hash_map_slots_s_nes t) (k : key) : option t = @@ -629,45 +604,6 @@ let hash_map_t_find_s let slot = index slots i in slot_t_find_s k slot -(*let hash_map_t_find_s (#t : Type0) (hm : hash_map_t t) (k : key) : option t = - match find (same_key k) (hash_map_t_v hm) with - | None -> None - | Some (_, v) -> Some v*) - -/// Auxiliary function stating that two associative lists are "equivalent" -let assoc_list_equiv (#t : Type0) (al0 al1 : assoc_list t) : Type0 = - // All the bindings in al0 can be found in al1 - for_allP (has_same_binding al1) al0 /\ - // And the reverse is true - for_allP (has_same_binding al0) al1 - -(* -// Introducing auxiliary definitions to help deal with the quantifiers - -let not_same_keys_at_j_k - (#t : Type0) (ls : list_t t) (j:nat{j < list_t_len ls}) (k:nat{k < list_t_len ls}) : - Type0 = - fst (list_t_index ls j) <> fst (list_t_index ls k) - -(*let not_same_keys_at_j_k - (#t : Type0) (ls : list_t t) (j:nat{j < list_t_len ls}) (k:nat{k < list_t_len ls}) : - Type0 = - fst (list_t_index ls j) <> fst (list_t_index ls k)*) - -type slot_t_inv_hash_key_f (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) = - (j:nat{j < list_t_len slot}) -> - Lemma (hash_mod_key (fst (list_t_index slot j)) len = i) - [SMTPat (hash_mod_key (fst (list_t_index slot j)) len)] - -type slot_t_inv_not_same_keys_f (#t : Type0) (i : usize) (slot : list_t t) = - (j:nat{j < list_t_len slot}) - -> (k:nat{k < list_t_len slot /\ j < k}) - -> Lemma (not_same_keys_at_j_k slot j k) - [SMTPat (not_same_keys_at_j_k slot j k)] -*) - -(**) - /// Invariants for the slots let slot_s_inv @@ -683,52 +619,6 @@ let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) // All the keys are pairwise distinct pairwise_rel binding_neq (list_t_v slot) -(* -/// Invariants for the slots -/// Rk.: making sure the quantifiers instantiations work was painful. As always. -let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : Type0 = - // All the hashes of the keys are equal to the current hash - (forall (j:nat{j < list_t_len slot}). - {:pattern (list_t_index slot j)} - hash_mod_key (fst (list_t_index slot j)) len = i) /\ - // All the keys are pairwise distinct - (forall (j:nat{j < list_t_len slot}) (k:nat{k < list_t_len slot /\ j < k}). - {:pattern not_same_keys_at_j_k slot j k} - k <> j ==> not_same_keys_at_j_k slot j k) - -/// Helpers to deal with the quantifier proofs -let slot_t_inv_to_funs - (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t{slot_t_inv len i slot}) : - slot_t_inv_hash_key_f len i slot & slot_t_inv_not_same_keys_f i slot = - let f : slot_t_inv_hash_key_f len i slot = - fun j -> () - in - let g : slot_t_inv_not_same_keys_f i slot = - fun j k -> () - in - (f, g) - -let slot_t_inv_from_funs_lem - (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) - (f : slot_t_inv_hash_key_f len i slot) - (g : slot_t_inv_not_same_keys_f i slot) : - Lemma (slot_t_inv len i slot) = - // Dealing with quantifiers is annoying, like always - let f' (j:nat{j < list_t_len slot}) : - Lemma (hash_mod_key (fst (list_t_index slot j)) len = i) - [SMTPat (hash_mod_key (fst (list_t_index slot j)) len)] - = - f j - in - let g' (j:nat{j < list_t_len slot}) (k:nat{k < list_t_len slot /\ j < k}) : - Lemma (not_same_keys_at_j_k slot j k) - [SMTPat (not_same_keys_at_j_k slot j k)] - = - g j k - in - () -*) - let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 = forall(i:nat{i < length slots}). {:pattern index slots i} @@ -739,30 +629,6 @@ let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Ty {:pattern index slots i} slot_t_inv (length slots) i (index slots i) -(* -type slots_t_inv_f (#t : Type0) (slots : slots_t t{length slots <= usize_max}) = - (i:nat{i < length slots}) -> - Lemma (slot_t_inv (length slots) i (index slots i)) - -let slots_t_inv_to_fun - (#t : Type0) (slots : slots_t t{length slots <= usize_max /\ slots_t_inv slots}) : - slots_t_inv_f slots = - fun i -> () - -let slots_t_from_fun - (#t : Type0) (slots : slots_t t{length slots <= usize_max}) - (f : slots_t_inv_f slots) : - Lemma (slots_t_inv slots) = - let f' (i:nat{i < length slots}) : - Lemma (slot_t_inv (length slots) i (index slots i)) - [SMTPat (slot_t_inv (length slots) i (index slots i))] - = - f i - in - () -*) - -// TODO: hash_map_slots -> hash_map_slots_s let hash_map_slots_s_inv (#t : Type0) (hm : hash_map_slots_s t) : Type0 = length hm <= usize_max /\ length hm > 0 /\ @@ -800,28 +666,12 @@ let hash_map_t_inv (#t : Type0) (hm : hash_map_t t) : Type0 = hm.hash_map_num_entries <= hm.hash_map_max_load || length hm.hash_map_slots * 2 * dividend > usize_max) -/// The following predicate links the hashmap to an associative list. -/// Note that it does not compute the representant: different (permuted) -/// lists can be used to represent the same hashmap! -let hash_map_t_is_al (#t : Type0) (hm : hash_map_t t) (al : assoc_list t) : Type0 = - let hm_al = hash_map_t_v hm in - assoc_list_equiv hm_al al - /// We often need to frame some values let hash_map_same_params (#t : Type0) (hm0 hm1 : hash_map_t t) : Type0 = length hm0.hash_map_slots = length hm1.hash_map_slots /\ hm0.hash_map_max_load = hm1.hash_map_max_load /\ hm0.hash_map_max_load_factor = hm1.hash_map_max_load_factor -(* -/// The invariant we reveal to the user -let hash_map_t_inv_repr (#t : Type0) (hm : hash_map_t t) (al : assoc_list t) : Type0 = - // The hash map invariant is satisfied - hash_map_t_inv hm /\ - // And it can be seen as the given associative list - hash_map_t_is_al hm al -*) - (*** allocate_slots *) /// Auxiliary lemma @@ -1042,8 +892,7 @@ let hash_map_clear_fwd_back_lem_fun t self = slots_t_al_v_all_nil_is_empty_lem slots1; let hm1 = Mkhash_map_t 0 p i slots1 in assert(hash_map_t_base_inv hm1); - assert(hash_map_t_inv hm1); - assert(hash_map_t_is_al hm1 []) + assert(hash_map_t_inv hm1) end #pop-options @@ -1599,7 +1448,7 @@ let hash_map_insert_no_resize_fwd_back_lem_s t self key value = (**** insert_{no_fail,no_resize}: invariants *) -let hash_map_t_updated_binding +let hash_map_slots_s_updated_binding (#t : Type0) (hm : hash_map_slots_s_nes t) (key : usize) (opt_value : option t) (hm' : hash_map_slots_s_nes t) : Type0 = // [key] maps to [value] @@ -1612,7 +1461,7 @@ let insert_post (#t : Type0) (hm : hash_map_slots_s_nes t) // The invariant is preserved hash_map_slots_s_inv hm' /\ // [key] maps to [value] and the other bindings are preserved - hash_map_t_updated_binding hm key (Some value) hm' /\ + hash_map_slots_s_updated_binding hm key (Some value) hm' /\ // The length is incremented, iff we inserted a new key (match hash_map_slots_s_find hm key with | None -> hash_map_slots_s_len hm' = hash_map_slots_s_len hm + 1 @@ -2708,7 +2557,7 @@ let times_divid_lem (n m p : pos) : assert(((n * (m / p)) * p) / p = n * (m / p)) #pop-options -#push-options "--z3rlimit 100" +#push-options "--z3rlimit 100 --z3cliopt smt.arith.nl=false" let new_max_load_lem (len : usize) (capacity : usize{capacity > 0}) (divid : usize{divid > 0}) (divis : usize{divis > 0}) : @@ -2718,7 +2567,7 @@ let new_max_load_lem let ncapacity = 2 * capacity in let nmax_load = (ncapacity * divid) / divis in capacity > 0 /\ 0 < divid /\ divid < divis /\ - capacity * divid >= divis /\ // TODO: add to invariant + capacity * divid >= divis /\ len = max_load + 1)) (ensures ( let max_load = (capacity * divid) / divis in @@ -2731,7 +2580,9 @@ let new_max_load_lem assert(nmax_load = (2 * capacity * divid) / divis); times_divid_lem 2 (capacity * divid) divis; assert(nmax_load >= 2 * ((capacity * divid) / divis)); - assert(nmax_load >= 2 * max_load) + assert(nmax_load >= 2 * max_load); + assert(nmax_load >= max_load + max_load); + assert(nmax_load >= max_load + 1) #pop-options val hash_map_try_resize_s_simpl_lem (#t : Type0) (hm : hash_map_t t) : @@ -2891,7 +2742,7 @@ val hash_map_insert_fwd_back_lem // The invariant is preserved hash_map_t_inv hm' /\ // [key] maps to [value] and the other bindings are preserved - hash_map_t_updated_binding (hash_map_t_slots_v self) key (Some value) (hash_map_t_slots_v hm') /\ + hash_map_slots_s_updated_binding (hash_map_t_slots_v self) key (Some value) (hash_map_t_slots_v hm') /\ // The length is incremented, iff we inserted a new key (match hash_map_t_find_s self key with | None -> hash_map_t_len_s hm' = hash_map_t_len_s self + 1 @@ -2902,10 +2753,12 @@ let hash_map_insert_fwd_back_bindings_lem (hm' hm'' : hash_map_t_nes t) : Lemma (requires ( - hash_map_t_updated_binding (hash_map_t_slots_v self) key (Some value) (hash_map_t_slots_v hm') /\ + hash_map_slots_s_updated_binding (hash_map_t_slots_v self) key + (Some value) (hash_map_t_slots_v hm') /\ hash_map_t_same_bindings hm' hm'')) (ensures ( - hash_map_t_updated_binding (hash_map_t_slots_v self) key (Some value) (hash_map_t_slots_v hm''))) + hash_map_slots_s_updated_binding (hash_map_t_slots_v self) key + (Some value) (hash_map_t_slots_v hm''))) = () #restart-solver @@ -3345,25 +3198,6 @@ let hash_map_remove_from_list_s slot_s t = filter_one (not_same_key key) ls -(* -// TODO: remove? -val filter_one_find (#a : Type) (f g : a -> bool) (ls : list a) : - Lemma - (requires (forall x. f x <> g x)) - (ensures ( - let ls' = filter_one f ls in - match find g ls with - | None -> length ls' = length ls - | Some _ -> length ls' + 1 = length ls)) - -#push-options "--fuel 1" -let rec filter_one_find #a f g ls = - match ls with - | [] -> () - | x :: ls' -> filter_one_find f g ls' -#pop-options -*) - /// Refinement lemma val hash_map_remove_from_list_back_lem_refin (#t : Type0) (key : usize) (ls : list_t t) : @@ -3531,8 +3365,6 @@ let rec hash_map_remove_from_list_s_lem #t key slot len i = end #pop-options -// TODO: rename hash_map_t_updated_binding to hash_map_slots_updated_binding - val hash_map_remove_s_lem (#t : Type0) (self : hash_map_slots_s_nes t) (key : usize) : Lemma @@ -3542,7 +3374,7 @@ val hash_map_remove_s_lem // The invariant is preserved hash_map_slots_s_inv hm' /\ // We updated the binding - hash_map_t_updated_binding self key None hm')) + hash_map_slots_s_updated_binding self key None hm')) let hash_map_remove_s_lem #t self key = let len = length self in |