diff options
author | Son Ho | 2023-03-07 08:41:57 +0100 |
---|---|---|
committer | Son HO | 2023-06-04 21:44:33 +0200 |
commit | feb60683216a6d9193d6353605560c6c80a1ab41 (patch) | |
tree | 222f61e4c5cbcd166e81d82350afc54b002774df /tests/lean/misc/external/Base | |
parent | b4bad8df4eabb17c71dfa7b24d79d62fc06d0a70 (diff) |
Make minor modifications and regenerate the Lean files
Diffstat (limited to 'tests/lean/misc/external/Base')
-rw-r--r-- | tests/lean/misc/external/Base/Primitives.lean | 231 |
1 files changed, 125 insertions, 106 deletions
diff --git a/tests/lean/misc/external/Base/Primitives.lean b/tests/lean/misc/external/Base/Primitives.lean index 79958d94..5b64e908 100644 --- a/tests/lean/misc/external/Base/Primitives.lean +++ b/tests/lean/misc/external/Base/Primitives.lean @@ -9,74 +9,79 @@ import Mathlib.Tactic.RunCmd -- Results & monadic combinators --- TODO: use syntactic conventions and capitalize error, result, etc. - -inductive error where - | assertionFailure: error - | integerOverflow: error - | arrayOutOfBounds: error - | maximumSizeExceeded: error - | panic: error +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error deriving Repr, BEq -open error +open Error -inductive result (α : Type u) where - | ret (v: α): result α - | fail (e: error): result α +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α deriving Repr, BEq -open result +open Result /- HELPERS -/ --- TODO: is there automated syntax for these discriminators? -def is_ret {α: Type} (r: result α): Bool := +def ret? {α: Type} (r: Result α): Bool := match r with - | result.ret _ => true - | result.fail _ => false + | Result.ret _ => true + | Result.fail _ => false -def massert (b:Bool) : result Unit := +def massert (b:Bool) : Result Unit := if b then .ret () else fail assertionFailure -def eval_global {α: Type} (x: result α) (_: is_ret x): α := +def eval_global {α: Type} (x: Result α) (_: ret? x): α := match x with - | result.fail _ => by contradiction - | result.ret x => x + | Result.fail _ => by contradiction + | Result.ret x => x /- DO-DSL SUPPORT -/ -def bind (x: result α) (f: α -> result β) : result β := +def bind (x: Result α) (f: α -> Result β) : Result β := match x with | ret v => f v | fail v => fail v --- Allows using result in do-blocks -instance : Bind result where +-- Allows using Result in do-blocks +instance : Bind Result where bind := bind -- Allows using return x in do-blocks -instance : Pure result where +instance : Pure Result where pure := fun x => ret x /- CUSTOM-DSL SUPPORT -/ --- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, -- because we may need a hypothesis for equational reasoning in the scope. We -- rely on subtype, and a custom let-binding operator, in effect recreating our -- own variant of the do-dsl -def result.attach : (o : result α) → result { x : α // o = ret x } +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with | .ret x => .ret ⟨x, rfl⟩ - | .fail e => .fail e + | .fail e => .fail e -macro "let" h:ident " : " e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, $h⟩ ← result.attach $f) +macro "let" e:term " ⟵ " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) --- Silly example of the kind of reasoning that this notation enables +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` #eval do - let h: y <-- .ret (0: Nat) - let _: y = 0 := by cases h; decide + let y <-- .ret (0: Nat) + let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ .ret r @@ -84,36 +89,27 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem => -- MACHINE INTEGERS -- ---------------------- --- NOTE: we reuse the USize type from prelude.lean, because at least we know --- it's defined in an idiomatic style that is going to make proofs easy (and --- indeed, several proofs here are much shortened compared to Aymeric's earlier --- attempt.) This is not stricto sensu the *correct* thing to do, because one --- can query at run-time the value of USize, which we do *not* want to do (we --- don't know what target we'll run on!), but when the day comes, we'll just --- define our own USize. --- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is --- not something we want to define (I think), so we use our own monadic sub (but --- is it in line with the Rust behavior?) - --- TODO: I am somewhat under the impression that subtraction is defined as a --- total function over nats...? the hypothesis in the if condition is not used --- in the then-branch which confuses me quite a bit - --- TODO: add a refinement for the result (just like vec_push_back below) that --- explains that the toNat of the result (in the case of success) is the sub of --- the toNat of the arguments (i.e. intrinsic specification) --- ... do we want intrinsic specifications for the builtins? that might require --- some careful type annotations in the monadic notation for clients, but may --- give us more "for free" +-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., +-- USize. They are generally defined in an idiomatic style, except that there is +-- not a single type class to rule them all (more on that below). The absence of +-- type class is intentional, and allows the Lean compiler to efficiently map +-- them to machine integers during compilation. + +-- USize is designed properly: you cannot reduce `getNumBits` using the +-- simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really +-- support, at least officially, 16-bit microcontrollers, so this seems like a +-- fine design decision for now.) -- Note from Chris Bailey: "If there's more than one salient property of your -- definition then the subtyping strategy might get messy, and the property part -- of a subtype is less discoverable by the simplifier or tactics like --- library_search." Try to settle this with a Lean expert on what is the most --- productive way to go about this? +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. --- One needs to perform a little bit of reasoning in order to successfully --- inject constants into USize, so we provide a general-purpose macro +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic. syntax "intlit" : tactic @@ -129,12 +125,21 @@ macro_rules -- Also works for other integer types (at the expense of a needless disjunction) #eval UInt32.ofNatCore 0 (by intlit) +-- The machine integer operations (e.g. sub) are always total, which is not what +-- we want. We therefore define "checked" variants, below. Note that we add a +-- tiny bit of complexity for the USize variant: we first check whether the +-- result is < 2^32; if it is, we can compute the definition, rather than +-- returning a term that is computationally stuck (the comparison to USize.size +-- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. + -- Further thoughts: look at what has been done here: -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean -- and -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): result USize := +def USize.checked_sub (n: USize) (m: USize): Result USize := -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? if n >= m then let n' := USize.toNat n @@ -150,18 +155,19 @@ def USize.checked_sub (n: USize) (m: USize): result USize := else fail integerOverflow -def USize.checked_add (n: USize) (m: USize): result USize := - if h: n.val.val + m.val.val <= 4294967295 then - .ret ⟨ n.val.val + m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val + m.val < USize.size then +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := + match USize.size, usize_size_eq with + | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) + | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + +def USize.checked_add (n: USize) (m: USize): Result USize := + if h: n.val + m.val < USize.size then .ret ⟨ n.val + m.val, h ⟩ else .fail integerOverflow -def USize.checked_rem (n: USize) (m: USize): result USize := +def USize.checked_rem (n: USize) (m: USize): Result USize := if h: m > 0 then .ret ⟨ n.val % m.val, by have h1: ↑m.val < USize.size := m.val.isLt @@ -171,18 +177,13 @@ def USize.checked_rem (n: USize) (m: USize): result USize := else .fail integerOverflow -def USize.checked_mul (n: USize) (m: USize): result USize := - if h: n.val.val * m.val.val <= 4294967295 then - .ret ⟨ n.val.val * m.val.val, by - have h': 4294967295 < USize.size := by intlit - apply Nat.lt_of_le_of_lt h h' - ⟩ - else if h: n.val * m.val < USize.size then +def USize.checked_mul (n: USize) (m: USize): Result USize := + if h: n.val * m.val < USize.size then .ret ⟨ n.val * m.val, h ⟩ else .fail integerOverflow -def USize.checked_div (n: USize) (m: USize): result USize := +def USize.checked_div (n: USize) (m: USize): Result USize := if m > 0 then .ret ⟨ n.val / m.val, by have h1: ↑n.val < USize.size := n.val.isLt @@ -192,6 +193,19 @@ def USize.checked_div (n: USize) (m: USize): result USize := else .fail integerOverflow +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +-- We now define a type class that subsumes the various machine integer types, so +-- as to write a concise definition for scalar_cast, rather than exhaustively +-- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- and fails if a cast operation would involve a truncation or modulo. + class MachineInteger (t: Type) where size: Nat val: t -> Fin size @@ -209,30 +223,24 @@ run_cmd end $typeName )) -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := +-- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- Lean to infer `src`. + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := if h: MachineInteger.val x < MachineInteger.size dst then .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) else .fail integerOverflow - --- Test behavior... -#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 - -#eval USize.checked_sub 20 10 --- NOTE: compare with concrete behavior here, which I do not think we want -#eval USize.sub 0 1 -#eval UInt8.add 255 255 - ------------- -- VECTORS -- ------------- -- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) -- rather than maximum values (usize_max). -def vec (α : Type u) := { l : List α // List.length l < USize.size } +def Vec (α : Type u) := { l : List α // List.length l < USize.size } -def vec_new (α : Type u): vec α := ⟨ [], by { +def vec_new (α : Type u): Vec α := ⟨ [], by { match USize.size, usize_size_eq with | _, Or.inl rfl => simp | _, Or.inr rfl => simp @@ -240,20 +248,20 @@ def vec_new (α : Type u): vec α := ⟨ [], by { #check vec_new -def vec_len (α : Type u) (v : vec α) : USize := +def vec_len (α : Type u) (v : Vec α) : USize := let ⟨ v, l ⟩ := v USize.ofNatCore (List.length v) l #eval vec_len Nat (vec_new Nat) -def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () +def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () -- NOTE: old version trying to use a subtype notation, but probably better to --- leave result elimination to auxiliary lemmas with suitable preconditions +-- leave Result elimination to auxiliary lemmas with suitable preconditions -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one -- make the proof work in that case? Probably need to import tactics from -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} := if h : List.length v.val + 1 < USize.size then @@ -272,12 +280,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec -- annotate `x`, which relieves us of having to write `.val` on the right-hand -- side of the monadic let. let v := vec_new Nat - let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? + let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? -- TODO: strengthen post-condition above and do a demo to show that we can -- safely eliminate the `fail` case return (vec_len Nat x) -def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) +def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) := if h : List.length v.val + 1 <= 4294967295 then return ⟨ List.concat v.val x, @@ -295,13 +303,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) else fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -311,25 +319,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α else .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -349,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := def mem_replace_back (a : Type) (_ : a) (y : a) : a := y +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + -------------------- -- ASSERT COMMAND -- -------------------- @@ -358,16 +370,23 @@ open Lean Elab Command Term Meta syntax (name := assert) "#assert" term: command @[command_elab assert] +unsafe def assertImpl : CommandElab := fun (_stx: Syntax) => do - logInfo "Reducing and asserting: " - logInfo _stx[1] runTermElabM (fun _ => do - let e ← Term.elabTerm _stx[1] none - logInfo (Expr.dbgToString e) - -- How to evaluate the term and compare the result to true? + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" pure ()) - -- logInfo (Expr.dbgToString (``true)) - -- throwError "TODO: assert" #eval 2 == 2 #assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) |