diff options
| author | Son HO | 2023-07-31 16:15:58 +0200 |
|---|---|---|
| committer | GitHub | 2023-07-31 16:15:58 +0200 |
| commit | 887d0ef1efc8912c6273b5ebcf979384e9d7fa97 (patch) | |
| tree | 92d6021eb549f7cc25501856edd58859786b7e90 /tests/lean/misc | |
| parent | 53adf30fe440eb8b6f58ba89f4a4c0acc7877498 (diff) | |
| parent | 9b3a58e423333fc9a4a5a264c3beb0a3d951e86b (diff) | |
Merge pull request #31 from AeneasVerif/son_lean_backend
Improve the Lean backend
Diffstat (limited to '')
38 files changed, 5 insertions, 5803 deletions
diff --git a/tests/lean/misc-external/External.lean b/tests/lean/External.lean index b95db309..b95db309 100644 --- a/tests/lean/misc-external/External.lean +++ b/tests/lean/External.lean diff --git a/tests/lean/misc-external/External/Types.lean b/tests/lean/External/Types.lean index ed1842be..ba984e2a 100644 --- a/tests/lean/misc-external/External/Types.lean +++ b/tests/lean/External/Types.lean @@ -1,10 +1,13 @@ -- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS -- [external]: type definitions -import Base.Primitives +import Base +open Primitives +namespace external /- [core::num::nonzero::NonZeroU32] -/ -axiom core_num_nonzero_non_zero_u32_t : Type +axiom core.num.nonzero.NonZeroU32 : Type /- The state type used in the state-error monad -/ axiom State : Type +end external diff --git a/tests/lean/misc-loops/Loops.lean b/tests/lean/Loops.lean index 60c73776..60c73776 100644 --- a/tests/lean/misc-loops/Loops.lean +++ b/tests/lean/Loops.lean diff --git a/tests/lean/misc-constants/Base/Primitives.lean b/tests/lean/misc-constants/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-constants/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-constants/Constants.lean b/tests/lean/misc-constants/Constants.lean deleted file mode 100644 index 8306ed85..00000000 --- a/tests/lean/misc-constants/Constants.lean +++ /dev/null @@ -1,131 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [constants] -import Base.Primitives - -/- [constants::X0] -/ -def x0_body : Result U32 := Result.ret (U32.ofInt 0 (by intlit)) -def x0_c : U32 := eval_global x0_body (by simp) - -/- [core::num::u32::{9}::MAX] -/ -def core_num_u32_max_body : Result U32 := - Result.ret (U32.ofInt 4294967295 (by intlit)) -def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp) - -/- [constants::X1] -/ -def x1_body : Result U32 := Result.ret core_num_u32_max_c -def x1_c : U32 := eval_global x1_body (by simp) - -/- [constants::X2] -/ -def x2_body : Result U32 := Result.ret (U32.ofInt 3 (by intlit)) -def x2_c : U32 := eval_global x2_body (by simp) - -/- [constants::incr] -/ -def incr_fwd (n : U32) : Result U32 := - n + (U32.ofInt 1 (by intlit)) - -/- [constants::X3] -/ -def x3_body : Result U32 := incr_fwd (U32.ofInt 32 (by intlit)) -def x3_c : U32 := eval_global x3_body (by simp) - -/- [constants::mk_pair0] -/ -def mk_pair0_fwd (x : U32) (y : U32) : Result (U32 × U32) := - Result.ret (x, y) - -/- [constants::Pair] -/ -structure pair_t (T1 T2 : Type) where - pair_x : T1 - pair_y : T2 - -/- [constants::mk_pair1] -/ -def mk_pair1_fwd (x : U32) (y : U32) : Result (pair_t U32 U32) := - Result.ret { pair_x := x, pair_y := y } - -/- [constants::P0] -/ -def p0_body : Result (U32 × U32) := - mk_pair0_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) -def p0_c : (U32 × U32) := eval_global p0_body (by simp) - -/- [constants::P1] -/ -def p1_body : Result (pair_t U32 U32) := - mk_pair1_fwd (U32.ofInt 0 (by intlit)) (U32.ofInt 1 (by intlit)) -def p1_c : pair_t U32 U32 := eval_global p1_body (by simp) - -/- [constants::P2] -/ -def p2_body : Result (U32 × U32) := - Result.ret ((U32.ofInt 0 (by intlit)), (U32.ofInt 1 (by intlit))) -def p2_c : (U32 × U32) := eval_global p2_body (by simp) - -/- [constants::P3] -/ -def p3_body : Result (pair_t U32 U32) := - Result.ret - { pair_x := (U32.ofInt 0 (by intlit)), pair_y := (U32.ofInt 1 (by intlit)) } -def p3_c : pair_t U32 U32 := eval_global p3_body (by simp) - -/- [constants::Wrap] -/ -structure wrap_t (T : Type) where - wrap_val : T - -/- [constants::Wrap::{0}::new] -/ -def wrap_new_fwd (T : Type) (val : T) : Result (wrap_t T) := - Result.ret { wrap_val := val } - -/- [constants::Y] -/ -def y_body : Result (wrap_t I32) := wrap_new_fwd I32 (I32.ofInt 2 (by intlit)) -def y_c : wrap_t I32 := eval_global y_body (by simp) - -/- [constants::unwrap_y] -/ -def unwrap_y_fwd : Result I32 := - Result.ret y_c.wrap_val - -/- [constants::YVAL] -/ -def yval_body : Result I32 := unwrap_y_fwd -def yval_c : I32 := eval_global yval_body (by simp) - -/- [constants::get_z1::Z1] -/ -def get_z1_z1_body : Result I32 := Result.ret (I32.ofInt 3 (by intlit)) -def get_z1_z1_c : I32 := eval_global get_z1_z1_body (by simp) - -/- [constants::get_z1] -/ -def get_z1_fwd : Result I32 := - Result.ret get_z1_z1_c - -/- [constants::add] -/ -def add_fwd (a : I32) (b : I32) : Result I32 := - a + b - -/- [constants::Q1] -/ -def q1_body : Result I32 := Result.ret (I32.ofInt 5 (by intlit)) -def q1_c : I32 := eval_global q1_body (by simp) - -/- [constants::Q2] -/ -def q2_body : Result I32 := Result.ret q1_c -def q2_c : I32 := eval_global q2_body (by simp) - -/- [constants::Q3] -/ -def q3_body : Result I32 := add_fwd q2_c (I32.ofInt 3 (by intlit)) -def q3_c : I32 := eval_global q3_body (by simp) - -/- [constants::get_z2] -/ -def get_z2_fwd : Result I32 := - do - let i ← get_z1_fwd - let i0 ← add_fwd i q3_c - add_fwd q1_c i0 - -/- [constants::S1] -/ -def s1_body : Result U32 := Result.ret (U32.ofInt 6 (by intlit)) -def s1_c : U32 := eval_global s1_body (by simp) - -/- [constants::S2] -/ -def s2_body : Result U32 := incr_fwd s1_c -def s2_c : U32 := eval_global s2_body (by simp) - -/- [constants::S3] -/ -def s3_body : Result (pair_t U32 U32) := Result.ret p3_c -def s3_c : pair_t U32 U32 := eval_global s3_body (by simp) - -/- [constants::S4] -/ -def s4_body : Result (pair_t U32 U32) := - mk_pair1_fwd (U32.ofInt 7 (by intlit)) (U32.ofInt 8 (by intlit)) -def s4_c : pair_t U32 U32 := eval_global s4_body (by simp) - diff --git a/tests/lean/misc-constants/lake-manifest.json b/tests/lean/misc-constants/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-constants/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-constants/lakefile.lean b/tests/lean/misc-constants/lakefile.lean deleted file mode 100644 index 01aacb90..00000000 --- a/tests/lean/misc-constants/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «constants» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Constants» {} diff --git a/tests/lean/misc-constants/lean-toolchain b/tests/lean/misc-constants/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-constants/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-external/Base/Primitives.lean b/tests/lean/misc-external/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-external/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-external/External/ExternalFuns.lean b/tests/lean/misc-external/External/ExternalFuns.lean deleted file mode 100644 index 6bd4f4a9..00000000 --- a/tests/lean/misc-external/External/ExternalFuns.lean +++ /dev/null @@ -1,5 +0,0 @@ -import Base.Primitives -import External.Types -import External.Opaque - -def opaque_defs : OpaqueDefs := sorry diff --git a/tests/lean/misc-external/External/Funs.lean b/tests/lean/misc-external/External/Funs.lean deleted file mode 100644 index eeb83989..00000000 --- a/tests/lean/misc-external/External/Funs.lean +++ /dev/null @@ -1,84 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [external]: function definitions -import Base.Primitives -import External.Types -import External.ExternalFuns - -/- [external::swap] -/ -def swap_fwd - (T : Type) (x : T) (y : T) (st : State) : Result (State × Unit) := - do - let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st1, _) ← opaque_defs.core_mem_swap_back0 T x y st st0 - let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 - Result.ret (st2, ()) - -/- [external::swap] -/ -def swap_back - (T : Type) (x : T) (y : T) (st : State) (st0 : State) : - Result (State × (T × T)) - := - do - let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st2, x0) ← opaque_defs.core_mem_swap_back0 T x y st st1 - let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 - Result.ret (st0, (x0, y0)) - -/- [external::test_new_non_zero_u32] -/ -def test_new_non_zero_u32_fwd - (x : U32) (st : State) : Result (State × core_num_nonzero_non_zero_u32_t) := - do - let (st0, opt) ← opaque_defs.core_num_nonzero_non_zero_u32_new_fwd x st - opaque_defs.core_option_option_unwrap_fwd core_num_nonzero_non_zero_u32_t - opt st0 - -/- [external::test_vec] -/ -def test_vec_fwd : Result Unit := - do - let v := vec_new U32 - let _ ← vec_push_back U32 v (U32.ofInt 0 (by intlit)) - Result.ret () - -/- [external::custom_swap] -/ -def custom_swap_fwd - (T : Type) (x : T) (y : T) (st : State) : Result (State × T) := - do - let (st0, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st1, x0) ← opaque_defs.core_mem_swap_back0 T x y st st0 - let (st2, _) ← opaque_defs.core_mem_swap_back1 T x y st st1 - Result.ret (st2, x0) - -/- [external::custom_swap] -/ -def custom_swap_back - (T : Type) (x : T) (y : T) (st : State) (ret0 : T) (st0 : State) : - Result (State × (T × T)) - := - do - let (st1, _) ← opaque_defs.core_mem_swap_fwd T x y st - let (st2, _) ← opaque_defs.core_mem_swap_back0 T x y st st1 - let (_, y0) ← opaque_defs.core_mem_swap_back1 T x y st st2 - Result.ret (st0, (ret0, y0)) - -/- [external::test_custom_swap] -/ -def test_custom_swap_fwd - (x : U32) (y : U32) (st : State) : Result (State × Unit) := - do - let (st0, _) ← custom_swap_fwd U32 x y st - Result.ret (st0, ()) - -/- [external::test_custom_swap] -/ -def test_custom_swap_back - (x : U32) (y : U32) (st : State) (st0 : State) : - Result (State × (U32 × U32)) - := - custom_swap_back U32 x y st (U32.ofInt 1 (by intlit)) st0 - -/- [external::test_swap_non_zero] -/ -def test_swap_non_zero_fwd (x : U32) (st : State) : Result (State × U32) := - do - let (st0, _) ← swap_fwd U32 x (U32.ofInt 0 (by intlit)) st - let (st1, (x0, _)) ← swap_back U32 x (U32.ofInt 0 (by intlit)) st st0 - if h: x0 = (U32.ofInt 0 (by intlit)) - then Result.fail Error.panic - else Result.ret (st1, x0) - diff --git a/tests/lean/misc-external/External/Opaque.lean b/tests/lean/misc-external/External/Opaque.lean deleted file mode 100644 index d641912b..00000000 --- a/tests/lean/misc-external/External/Opaque.lean +++ /dev/null @@ -1,27 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [external]: opaque function definitions -import Base.Primitives -import External.Types - -structure OpaqueDefs where - - /- [core::mem::swap] -/ - core_mem_swap_fwd (T : Type) : T -> T -> State -> Result (State × Unit) - - /- [core::mem::swap] -/ - core_mem_swap_back0 - (T : Type) : T -> T -> State -> State -> Result (State × T) - - /- [core::mem::swap] -/ - core_mem_swap_back1 - (T : Type) : T -> T -> State -> State -> Result (State × T) - - /- [core::num::nonzero::NonZeroU32::{14}::new] -/ - core_num_nonzero_non_zero_u32_new_fwd - : - U32 -> State -> Result (State × (Option core_num_nonzero_non_zero_u32_t)) - - /- [core::option::Option::{0}::unwrap] -/ - core_option_option_unwrap_fwd - (T : Type) : Option T -> State -> Result (State × T) - diff --git a/tests/lean/misc-external/lake-manifest.json b/tests/lean/misc-external/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-external/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-external/lakefile.lean b/tests/lean/misc-external/lakefile.lean deleted file mode 100644 index 6cc4aae4..00000000 --- a/tests/lean/misc-external/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «external» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «External» {} diff --git a/tests/lean/misc-external/lean-toolchain b/tests/lean/misc-external/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-external/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-loops/Base/Primitives.lean b/tests/lean/misc-loops/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-loops/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean b/tests/lean/misc-loops/Loops/Clauses/Clauses.lean deleted file mode 100644 index 89a7ce34..00000000 --- a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean +++ /dev/null @@ -1,205 +0,0 @@ --- [loops]: decreases clauses -import Base.Primitives -import Loops.Types - -/- [loops::sum]: termination measure -/ -@[simp] -def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s) - -syntax "sum_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::sum_with_mut_borrows]: termination measure -/ -@[simp] -def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) := - (max, mi, ms) - -syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry) - -/- [loops::sum_with_shared_borrows]: termination measure -/ -@[simp] -def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) := - (max, i, s) - -syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::clear]: termination measure -/ -@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i) - -syntax "clear_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry) - -/- [loops::list_mem]: termination measure -/ -@[simp] -def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls) - -syntax "list_mem_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop]: termination measure -/ -@[simp] -def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -syntax "list_nth_mut_loop_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop]: termination measure -/ -@[simp] -def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -syntax "list_nth_shared_loop_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::get_elem_mut]: termination measure -/ -@[simp] -def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -syntax "get_elem_mut_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::get_elem_shared]: termination measure -/ -@[simp] -def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -syntax "get_elem_shared_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_with_id]: termination measure -/ -@[simp] -def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_with_id]: termination measure -/ -@[simp] -def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic - -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - diff --git a/tests/lean/misc-loops/Loops/Clauses/Template.lean b/tests/lean/misc-loops/Loops/Clauses/Template.lean deleted file mode 100644 index 2e28a6c0..00000000 --- a/tests/lean/misc-loops/Loops/Clauses/Template.lean +++ /dev/null @@ -1,205 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: templates for the decreases clauses -import Base.Primitives -import Loops.Types - -/- [loops::sum]: termination measure -/ -@[simp] def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s) - -/- [loops::sum]: decreases_by tactic -/ -syntax "sum_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::sum_with_mut_borrows]: termination measure -/ -@[simp] -def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) := - (max, mi, ms) - -/- [loops::sum_with_mut_borrows]: decreases_by tactic -/ -syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry) - -/- [loops::sum_with_shared_borrows]: termination measure -/ -@[simp] -def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) := - (max, i, s) - -/- [loops::sum_with_shared_borrows]: decreases_by tactic -/ -syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic -macro_rules -| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry) - -/- [loops::clear]: termination measure -/ -@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i) - -/- [loops::clear]: decreases_by tactic -/ -syntax "clear_loop_decreases" term+ : tactic -macro_rules -| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry) - -/- [loops::list_mem]: termination measure -/ -@[simp] def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls) - -/- [loops::list_mem]: decreases_by tactic -/ -syntax "list_mem_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop]: termination measure -/ -@[simp] -def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) := - (ls, i) - -/- [loops::list_nth_mut_loop]: decreases_by tactic -/ -syntax "list_nth_mut_loop_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop]: termination measure -/ -@[simp] -def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) - := - (ls, i) - -/- [loops::list_nth_shared_loop]: decreases_by tactic -/ -syntax "list_nth_shared_loop_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry) - -/- [loops::get_elem_mut]: termination measure -/ -@[simp] -def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -/- [loops::get_elem_mut]: decreases_by tactic -/ -syntax "get_elem_mut_loop_decreases" term+ : tactic -macro_rules -| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::get_elem_shared]: termination measure -/ -@[simp] -def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls) - -/- [loops::get_elem_shared]: decreases_by tactic -/ -syntax "get_elem_shared_loop_decreases" term+ : tactic -macro_rules -| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_with_id]: termination measure -/ -@[simp] -def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -/- [loops::list_nth_mut_loop_with_id]: decreases_by tactic -/ -syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_with_id]: termination measure -/ -@[simp] -def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32) - (ls : list_t T) := - (i, ls) - -/- [loops::list_nth_shared_loop_with_id]: decreases_by tactic -/ -syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_loop_pair]: decreases_by tactic -/ -syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_loop_pair]: decreases_by tactic -/ -syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_shared_loop_pair]: decreases_by tactic -/ -syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_mut_shared_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T) - (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_mut_loop_pair]: decreases_by tactic -/ -syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/ -@[simp] -def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type) - (ls0 : list_t T) (ls1 : list_t T) (i : U32) := - (ls0, ls1, i) - -/- [loops::list_nth_shared_mut_loop_pair_merge]: decreases_by tactic -/ -syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic -macro_rules -| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) => - `(tactic| sorry) - diff --git a/tests/lean/misc-loops/Loops/Funs.lean b/tests/lean/misc-loops/Loops/Funs.lean deleted file mode 100644 index fd8d62d7..00000000 --- a/tests/lean/misc-loops/Loops/Funs.lean +++ /dev/null @@ -1,705 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: function definitions -import Base.Primitives -import Loops.Types -import Loops.Clauses.Clauses - -/- [loops::sum] -/ -def sum_loop_fwd (max : U32) (i : U32) (s : U32) : (Result U32) := - if h: i < max - then - do - let s0 ← s + i - let i0 ← i + (U32.ofInt 1 (by intlit)) - sum_loop_fwd max i0 s0 - else s * (U32.ofInt 2 (by intlit)) -termination_by sum_loop_fwd max i s => sum_loop_terminates max i s -decreasing_by sum_loop_decreases max i s - -/- [loops::sum] -/ -def sum_fwd (max : U32) : Result U32 := - sum_loop_fwd max (U32.ofInt 0 (by intlit)) (U32.ofInt 0 (by intlit)) - -/- [loops::sum_with_mut_borrows] -/ -def sum_with_mut_borrows_loop_fwd - (max : U32) (mi : U32) (ms : U32) : (Result U32) := - if h: mi < max - then - do - let ms0 ← ms + mi - let mi0 ← mi + (U32.ofInt 1 (by intlit)) - sum_with_mut_borrows_loop_fwd max mi0 ms0 - else ms * (U32.ofInt 2 (by intlit)) -termination_by sum_with_mut_borrows_loop_fwd max mi ms => - sum_with_mut_borrows_loop_terminates max mi ms -decreasing_by sum_with_mut_borrows_loop_decreases max mi ms - -/- [loops::sum_with_mut_borrows] -/ -def sum_with_mut_borrows_fwd (max : U32) : Result U32 := - sum_with_mut_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) - (U32.ofInt 0 (by intlit)) - -/- [loops::sum_with_shared_borrows] -/ -def sum_with_shared_borrows_loop_fwd - (max : U32) (i : U32) (s : U32) : (Result U32) := - if h: i < max - then - do - let i0 ← i + (U32.ofInt 1 (by intlit)) - let s0 ← s + i0 - sum_with_shared_borrows_loop_fwd max i0 s0 - else s * (U32.ofInt 2 (by intlit)) -termination_by sum_with_shared_borrows_loop_fwd max i s => - sum_with_shared_borrows_loop_terminates max i s -decreasing_by sum_with_shared_borrows_loop_decreases max i s - -/- [loops::sum_with_shared_borrows] -/ -def sum_with_shared_borrows_fwd (max : U32) : Result U32 := - sum_with_shared_borrows_loop_fwd max (U32.ofInt 0 (by intlit)) - (U32.ofInt 0 (by intlit)) - -/- [loops::clear] -/ -def clear_loop_fwd_back (v : Vec U32) (i : Usize) : (Result (Vec U32)) := - let i0 := vec_len U32 v - if h: i < i0 - then - do - let i1 ← i + (Usize.ofInt 1 (by intlit)) - let v0 ← vec_index_mut_back U32 v i (U32.ofInt 0 (by intlit)) - clear_loop_fwd_back v0 i1 - else Result.ret v -termination_by clear_loop_fwd_back v i => clear_loop_terminates v i -decreasing_by clear_loop_decreases v i - -/- [loops::clear] -/ -def clear_fwd_back (v : Vec U32) : Result (Vec U32) := - clear_loop_fwd_back v (Usize.ofInt 0 (by intlit)) - -/- [loops::list_mem] -/ -def list_mem_loop_fwd (x : U32) (ls : list_t U32) : (Result Bool) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret true - else list_mem_loop_fwd x tl - | list_t.Nil => Result.ret false -termination_by list_mem_loop_fwd x ls => list_mem_loop_terminates x ls -decreasing_by list_mem_loop_decreases x ls - -/- [loops::list_mem] -/ -def list_mem_fwd (x : U32) (ls : list_t U32) : Result Bool := - list_mem_loop_fwd x ls - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_loop_fwd - (T : Type) (ls : list_t T) (i : U32) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_loop_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_loop_fwd ls i => - list_nth_mut_loop_loop_terminates T ls i -decreasing_by list_nth_mut_loop_loop_decreases ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := - list_nth_mut_loop_loop_fwd T ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_loop_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_loop_loop_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_loop_back ls i ret0 => - list_nth_mut_loop_loop_terminates T ls i -decreasing_by list_nth_mut_loop_loop_decreases ls i - -/- [loops::list_nth_mut_loop] -/ -def list_nth_mut_loop_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - list_nth_mut_loop_loop_back T ls i ret0 - -/- [loops::list_nth_shared_loop] -/ -def list_nth_shared_loop_loop_fwd - (T : Type) (ls : list_t T) (i : U32) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_loop_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_loop_fwd ls i => - list_nth_shared_loop_loop_terminates T ls i -decreasing_by list_nth_shared_loop_loop_decreases ls i - -/- [loops::list_nth_shared_loop] -/ -def list_nth_shared_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T := - list_nth_shared_loop_loop_fwd T ls i - -/- [loops::get_elem_mut] -/ -def get_elem_mut_loop_fwd (x : Usize) (ls : list_t Usize) : (Result Usize) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret y - else get_elem_mut_loop_fwd x tl - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_mut_loop_fwd x ls => get_elem_mut_loop_terminates x ls -decreasing_by get_elem_mut_loop_decreases x ls - -/- [loops::get_elem_mut] -/ -def get_elem_mut_fwd (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := - do - let l ← - vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - get_elem_mut_loop_fwd x l - -/- [loops::get_elem_mut] -/ -def get_elem_mut_loop_back - (x : Usize) (ls : list_t Usize) (ret0 : Usize) : (Result (list_t Usize)) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret (list_t.Cons ret0 tl) - else - do - let tl0 ← get_elem_mut_loop_back x tl ret0 - Result.ret (list_t.Cons y tl0) - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_mut_loop_back x ls ret0 => - get_elem_mut_loop_terminates x ls -decreasing_by get_elem_mut_loop_decreases x ls - -/- [loops::get_elem_mut] -/ -def get_elem_mut_back - (slots : Vec (list_t Usize)) (x : Usize) (ret0 : Usize) : - Result (Vec (list_t Usize)) - := - do - let l ← - vec_index_mut_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - let l0 ← get_elem_mut_loop_back x l ret0 - vec_index_mut_back (list_t Usize) slots (Usize.ofInt 0 (by intlit)) l0 - -/- [loops::get_elem_shared] -/ -def get_elem_shared_loop_fwd - (x : Usize) (ls : list_t Usize) : (Result Usize) := - match h: ls with - | list_t.Cons y tl => - if h: y = x - then Result.ret y - else get_elem_shared_loop_fwd x tl - | list_t.Nil => Result.fail Error.panic -termination_by get_elem_shared_loop_fwd x ls => - get_elem_shared_loop_terminates x ls -decreasing_by get_elem_shared_loop_decreases x ls - -/- [loops::get_elem_shared] -/ -def get_elem_shared_fwd - (slots : Vec (list_t Usize)) (x : Usize) : Result Usize := - do - let l ← vec_index_fwd (list_t Usize) slots (Usize.ofInt 0 (by intlit)) - get_elem_shared_loop_fwd x l - -/- [loops::id_mut] -/ -def id_mut_fwd (T : Type) (ls : list_t T) : Result (list_t T) := - Result.ret ls - -/- [loops::id_mut] -/ -def id_mut_back - (T : Type) (ls : list_t T) (ret0 : list_t T) : Result (list_t T) := - Result.ret ret0 - -/- [loops::id_shared] -/ -def id_shared_fwd (T : Type) (ls : list_t T) : Result (list_t T) := - Result.ret ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_loop_fwd - (T : Type) (i : U32) (ls : list_t T) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_with_id_loop_fwd T i0 tl - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_with_id_loop_fwd i ls => - list_nth_mut_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_fwd - (T : Type) (ls : list_t T) (i : U32) : Result T := - do - let ls0 ← id_mut_fwd T ls - list_nth_mut_loop_with_id_loop_fwd T i ls0 - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_loop_back - (T : Type) (i : U32) (ls : list_t T) (ret0 : T) : (Result (list_t T)) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_loop_with_id_loop_back T i0 tl ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_with_id_loop_back i ls ret0 => - list_nth_mut_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_mut_loop_with_id] -/ -def list_nth_mut_loop_with_id_back - (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - do - let ls0 ← id_mut_fwd T ls - let l ← list_nth_mut_loop_with_id_loop_back T i ls0 ret0 - id_mut_back T ls l - -/- [loops::list_nth_shared_loop_with_id] -/ -def list_nth_shared_loop_with_id_loop_fwd - (T : Type) (i : U32) (ls : list_t T) : (Result T) := - match h: ls with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_with_id_loop_fwd T i0 tl - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_with_id_loop_fwd i ls => - list_nth_shared_loop_with_id_loop_terminates T i ls -decreasing_by list_nth_shared_loop_with_id_loop_decreases i ls - -/- [loops::list_nth_shared_loop_with_id] -/ -def list_nth_shared_loop_with_id_fwd - (T : Type) (ls : list_t T) (i : U32) : Result T := - do - let ls0 ← id_shared_fwd T ls - list_nth_shared_loop_with_id_loop_fwd T i ls0 - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_fwd ls0 ls1 i => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_back'a - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← list_nth_mut_loop_pair_loop_back'a T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_back'a ls0 ls1 i ret0 => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_back'a - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_loop_pair_loop_back'a T ls0 ls1 i ret0 - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_loop_back'b - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← list_nth_mut_loop_pair_loop_back'b T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_loop_back'b ls0 ls1 i ret0 => - list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair] -/ -def list_nth_mut_loop_pair_back'b - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_loop_pair_loop_back'b T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_loop_pair] -/ -def list_nth_shared_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_pair_loop_fwd ls0 ls1 i => - list_nth_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_loop_pair] -/ -def list_nth_shared_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : - (Result ((list_t T) × (list_t T))) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then - let (t, t0) := ret0 - Result.ret (list_t.Cons t tl0, list_t.Cons t0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let (tl00, tl10) ← - list_nth_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00, list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_loop_pair_merge] -/ -def list_nth_mut_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) : - Result ((list_t T) × (list_t T)) - := - list_nth_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_loop_pair_merge] -/ -def list_nth_shared_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_loop_pair_merge] -/ -def list_nth_shared_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_shared_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_loop_fwd ls0 ls1 i => - list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_shared_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← - list_nth_mut_shared_loop_pair_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_loop_back ls0 ls1 i ret0 => - list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair] -/ -def list_nth_mut_shared_loop_pair_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_shared_loop_pair_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_mut_shared_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl0) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl00 ← - list_nth_mut_shared_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x0 tl00) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_mut_shared_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_mut_shared_loop_pair_merge] -/ -def list_nth_mut_shared_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_mut_shared_loop_pair_merge_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_mut_loop_pair_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_loop_fwd ls0 ls1 i => - list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_mut_loop_pair_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← - list_nth_shared_mut_loop_pair_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_loop_back ls0 ls1 i ret0 => - list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair] -/ -def list_nth_shared_mut_loop_pair_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_shared_mut_loop_pair_loop_back T ls0 ls1 i ret0 - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_loop_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (x0, x1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0 - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_merge_loop_fwd ls0 ls1 i => - list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_fwd - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) := - list_nth_shared_mut_loop_pair_merge_loop_fwd T ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_loop_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - (Result (list_t T)) - := - match h: ls0 with - | list_t.Cons x0 tl0 => - match h: ls1 with - | list_t.Cons x1 tl1 => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl1) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl10 ← - list_nth_shared_mut_loop_pair_merge_loop_back T tl0 tl1 i0 ret0 - Result.ret (list_t.Cons x1 tl10) - | list_t.Nil => Result.fail Error.panic - | list_t.Nil => Result.fail Error.panic -termination_by list_nth_shared_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 => - list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i -decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i - -/- [loops::list_nth_shared_mut_loop_pair_merge] -/ -def list_nth_shared_mut_loop_pair_merge_back - (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) : - Result (list_t T) - := - list_nth_shared_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0 - diff --git a/tests/lean/misc-loops/Loops/Types.lean b/tests/lean/misc-loops/Loops/Types.lean deleted file mode 100644 index ca43f4c8..00000000 --- a/tests/lean/misc-loops/Loops/Types.lean +++ /dev/null @@ -1,9 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [loops]: type definitions -import Base.Primitives - -/- [loops::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - diff --git a/tests/lean/misc-loops/lake-manifest.json b/tests/lean/misc-loops/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-loops/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-loops/lakefile.lean b/tests/lean/misc-loops/lakefile.lean deleted file mode 100644 index 097c0a7d..00000000 --- a/tests/lean/misc-loops/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «loops» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Loops» {} diff --git a/tests/lean/misc-loops/lean-toolchain b/tests/lean/misc-loops/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-loops/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean b/tests/lean/misc-no_nested_borrows/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean b/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean deleted file mode 100644 index 12c7d8f7..00000000 --- a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean +++ /dev/null @@ -1,538 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [no_nested_borrows] -import Base.Primitives - -/- [no_nested_borrows::Pair] -/ -structure pair_t (T1 T2 : Type) where - pair_x : T1 - pair_y : T2 - -/- [no_nested_borrows::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [no_nested_borrows::One] -/ -inductive one_t (T1 : Type) := -| One : T1 -> one_t T1 - -/- [no_nested_borrows::EmptyEnum] -/ -inductive empty_enum_t := -| Empty : empty_enum_t - -/- [no_nested_borrows::Enum] -/ -inductive enum_t := -| Variant1 : enum_t -| Variant2 : enum_t - -/- [no_nested_borrows::EmptyStruct] -/ -structure empty_struct_t where - -/- [no_nested_borrows::Sum] -/ -inductive sum_t (T1 T2 : Type) := -| Left : T1 -> sum_t T1 T2 -| Right : T2 -> sum_t T1 T2 - -/- [no_nested_borrows::neg_test] -/ -def neg_test_fwd (x : I32) : Result I32 := - - x - -/- [no_nested_borrows::add_test] -/ -def add_test_fwd (x : U32) (y : U32) : Result U32 := - x + y - -/- [no_nested_borrows::subs_test] -/ -def subs_test_fwd (x : U32) (y : U32) : Result U32 := - x - y - -/- [no_nested_borrows::div_test] -/ -def div_test_fwd (x : U32) (y : U32) : Result U32 := - x / y - -/- [no_nested_borrows::div_test1] -/ -def div_test1_fwd (x : U32) : Result U32 := - x / (U32.ofInt 2 (by intlit)) - -/- [no_nested_borrows::rem_test] -/ -def rem_test_fwd (x : U32) (y : U32) : Result U32 := - x % y - -/- [no_nested_borrows::cast_test] -/ -def cast_test_fwd (x : U32) : Result I32 := - Scalar.cast .I32 x - -/- [no_nested_borrows::test2] -/ -def test2_fwd : Result Unit := - do - let _ ← (U32.ofInt 23 (by intlit)) + (U32.ofInt 44 (by intlit)) - Result.ret () - -/- Unit test for [no_nested_borrows::test2] -/ -#assert (test2_fwd == .ret ()) - -/- [no_nested_borrows::get_max] -/ -def get_max_fwd (x : U32) (y : U32) : Result U32 := - if h: x >= y - then Result.ret x - else Result.ret y - -/- [no_nested_borrows::test3] -/ -def test3_fwd : Result Unit := - do - let x ← get_max_fwd (U32.ofInt 4 (by intlit)) (U32.ofInt 3 (by intlit)) - let y ← get_max_fwd (U32.ofInt 10 (by intlit)) (U32.ofInt 11 (by intlit)) - let z ← x + y - if h: not (z = (U32.ofInt 15 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test3] -/ -#assert (test3_fwd == .ret ()) - -/- [no_nested_borrows::test_neg1] -/ -def test_neg1_fwd : Result Unit := - do - let y ← - (I32.ofInt 3 (by intlit)) - if h: not (y = (I32.ofInt (-(3:Int)) (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_neg1] -/ -#assert (test_neg1_fwd == .ret ()) - -/- [no_nested_borrows::refs_test1] -/ -def refs_test1_fwd : Result Unit := - if h: not ((I32.ofInt 1 (by intlit)) = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::refs_test1] -/ -#assert (refs_test1_fwd == .ret ()) - -/- [no_nested_borrows::refs_test2] -/ -def refs_test2_fwd : Result Unit := - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 0 (by intlit)) = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::refs_test2] -/ -#assert (refs_test2_fwd == .ret ()) - -/- [no_nested_borrows::test_list1] -/ -def test_list1_fwd : Result Unit := - Result.ret () - -/- Unit test for [no_nested_borrows::test_list1] -/ -#assert (test_list1_fwd == .ret ()) - -/- [no_nested_borrows::test_box1] -/ -def test_box1_fwd : Result Unit := - let b := (I32.ofInt 1 (by intlit)) - let x := b - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_box1] -/ -#assert (test_box1_fwd == .ret ()) - -/- [no_nested_borrows::copy_int] -/ -def copy_int_fwd (x : I32) : Result I32 := - Result.ret x - -/- [no_nested_borrows::test_unreachable] -/ -def test_unreachable_fwd (b : Bool) : Result Unit := - if h: b - then Result.fail Error.panic - else Result.ret () - -/- [no_nested_borrows::test_panic] -/ -def test_panic_fwd (b : Bool) : Result Unit := - if h: b - then Result.fail Error.panic - else Result.ret () - -/- [no_nested_borrows::test_copy_int] -/ -def test_copy_int_fwd : Result Unit := - do - let y ← copy_int_fwd (I32.ofInt 0 (by intlit)) - if h: not ((I32.ofInt 0 (by intlit)) = y) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_copy_int] -/ -#assert (test_copy_int_fwd == .ret ()) - -/- [no_nested_borrows::is_cons] -/ -def is_cons_fwd (T : Type) (l : list_t T) : Result Bool := - match h: l with - | list_t.Cons t l0 => Result.ret true - | list_t.Nil => Result.ret false - -/- [no_nested_borrows::test_is_cons] -/ -def test_is_cons_fwd : Result Unit := - do - let l := list_t.Nil - let b ← is_cons_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) - if h: not b - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_is_cons] -/ -#assert (test_is_cons_fwd == .ret ()) - -/- [no_nested_borrows::split_list] -/ -def split_list_fwd (T : Type) (l : list_t T) : Result (T × (list_t T)) := - match h: l with - | list_t.Cons hd tl => Result.ret (hd, tl) - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::test_split_list] -/ -def test_split_list_fwd : Result Unit := - do - let l := list_t.Nil - let p ← split_list_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l) - let (hd, _) := p - if h: not (hd = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_split_list] -/ -#assert (test_split_list_fwd == .ret ()) - -/- [no_nested_borrows::choose] -/ -def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := - if h: b - then Result.ret x - else Result.ret y - -/- [no_nested_borrows::choose] -/ -def choose_back - (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := - if h: b - then Result.ret (ret0, y) - else Result.ret (x, ret0) - -/- [no_nested_borrows::choose_test] -/ -def choose_test_fwd : Result Unit := - do - let z ← - choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) - let z0 ← z + (I32.ofInt 1 (by intlit)) - if h: not (z0 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let (x, y) ← - choose_back I32 true (I32.ofInt 0 (by intlit)) - (I32.ofInt 0 (by intlit)) z0 - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - if h: not (y = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::choose_test] -/ -#assert (choose_test_fwd == .ret ()) - -/- [no_nested_borrows::test_char] -/ -def test_char_fwd : Result Char := - Result.ret 'a' - -mutual - -/- [no_nested_borrows::NodeElem] -/ -inductive node_elem_t (T : Type) := -| Cons : tree_t T -> node_elem_t T -> node_elem_t T -| Nil : node_elem_t T - -/- [no_nested_borrows::Tree] -/ -inductive tree_t (T : Type) := -| Leaf : T -> tree_t T -| Node : T -> node_elem_t T -> tree_t T -> tree_t T - -end - -/- [no_nested_borrows::list_length] -/ -def list_length_fwd (T : Type) (l : list_t T) : Result U32 := - match h: l with - | list_t.Cons t l1 => - do - let i ← list_length_fwd T l1 - (U32.ofInt 1 (by intlit)) + i - | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::list_nth_shared] -/ -def list_nth_shared_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_shared_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_nth_mut] -/ -def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_nth_mut] -/ -def list_nth_mut_back - (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic - -/- [no_nested_borrows::list_rev_aux] -/ -def list_rev_aux_fwd - (T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) := - match h: li with - | list_t.Cons hd tl => list_rev_aux_fwd T tl (list_t.Cons hd lo) - | list_t.Nil => Result.ret lo - -/- [no_nested_borrows::list_rev] -/ -def list_rev_fwd_back (T : Type) (l : list_t T) : Result (list_t T) := - let li := mem_replace_fwd (list_t T) l list_t.Nil - list_rev_aux_fwd T li list_t.Nil - -/- [no_nested_borrows::test_list_functions] -/ -def test_list_functions_fwd : Result Unit := - do - let l := list_t.Nil - let l0 := list_t.Cons (I32.ofInt 2 (by intlit)) l - let l1 := list_t.Cons (I32.ofInt 1 (by intlit)) l0 - let i ← list_length_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) - if h: not (i = (U32.ofInt 3 (by intlit))) - then Result.fail Error.panic - else - do - let i0 ← - list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1) - (U32.ofInt 0 (by intlit)) - if h: not (i0 = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - do - let i1 ← - list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) - l1) (U32.ofInt 1 (by intlit)) - if h: not (i1 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let i2 ← - list_nth_shared_fwd I32 (list_t.Cons - (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 2 (by intlit)) - if h: not (i2 = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else - do - let ls ← - list_nth_mut_back I32 (list_t.Cons - (I32.ofInt 0 (by intlit)) l1) (U32.ofInt 1 (by intlit)) - (I32.ofInt 3 (by intlit)) - let i3 ← - list_nth_shared_fwd I32 ls (U32.ofInt 0 (by intlit)) - if h: not (i3 = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else - do - let i4 ← - list_nth_shared_fwd I32 ls (U32.ofInt 1 (by intlit)) - if h: not (i4 = (I32.ofInt 3 (by intlit))) - then Result.fail Error.panic - else - do - let i5 ← - list_nth_shared_fwd I32 ls - (U32.ofInt 2 (by intlit)) - if h: not (i5 = (I32.ofInt 2 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_list_functions] -/ -#assert (test_list_functions_fwd == .ret ()) - -/- [no_nested_borrows::id_mut_pair1] -/ -def id_mut_pair1_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := - Result.ret (x, y) - -/- [no_nested_borrows::id_mut_pair1] -/ -def id_mut_pair1_back - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := ret0 - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair2] -/ -def id_mut_pair2_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := p - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair2] -/ -def id_mut_pair2_back - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := ret0 - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := - Result.ret (x, y) - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_back'a - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T1) : Result T1 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair3] -/ -def id_mut_pair3_back'b - (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T2) : Result T2 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := - let (t, t0) := p - Result.ret (t, t0) - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_back'a - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T1) : Result T1 := - Result.ret ret0 - -/- [no_nested_borrows::id_mut_pair4] -/ -def id_mut_pair4_back'b - (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T2) : Result T2 := - Result.ret ret0 - -/- [no_nested_borrows::StructWithTuple] -/ -structure struct_with_tuple_t (T1 T2 : Type) where - struct_with_tuple_p : (T1 × T2) - -/- [no_nested_borrows::new_tuple1] -/ -def new_tuple1_fwd : Result (struct_with_tuple_t U32 U32) := - Result.ret - { - struct_with_tuple_p := - ((U32.ofInt 1 (by intlit)), (U32.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::new_tuple2] -/ -def new_tuple2_fwd : Result (struct_with_tuple_t I16 I16) := - Result.ret - { - struct_with_tuple_p := - ((I16.ofInt 1 (by intlit)), (I16.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::new_tuple3] -/ -def new_tuple3_fwd : Result (struct_with_tuple_t U64 I64) := - Result.ret - { - struct_with_tuple_p := - ((U64.ofInt 1 (by intlit)), (I64.ofInt 2 (by intlit))) - } - -/- [no_nested_borrows::StructWithPair] -/ -structure struct_with_pair_t (T1 T2 : Type) where - struct_with_pair_p : pair_t T1 T2 - -/- [no_nested_borrows::new_pair1] -/ -def new_pair1_fwd : Result (struct_with_pair_t U32 U32) := - Result.ret - { - struct_with_pair_p := - { - pair_x := (U32.ofInt 1 (by intlit)), - pair_y := (U32.ofInt 2 (by intlit)) - } - } - -/- [no_nested_borrows::test_constants] -/ -def test_constants_fwd : Result Unit := - do - let swt ← new_tuple1_fwd - let (i, _) := swt.struct_with_tuple_p - if h: not (i = (U32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swt0 ← new_tuple2_fwd - let (i0, _) := swt0.struct_with_tuple_p - if h: not (i0 = (I16.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swt1 ← new_tuple3_fwd - let (i1, _) := swt1.struct_with_tuple_p - if h: not (i1 = (U64.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let swp ← new_pair1_fwd - if h: not (swp.struct_with_pair_p.pair_x = - (U32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [no_nested_borrows::test_constants] -/ -#assert (test_constants_fwd == .ret ()) - -/- [no_nested_borrows::test_weird_borrows1] -/ -def test_weird_borrows1_fwd : Result Unit := - Result.ret () - -/- Unit test for [no_nested_borrows::test_weird_borrows1] -/ -#assert (test_weird_borrows1_fwd == .ret ()) - -/- [no_nested_borrows::test_mem_replace] -/ -def test_mem_replace_fwd_back (px : U32) : Result U32 := - let y := mem_replace_fwd U32 px (U32.ofInt 1 (by intlit)) - if h: not (y = (U32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret (U32.ofInt 2 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_bool1] -/ -def test_shared_borrow_bool1_fwd (b : Bool) : Result U32 := - if h: b - then Result.ret (U32.ofInt 0 (by intlit)) - else Result.ret (U32.ofInt 1 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_bool2] -/ -def test_shared_borrow_bool2_fwd : Result U32 := - Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_enum1] -/ -def test_shared_borrow_enum1_fwd (l : list_t U32) : Result U32 := - match h: l with - | list_t.Cons i l0 => Result.ret (U32.ofInt 1 (by intlit)) - | list_t.Nil => Result.ret (U32.ofInt 0 (by intlit)) - -/- [no_nested_borrows::test_shared_borrow_enum2] -/ -def test_shared_borrow_enum2_fwd : Result U32 := - Result.ret (U32.ofInt 0 (by intlit)) - diff --git a/tests/lean/misc-no_nested_borrows/lake-manifest.json b/tests/lean/misc-no_nested_borrows/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-no_nested_borrows/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-no_nested_borrows/lakefile.lean b/tests/lean/misc-no_nested_borrows/lakefile.lean deleted file mode 100644 index 58619110..00000000 --- a/tests/lean/misc-no_nested_borrows/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «no_nested_borrows» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «NoNestedBorrows» {} diff --git a/tests/lean/misc-no_nested_borrows/lean-toolchain b/tests/lean/misc-no_nested_borrows/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-no_nested_borrows/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-paper/Base/Primitives.lean b/tests/lean/misc-paper/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-paper/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-paper/Paper.lean b/tests/lean/misc-paper/Paper.lean deleted file mode 100644 index 0b16fb8e..00000000 --- a/tests/lean/misc-paper/Paper.lean +++ /dev/null @@ -1,123 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [paper] -import Base.Primitives - -/- [paper::ref_incr] -/ -def ref_incr_fwd_back (x : I32) : Result I32 := - x + (I32.ofInt 1 (by intlit)) - -/- [paper::test_incr] -/ -def test_incr_fwd : Result Unit := - do - let x ← ref_incr_fwd_back (I32.ofInt 0 (by intlit)) - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_incr] -/ -#assert (test_incr_fwd == .ret ()) - -/- [paper::choose] -/ -def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := - if h: b - then Result.ret x - else Result.ret y - -/- [paper::choose] -/ -def choose_back - (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := - if h: b - then Result.ret (ret0, y) - else Result.ret (x, ret0) - -/- [paper::test_choose] -/ -def test_choose_fwd : Result Unit := - do - let z ← - choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit)) - let z0 ← z + (I32.ofInt 1 (by intlit)) - if h: not (z0 = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - do - let (x, y) ← - choose_back I32 true (I32.ofInt 0 (by intlit)) - (I32.ofInt 0 (by intlit)) z0 - if h: not (x = (I32.ofInt 1 (by intlit))) - then Result.fail Error.panic - else - if h: not (y = (I32.ofInt 0 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_choose] -/ -#assert (test_choose_fwd == .ret ()) - -/- [paper::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [paper::list_nth_mut] -/ -def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret x - else do - let i0 ← i - (U32.ofInt 1 (by intlit)) - list_nth_mut_fwd T tl i0 - | list_t.Nil => Result.fail Error.panic - -/- [paper::list_nth_mut] -/ -def list_nth_mut_back - (T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) := - match h: l with - | list_t.Cons x tl => - if h: i = (U32.ofInt 0 (by intlit)) - then Result.ret (list_t.Cons ret0 tl) - else - do - let i0 ← i - (U32.ofInt 1 (by intlit)) - let tl0 ← list_nth_mut_back T tl i0 ret0 - Result.ret (list_t.Cons x tl0) - | list_t.Nil => Result.fail Error.panic - -/- [paper::sum] -/ -def sum_fwd (l : list_t I32) : Result I32 := - match h: l with - | list_t.Cons x tl => do - let i ← sum_fwd tl - x + i - | list_t.Nil => Result.ret (I32.ofInt 0 (by intlit)) - -/- [paper::test_nth] -/ -def test_nth_fwd : Result Unit := - do - let l := list_t.Nil - let l0 := list_t.Cons (I32.ofInt 3 (by intlit)) l - let l1 := list_t.Cons (I32.ofInt 2 (by intlit)) l0 - let x ← - list_nth_mut_fwd I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) - (U32.ofInt 2 (by intlit)) - let x0 ← x + (I32.ofInt 1 (by intlit)) - let l2 ← - list_nth_mut_back I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1) - (U32.ofInt 2 (by intlit)) x0 - let i ← sum_fwd l2 - if h: not (i = (I32.ofInt 7 (by intlit))) - then Result.fail Error.panic - else Result.ret () - -/- Unit test for [paper::test_nth] -/ -#assert (test_nth_fwd == .ret ()) - -/- [paper::call_choose] -/ -def call_choose_fwd (p : (U32 × U32)) : Result U32 := - do - let (px, py) := p - let pz ← choose_fwd U32 true px py - let pz0 ← pz + (U32.ofInt 1 (by intlit)) - let (px0, _) ← choose_back U32 true px py pz0 - Result.ret px0 - diff --git a/tests/lean/misc-paper/lake-manifest.json b/tests/lean/misc-paper/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-paper/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-paper/lakefile.lean b/tests/lean/misc-paper/lakefile.lean deleted file mode 100644 index 75d7208e..00000000 --- a/tests/lean/misc-paper/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «paper» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «Paper» {} diff --git a/tests/lean/misc-paper/lean-toolchain b/tests/lean/misc-paper/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-paper/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 diff --git a/tests/lean/misc-polonius_list/Base/Primitives.lean b/tests/lean/misc-polonius_list/Base/Primitives.lean deleted file mode 100644 index 4a66a453..00000000 --- a/tests/lean/misc-polonius_list/Base/Primitives.lean +++ /dev/null @@ -1,583 +0,0 @@ -import Lean -import Lean.Meta.Tactic.Simp -import Init.Data.List.Basic -import Mathlib.Tactic.RunCmd - --------------------- --- ASSERT COMMAND -- --------------------- - -open Lean Elab Command Term Meta - -syntax (name := assert) "#assert" term: command - -@[command_elab assert] -unsafe -def assertImpl : CommandElab := fun (_stx: Syntax) => do - runTermElabM (fun _ => do - let r ← evalTerm Bool (mkConst ``Bool) _stx[1] - if not r then - logInfo "Assertion failed for: " - logInfo _stx[1] - logError "Expression reduced to false" - pure ()) - -#eval 2 == 2 -#assert (2 == 2) - -------------- --- PRELUDE -- -------------- - --- Results & monadic combinators - -inductive Error where - | assertionFailure: Error - | integerOverflow: Error - | divisionByZero: Error - | arrayOutOfBounds: Error - | maximumSizeExceeded: Error - | panic: Error -deriving Repr, BEq - -open Error - -inductive Result (α : Type u) where - | ret (v: α): Result α - | fail (e: Error): Result α -deriving Repr, BEq - -open Result - -instance Result_Inhabited (α : Type u) : Inhabited (Result α) := - Inhabited.mk (fail panic) - -/- HELPERS -/ - -def ret? {α: Type} (r: Result α): Bool := - match r with - | Result.ret _ => true - | Result.fail _ => false - -def massert (b:Bool) : Result Unit := - if b then .ret () else fail assertionFailure - -def eval_global {α: Type} (x: Result α) (_: ret? x): α := - match x with - | Result.fail _ => by contradiction - | Result.ret x => x - -/- DO-DSL SUPPORT -/ - -def bind (x: Result α) (f: α -> Result β) : Result β := - match x with - | ret v => f v - | fail v => fail v - --- Allows using Result in do-blocks -instance : Bind Result where - bind := bind - --- Allows using return x in do-blocks -instance : Pure Result where - pure := fun x => ret x - -/- CUSTOM-DSL SUPPORT -/ - --- Let-binding the Result of a monadic operation is oftentimes not sufficient, --- because we may need a hypothesis for equational reasoning in the scope. We --- rely on subtype, and a custom let-binding operator, in effect recreating our --- own variant of the do-dsl - -def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := - match o with - | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e - -macro "let" e:term " ⟵ " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- TODO: any way to factorize both definitions? -macro "let" e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, h⟩ ← Result.attach $f) - --- We call the hypothesis `h`, in effect making it unavailable to the user --- (because too much shadowing). But in practice, once can use the French single --- quote notation (input with f< and f>), where `‹ h ›` finds a suitable --- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` -#eval do - let y <-- .ret (0: Nat) - let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide - let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ - .ret r - ----------------------- --- MACHINE INTEGERS -- ----------------------- - --- We redefine our machine integers types. - --- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits` --- using the simplifier, meaning that proofs do not depend on the compile-time value of --- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at --- least officially, 16-bit microcontrollers, so this seems like a fine design decision --- for now.) - --- Note from Chris Bailey: "If there's more than one salient property of your --- definition then the subtyping strategy might get messy, and the property part --- of a subtype is less discoverable by the simplifier or tactics like --- library_search." So, we will not add refinements on the return values of the --- operations defined on Primitives, but will rather rely on custom lemmas to --- invert on possible return values of the primitive operations. - --- Machine integer constants, done via `ofNatCore`, which requires a proof that --- the `Nat` fits within the desired integer type. We provide a custom tactic. - -open System.Platform.getNumBits - --- TODO: is there a way of only importing System.Platform.getNumBits? --- -@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val - --- Remark: Lean seems to use < for the comparisons with the upper bounds by convention. --- We keep the F* convention for now. -@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1)) -@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1 -@[simp] def I8.min : Int := - (HPow.hPow 2 7) -@[simp] def I8.max : Int := HPow.hPow 2 7 - 1 -@[simp] def I16.min : Int := - (HPow.hPow 2 15) -@[simp] def I16.max : Int := HPow.hPow 2 15 - 1 -@[simp] def I32.min : Int := -(HPow.hPow 2 31) -@[simp] def I32.max : Int := HPow.hPow 2 31 - 1 -@[simp] def I64.min : Int := -(HPow.hPow 2 63) -@[simp] def I64.max : Int := HPow.hPow 2 63 - 1 -@[simp] def I128.min : Int := -(HPow.hPow 2 127) -@[simp] def I128.max : Int := HPow.hPow 2 127 - 1 -@[simp] def Usize.min : Int := 0 -@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1 -@[simp] def U8.min : Int := 0 -@[simp] def U8.max : Int := HPow.hPow 2 8 - 1 -@[simp] def U16.min : Int := 0 -@[simp] def U16.max : Int := HPow.hPow 2 16 - 1 -@[simp] def U32.min : Int := 0 -@[simp] def U32.max : Int := HPow.hPow 2 32 - 1 -@[simp] def U64.min : Int := 0 -@[simp] def U64.max : Int := HPow.hPow 2 64 - 1 -@[simp] def U128.min : Int := 0 -@[simp] def U128.max : Int := HPow.hPow 2 128 - 1 - -#assert (I8.min == -128) -#assert (I8.max == 127) -#assert (I16.min == -32768) -#assert (I16.max == 32767) -#assert (I32.min == -2147483648) -#assert (I32.max == 2147483647) -#assert (I64.min == -9223372036854775808) -#assert (I64.max == 9223372036854775807) -#assert (I128.min == -170141183460469231731687303715884105728) -#assert (I128.max == 170141183460469231731687303715884105727) -#assert (U8.min == 0) -#assert (U8.max == 255) -#assert (U16.min == 0) -#assert (U16.max == 65535) -#assert (U32.min == 0) -#assert (U32.max == 4294967295) -#assert (U64.min == 0) -#assert (U64.max == 18446744073709551615) -#assert (U128.min == 0) -#assert (U128.max == 340282366920938463463374607431768211455) - -inductive ScalarTy := -| Isize -| I8 -| I16 -| I32 -| I64 -| I128 -| Usize -| U8 -| U16 -| U32 -| U64 -| U128 - -def Scalar.min (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.min - | .I8 => I8.min - | .I16 => I16.min - | .I32 => I32.min - | .I64 => I64.min - | .I128 => I128.min - | .Usize => Usize.min - | .U8 => U8.min - | .U16 => U16.min - | .U32 => U32.min - | .U64 => U64.min - | .U128 => U128.min - -def Scalar.max (ty : ScalarTy) : Int := - match ty with - | .Isize => Isize.max - | .I8 => I8.max - | .I16 => I16.max - | .I32 => I32.max - | .I64 => I64.max - | .I128 => I128.max - | .Usize => Usize.max - | .U8 => U8.max - | .U16 => U16.max - | .U32 => U32.max - | .U64 => U64.max - | .U128 => U128.max - --- "Conservative" bounds --- We use those because we can't compare to the isize bounds (which can't --- reduce at compile-time). Whenever we perform an arithmetic operation like --- addition we need to check that the result is in bounds: we first compare --- to the conservative bounds, which reduce, then compare to the real bounds. --- This is useful for the various #asserts that we want to reduce at --- type-checking time. -def Scalar.cMin (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.min - | _ => Scalar.min ty - -def Scalar.cMax (ty : ScalarTy) : Int := - match ty with - | .Isize => I32.max - | .Usize => U32.max - | _ => Scalar.max ty - -theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry -theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry - -structure Scalar (ty : ScalarTy) where - val : Int - hmin : Scalar.min ty <= val - hmax : val <= Scalar.max ty - -theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : - Scalar.cMin ty <= x && x <= Scalar.cMax ty -> - (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true - := by sorry - -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty := - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - Scalar.ofIntCore x hmin hmax - --- Further thoughts: look at what has been done here: --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean --- and --- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean --- which both contain a fair amount of reasoning already! -def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := - -- TODO: write this with only one if then else - if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then - if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then - let hmin: Scalar.min ty <= x := by sorry - let hmax: x <= Scalar.max ty := by sorry - return Scalar.ofIntCore x hmin hmax - else fail integerOverflow - else fail integerOverflow - -def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) - -def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero - --- Checking that the % operation in Lean computes the same as the remainder operation in Rust -#assert 1 % 2 = (1:Int) -#assert (-1) % 2 = -1 -#assert 1 % (-2) = 1 -#assert (-1) % (-2) = -1 - -def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero - -def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val + y.val) - -def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val - y.val) - -def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) := - Scalar.tryMk ty (x.val * y.val) - --- TODO: instances of +, -, * etc. for scalars - --- Cast an integer from a [src_ty] to a [tgt_ty] --- TODO: check the semantics of casts in Rust -def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) := - Scalar.tryMk tgt_ty x.val - --- The scalar types --- We declare the definitions as reducible so that Lean can unfold them (useful --- for type class resolution for instance). -@[reducible] def Isize := Scalar .Isize -@[reducible] def I8 := Scalar .I8 -@[reducible] def I16 := Scalar .I16 -@[reducible] def I32 := Scalar .I32 -@[reducible] def I64 := Scalar .I64 -@[reducible] def I128 := Scalar .I128 -@[reducible] def Usize := Scalar .Usize -@[reducible] def U8 := Scalar .U8 -@[reducible] def U16 := Scalar .U16 -@[reducible] def U32 := Scalar .U32 -@[reducible] def U64 := Scalar .U64 -@[reducible] def U128 := Scalar .U128 - --- TODO: below: not sure this is the best way. --- Should we rather overload operations like +, -, etc.? --- Also, it is possible to automate the generation of those definitions --- with macros (but would it be a good idea? It would be less easy to --- read the file, which is not supposed to change a lot) - --- Negation - -/-- -Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce -one here. - -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. --/ -class HNeg (α : Type u) (β : outParam (Type v)) where - /-- `- a` computes the negation of `a`. - The meaning of this notation is type-dependent. -/ - hNeg : α → β - -prefix:75 "-" => HNeg.hNeg - -instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x -instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x -instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x -instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x -instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x -instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x - --- Addition -instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hAdd x y := Scalar.add x y - --- Substraction -instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hSub x y := Scalar.sub x y - --- Multiplication -instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMul x y := Scalar.mul x y - --- Division -instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hDiv x y := Scalar.div x y - --- Remainder -instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where - hMod x y := Scalar.rem x y - --- ofIntCore --- TODO: typeclass? -def Isize.ofIntCore := @Scalar.ofIntCore .Isize -def I8.ofIntCore := @Scalar.ofIntCore .I8 -def I16.ofIntCore := @Scalar.ofIntCore .I16 -def I32.ofIntCore := @Scalar.ofIntCore .I32 -def I64.ofIntCore := @Scalar.ofIntCore .I64 -def I128.ofIntCore := @Scalar.ofIntCore .I128 -def Usize.ofIntCore := @Scalar.ofIntCore .Usize -def U8.ofIntCore := @Scalar.ofIntCore .U8 -def U16.ofIntCore := @Scalar.ofIntCore .U16 -def U32.ofIntCore := @Scalar.ofIntCore .U32 -def U64.ofIntCore := @Scalar.ofIntCore .U64 -def U128.ofIntCore := @Scalar.ofIntCore .U128 - --- ofInt --- TODO: typeclass? -def Isize.ofInt := @Scalar.ofInt .Isize -def I8.ofInt := @Scalar.ofInt .I8 -def I16.ofInt := @Scalar.ofInt .I16 -def I32.ofInt := @Scalar.ofInt .I32 -def I64.ofInt := @Scalar.ofInt .I64 -def I128.ofInt := @Scalar.ofInt .I128 -def Usize.ofInt := @Scalar.ofInt .Usize -def U8.ofInt := @Scalar.ofInt .U8 -def U16.ofInt := @Scalar.ofInt .U16 -def U32.ofInt := @Scalar.ofInt .U32 -def U64.ofInt := @Scalar.ofInt .U64 -def U128.ofInt := @Scalar.ofInt .U128 - --- Comparisons -instance {ty} : LT (Scalar ty) where - lt a b := LT.lt a.val b.val - -instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val - -instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt .. -instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe .. - -theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j - | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl - -theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val := - h ▸ rfl - -theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) := - fun h' => absurd (val_eq_of_eq h') h - -instance (ty : ScalarTy) : DecidableEq (Scalar ty) := - fun i j => - match decEq i.val j.val with - | isTrue h => isTrue (Scalar.eq_of_val_eq h) - | isFalse h => isFalse (Scalar.ne_of_val_ne h) - -def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val - --- Tactic to prove that integers are in bounds -syntax "intlit" : tactic - -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide) - --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - -------------- --- VECTORS -- -------------- - -def Vec (α : Type u) := { l : List α // List.length l <= Usize.max } - -def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩ - -def vec_len (α : Type u) (v : Vec α) : Usize := - let ⟨ v, l ⟩ := v - Usize.ofIntCore (List.length v) (by sorry) l - -def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () - -def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) - := - if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then - return ⟨ List.concat v.val x, by sorry ⟩ - else - fail maximumSizeExceeded - -def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - -- TODO: maybe we should redefine a list library which uses integers - -- (instead of natural numbers) - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - -def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit := - if i.val < List.length v.val then - .ret () - else - .fail arrayOutOfBounds - -def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - let h: i < List.length v.val := by sorry - .ret (List.get v.val ⟨i.val, h⟩) - else - .fail arrayOutOfBounds - -def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) := - if i.val < List.length v.val then - let i : Nat := - match i.val with - | .ofNat n => n - | .negSucc n => by sorry -- TODO: we can't get here - let isLt: i < USize.size := by sorry - let i : Fin USize.size := { val := i, isLt := isLt } - .ret ⟨ List.set v.val i.val x, by - have h: List.length v.val <= Usize.max := v.property - rewrite [ List.length_set v.val i.val x ] - assumption - ⟩ - else - .fail arrayOutOfBounds - ----------- --- MISC -- ----------- - -def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := - x - -def mem_replace_back (a : Type) (_ : a) (y : a) : a := - y - -/-- Aeneas-translated function -- useful to reduce non-recursive definitions. - Use with `simp [ aeneas ]` -/ -register_simp_attr aeneas diff --git a/tests/lean/misc-polonius_list/PoloniusList.lean b/tests/lean/misc-polonius_list/PoloniusList.lean deleted file mode 100644 index 79696996..00000000 --- a/tests/lean/misc-polonius_list/PoloniusList.lean +++ /dev/null @@ -1,31 +0,0 @@ --- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS --- [polonius_list] -import Base.Primitives - -/- [polonius_list::List] -/ -inductive list_t (T : Type) := -| Cons : T -> list_t T -> list_t T -| Nil : list_t T - -/- [polonius_list::get_list_at_x] -/ -def get_list_at_x_fwd (ls : list_t U32) (x : U32) : Result (list_t U32) := - match h: ls with - | list_t.Cons hd tl => - if h: hd = x - then Result.ret (list_t.Cons hd tl) - else get_list_at_x_fwd tl x - | list_t.Nil => Result.ret list_t.Nil - -/- [polonius_list::get_list_at_x] -/ -def get_list_at_x_back - (ls : list_t U32) (x : U32) (ret0 : list_t U32) : Result (list_t U32) := - match h: ls with - | list_t.Cons hd tl => - if h: hd = x - then Result.ret ret0 - else - do - let tl0 ← get_list_at_x_back tl x ret0 - Result.ret (list_t.Cons hd tl0) - | list_t.Nil => Result.ret ret0 - diff --git a/tests/lean/misc-polonius_list/lake-manifest.json b/tests/lean/misc-polonius_list/lake-manifest.json deleted file mode 100644 index 57b071ca..00000000 --- a/tests/lean/misc-polonius_list/lake-manifest.json +++ /dev/null @@ -1,27 +0,0 @@ -{"version": 4, - "packagesDir": "./lake-packages", - "packages": - [{"git": - {"url": "https://github.com/leanprover-community/mathlib4.git", - "subDir?": null, - "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece", - "name": "mathlib", - "inputRev?": null}}, - {"git": - {"url": "https://github.com/gebner/quote4", - "subDir?": null, - "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa", - "name": "Qq", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/JLimperg/aesop", - "subDir?": null, - "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690", - "name": "aesop", - "inputRev?": "master"}}, - {"git": - {"url": "https://github.com/leanprover/std4", - "subDir?": null, - "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee", - "name": "std", - "inputRev?": "main"}}]} diff --git a/tests/lean/misc-polonius_list/lakefile.lean b/tests/lean/misc-polonius_list/lakefile.lean deleted file mode 100644 index e89d4259..00000000 --- a/tests/lean/misc-polonius_list/lakefile.lean +++ /dev/null @@ -1,12 +0,0 @@ -import Lake -open Lake DSL - -require mathlib from git - "https://github.com/leanprover-community/mathlib4.git" - -package «polonius_list» {} - -lean_lib «Base» {} - -@[default_target] -lean_lib «PoloniusList» {} diff --git a/tests/lean/misc-polonius_list/lean-toolchain b/tests/lean/misc-polonius_list/lean-toolchain deleted file mode 100644 index bbf57f10..00000000 --- a/tests/lean/misc-polonius_list/lean-toolchain +++ /dev/null @@ -1 +0,0 @@ -leanprover/lean4:nightly-2023-01-21 |
