diff options
author | Son Ho | 2023-03-07 13:46:55 +0100 |
---|---|---|
committer | Son HO | 2023-06-04 21:44:33 +0200 |
commit | 051e2a19f3268d272a0acd0425d2107ebea020c5 (patch) | |
tree | 2ad36d00054ac891e48cb35c4dc1940433c5e707 /tests/lean/misc-no_nested_borrows | |
parent | 463cbb90c93ac2e825048d685c254431b99c4d96 (diff) |
Reorganize the Lean tests and extract the Polonius tests to Lean
Diffstat (limited to 'tests/lean/misc-no_nested_borrows')
-rw-r--r-- | tests/lean/misc-no_nested_borrows/Base/Primitives.lean | 392 | ||||
-rw-r--r-- | tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean | 556 | ||||
-rw-r--r-- | tests/lean/misc-no_nested_borrows/lakefile.lean | 18 |
3 files changed, 966 insertions, 0 deletions
diff --git a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean b/tests/lean/misc-no_nested_borrows/Base/Primitives.lean new file mode 100644 index 00000000..5b64e908 --- /dev/null +++ b/tests/lean/misc-no_nested_borrows/Base/Primitives.lean @@ -0,0 +1,392 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Init.Data.List.Basic +import Mathlib.Tactic.RunCmd + +------------- +-- PRELUDE -- +------------- + +-- Results & monadic combinators + +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error +deriving Repr, BEq + +open Error + +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α +deriving Repr, BEq + +open Result + +/- HELPERS -/ + +def ret? {α: Type} (r: Result α): Bool := + match r with + | Result.ret _ => true + | Result.fail _ => false + +def massert (b:Bool) : Result Unit := + if b then .ret () else fail assertionFailure + +def eval_global {α: Type} (x: Result α) (_: ret? x): α := + match x with + | Result.fail _ => by contradiction + | Result.ret x => x + +/- DO-DSL SUPPORT -/ + +def bind (x: Result α) (f: α -> Result β) : Result β := + match x with + | ret v => f v + | fail v => fail v + +-- Allows using Result in do-blocks +instance : Bind Result where + bind := bind + +-- Allows using return x in do-blocks +instance : Pure Result where + pure := fun x => ret x + +/- CUSTOM-DSL SUPPORT -/ + +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, +-- because we may need a hypothesis for equational reasoning in the scope. We +-- rely on subtype, and a custom let-binding operator, in effect recreating our +-- own variant of the do-dsl + +def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } := + match o with + | .ret x => .ret ⟨x, rfl⟩ + | .fail e => .fail e + +macro "let" e:term " ⟵ " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- TODO: any way to factorize both definitions? +macro "let" e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, h⟩ ← Result.attach $f) + +-- We call the hypothesis `h`, in effect making it unavailable to the user +-- (because too much shadowing). But in practice, once can use the French single +-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable +-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x` +#eval do + let y <-- .ret (0: Nat) + let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide + let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ + .ret r + +---------------------- +-- MACHINE INTEGERS -- +---------------------- + +-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ..., +-- USize. They are generally defined in an idiomatic style, except that there is +-- not a single type class to rule them all (more on that below). The absence of +-- type class is intentional, and allows the Lean compiler to efficiently map +-- them to machine integers during compilation. + +-- USize is designed properly: you cannot reduce `getNumBits` using the +-- simplifier, meaning that proofs do not depend on the compile-time value of +-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really +-- support, at least officially, 16-bit microcontrollers, so this seems like a +-- fine design decision for now.) + +-- Note from Chris Bailey: "If there's more than one salient property of your +-- definition then the subtyping strategy might get messy, and the property part +-- of a subtype is less discoverable by the simplifier or tactics like +-- library_search." So, we will not add refinements on the return values of the +-- operations defined on Primitives, but will rather rely on custom lemmas to +-- invert on possible return values of the primitive operations. + +-- Machine integer constants, done via `ofNatCore`, which requires a proof that +-- the `Nat` fits within the desired integer type. We provide a custom tactic. + +syntax "intlit" : tactic + +macro_rules + | `(tactic| intlit) => `(tactic| + match USize.size, usize_size_eq with + | _, Or.inl rfl => decide + | _, Or.inr rfl => decide) + +-- This is how the macro is expected to be used +#eval USize.ofNatCore 0 (by intlit) + +-- Also works for other integer types (at the expense of a needless disjunction) +#eval UInt32.ofNatCore 0 (by intlit) + +-- The machine integer operations (e.g. sub) are always total, which is not what +-- we want. We therefore define "checked" variants, below. Note that we add a +-- tiny bit of complexity for the USize variant: we first check whether the +-- result is < 2^32; if it is, we can compute the definition, rather than +-- returning a term that is computationally stuck (the comparison to USize.size +-- cannot reduce at compile-time, per the remark about regarding `getNumBits`). +-- This is useful for the various #asserts that we want to reduce at +-- type-checking time. + +-- Further thoughts: look at what has been done here: +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean +-- and +-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean +-- which both contain a fair amount of reasoning already! +def USize.checked_sub (n: USize) (m: USize): Result USize := + -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? + if n >= m then + let n' := USize.toNat n + let m' := USize.toNat n + let r := USize.ofNatCore (n' - m') (by + have h: n' - m' <= n' := by + apply Nat.sub_le_of_le_add + case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left + apply Nat.lt_of_le_of_lt h + apply n.val.isLt + ) + return r + else + fail integerOverflow + +@[simp] +theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size := + match USize.size, usize_size_eq with + | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide) + | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide) + +def USize.checked_add (n: USize) (m: USize): Result USize := + if h: n.val + m.val < USize.size then + .ret ⟨ n.val + m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_rem (n: USize) (m: USize): Result USize := + if h: m > 0 then + .ret ⟨ n.val % m.val, by + have h1: ↑m.val < USize.size := m.val.isLt + have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h + apply Nat.lt_trans h2 h1 + ⟩ + else + .fail integerOverflow + +def USize.checked_mul (n: USize) (m: USize): Result USize := + if h: n.val * m.val < USize.size then + .ret ⟨ n.val * m.val, h ⟩ + else + .fail integerOverflow + +def USize.checked_div (n: USize) (m: USize): Result USize := + if m > 0 then + .ret ⟨ n.val / m.val, by + have h1: ↑n.val < USize.size := n.val.isLt + have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val + apply Nat.lt_of_le_of_lt h2 h1 + ⟩ + else + .fail integerOverflow + +-- Test behavior... +#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0 + +#eval USize.checked_sub 20 10 +-- NOTE: compare with concrete behavior here, which I do not think we want +#eval USize.sub 0 1 +#eval UInt8.add 255 255 + +-- We now define a type class that subsumes the various machine integer types, so +-- as to write a concise definition for scalar_cast, rather than exhaustively +-- enumerating all of the possible pairs. We remark that Rust has sane semantics +-- and fails if a cast operation would involve a truncation or modulo. + +class MachineInteger (t: Type) where + size: Nat + val: t -> Fin size + ofNatCore: (n:Nat) -> LT.lt n size -> t + +set_option hygiene false in +run_cmd + for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do + Lean.Elab.Command.elabCommand (← `( + namespace $typeName + instance: MachineInteger $typeName where + size := size + val := val + ofNatCore := ofNatCore + end $typeName + )) + +-- Aeneas only instantiates the destination type (`src` is implicit). We rely on +-- Lean to infer `src`. + +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := + if h: MachineInteger.val x < MachineInteger.size dst then + .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) + else + .fail integerOverflow + +------------- +-- VECTORS -- +------------- + +-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size) +-- rather than maximum values (usize_max). +def Vec (α : Type u) := { l : List α // List.length l < USize.size } + +def vec_new (α : Type u): Vec α := ⟨ [], by { + match USize.size, usize_size_eq with + | _, Or.inl rfl => simp + | _, Or.inr rfl => simp + } ⟩ + +#check vec_new + +def vec_len (α : Type u) (v : Vec α) : USize := + let ⟨ v, l ⟩ := v + USize.ofNatCore (List.length v) l + +#eval vec_len Nat (vec_new Nat) + +def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := () + +-- NOTE: old version trying to use a subtype notation, but probably better to +-- leave Result elimination to auxiliary lemmas with suitable preconditions +-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one +-- make the proof work in that case? Probably need to import tactics from +-- mathlib to deal with inequalities... would love to see an example. +def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) // + match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} + := + if h : List.length v.val + 1 < USize.size then + ⟨ return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩, by simp ⟩ + else + ⟨ fail maximumSizeExceeded, by simp ⟩ + +#eval do + -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with + -- fields val and property. However, Lean's elaborator can automatically + -- select the `val` field if the context provides a type annotation. We + -- annotate `x`, which relieves us of having to write `.val` on the right-hand + -- side of the monadic let. + let v := vec_new Nat + let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here? + -- TODO: strengthen post-condition above and do a demo to show that we can + -- safely eliminate the `fail` case + return (vec_len Nat x) + +def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α) + := + if h : List.length v.val + 1 <= 4294967295 then + return ⟨ List.concat v.val x, + by + rw [List.length_concat] + have h': 4294967295 < USize.size := by intlit + apply Nat.lt_of_le_of_lt h h' + ⟩ + else if h: List.length v.val + 1 < USize.size then + return ⟨List.concat v.val x, + by + rw [List.length_concat] + assumption + ⟩ + else + fail maximumSizeExceeded + +def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit := + if i.val < List.length v.val then + .ret () + else + .fail arrayOutOfBounds + +def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α := + if h: i.val < List.length v.val then + .ret (List.get v.val ⟨i.val, h⟩) + else + .fail arrayOutOfBounds + +def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) := + if i.val < List.length v.val then + .ret ⟨ List.set v.val i.val x, by + have h: List.length v.val < USize.size := v.property + rewrite [ List.length_set v.val i.val x ] + assumption + ⟩ + else + .fail arrayOutOfBounds + +---------- +-- MISC -- +---------- + +def mem_replace_fwd (a : Type) (x : a) (_ : a) : a := + x + +def mem_replace_back (a : Type) (_ : a) (y : a) : a := + y + +/-- Aeneas-translated function -- useful to reduce non-recursive definitions. + Use with `simp [ aeneas ]` -/ +register_simp_attr aeneas + +-------------------- +-- ASSERT COMMAND -- +-------------------- + +open Lean Elab Command Term Meta + +syntax (name := assert) "#assert" term: command + +@[command_elab assert] +unsafe +def assertImpl : CommandElab := fun (_stx: Syntax) => do + runTermElabM (fun _ => do + let r ← evalTerm Bool (mkConst ``Bool) _stx[1] + if not r then + logInfo "Assertion failed for: " + logInfo _stx[1] + logError "Expression reduced to false" + pure ()) + +#eval 2 == 2 +#assert (2 == 2) + +------------------- +-- SANITY CHECKS -- +------------------- + +-- TODO: add more once we have signed integers + +#assert (USize.checked_rem 1 2 == .ret 1) diff --git a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean b/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean new file mode 100644 index 00000000..a20ee9fd --- /dev/null +++ b/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean @@ -0,0 +1,556 @@ +-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS +-- [no_nested_borrows] +import Base.Primitives + +structure OpaqueDefs where + + /- [no_nested_borrows::Pair] -/ + structure pair_t (T1 T2 : Type) where pair_x : T1 pair_y : T2 + + /- [no_nested_borrows::List] -/ + inductive list_t (T : Type) := + | ListCons : T -> list_t T -> list_t T + | ListNil : list_t T + + /- [no_nested_borrows::One] -/ + inductive one_t (T1 : Type) := | OneOne : T1 -> one_t T1 + + /- [no_nested_borrows::EmptyEnum] -/ + inductive empty_enum_t := | EmptyEnumEmpty : empty_enum_t + + /- [no_nested_borrows::Enum] -/ + inductive enum_t := | EnumVariant1 : enum_t | EnumVariant2 : enum_t + + /- [no_nested_borrows::EmptyStruct] -/ + structure empty_struct_t where + + /- [no_nested_borrows::Sum] -/ + inductive sum_t (T1 T2 : Type) := + | SumLeft : T1 -> sum_t T1 T2 + | SumRight : T2 -> sum_t T1 T2 + + /- [no_nested_borrows::neg_test] -/ + def neg_test_fwd (x : Int32) : Result Int32 := + Int32.checked_neg x + + /- [no_nested_borrows::add_test] -/ + def add_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 := + UInt32.checked_add x y + + /- [no_nested_borrows::subs_test] -/ + def subs_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 := + UInt32.checked_sub x y + + /- [no_nested_borrows::div_test] -/ + def div_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 := + UInt32.checked_div x y + + /- [no_nested_borrows::div_test1] -/ + def div_test1_fwd (x : UInt32) : Result UInt32 := + UInt32.checked_div x (UInt32.ofNatCore 2 (by intlit)) + + /- [no_nested_borrows::rem_test] -/ + def rem_test_fwd (x : UInt32) (y : UInt32) : Result UInt32 := + UInt32.checked_rem x y + + /- [no_nested_borrows::cast_test] -/ + def cast_test_fwd (x : UInt32) : Result Int32 := + scalar_cast Int32 x + + /- [no_nested_borrows::test2] -/ + def test2_fwd : Result Unit := + do + let _ ← UInt32.checked_add (UInt32.ofNatCore 23 (by intlit)) + (UInt32.ofNatCore 44 (by intlit)) + Result.ret () + + /- Unit test for [no_nested_borrows::test2] -/ + #assert (test2_fwd == .ret ()) + + /- [no_nested_borrows::get_max] -/ + def get_max_fwd (x : UInt32) (y : UInt32) : Result UInt32 := + if h: x >= y + then Result.ret x + else Result.ret y + + /- [no_nested_borrows::test3] -/ + def test3_fwd : Result Unit := + do + let x ← + get_max_fwd (UInt32.ofNatCore 4 (by intlit)) + (UInt32.ofNatCore 3 (by intlit)) + let y ← + get_max_fwd (UInt32.ofNatCore 10 (by intlit)) + (UInt32.ofNatCore 11 (by intlit)) + let z ← UInt32.checked_add x y + if h: not (z = (UInt32.ofNatCore 15 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test3] -/ + #assert (test3_fwd == .ret ()) + + /- [no_nested_borrows::test_neg1] -/ + def test_neg1_fwd : Result Unit := + do + let y ← Int32.checked_neg (Int32.ofNatCore 3 (by intlit)) + if h: not (y = (Int32.ofNatCore -3 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_neg1] -/ + #assert (test_neg1_fwd == .ret ()) + + /- [no_nested_borrows::refs_test1] -/ + def refs_test1_fwd : Result Unit := + if h: not ((Int32.ofNatCore 1 (by intlit)) = + (Int32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::refs_test1] -/ + #assert (refs_test1_fwd == .ret ()) + + /- [no_nested_borrows::refs_test2] -/ + def refs_test2_fwd : Result Unit := + if h: not ((Int32.ofNatCore 2 (by intlit)) = + (Int32.ofNatCore 2 (by intlit))) + then Result.fail Error.panic + else + if h: not ((Int32.ofNatCore 0 (by intlit)) = + (Int32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else + if h: not ((Int32.ofNatCore 2 (by intlit)) = + (Int32.ofNatCore 2 (by intlit))) + then Result.fail Error.panic + else + if h: not ((Int32.ofNatCore 2 (by intlit)) = + (Int32.ofNatCore 2 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::refs_test2] -/ + #assert (refs_test2_fwd == .ret ()) + + /- [no_nested_borrows::test_list1] -/ + def test_list1_fwd : Result Unit := + Result.ret () + + /- Unit test for [no_nested_borrows::test_list1] -/ + #assert (test_list1_fwd == .ret ()) + + /- [no_nested_borrows::test_box1] -/ + def test_box1_fwd : Result Unit := + let b := (Int32.ofNatCore 1 (by intlit)) + let x := b + if h: not (x = (Int32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_box1] -/ + #assert (test_box1_fwd == .ret ()) + + /- [no_nested_borrows::copy_int] -/ + def copy_int_fwd (x : Int32) : Result Int32 := + Result.ret x + + /- [no_nested_borrows::test_unreachable] -/ + def test_unreachable_fwd (b : Bool) : Result Unit := + if h: b + then Result.fail Error.panic + else Result.ret () + + /- [no_nested_borrows::test_panic] -/ + def test_panic_fwd (b : Bool) : Result Unit := + if h: b + then Result.fail Error.panic + else Result.ret () + + /- [no_nested_borrows::test_copy_int] -/ + def test_copy_int_fwd : Result Unit := + do + let y ← copy_int_fwd (Int32.ofNatCore 0 (by intlit)) + if h: not ((Int32.ofNatCore 0 (by intlit)) = y) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_copy_int] -/ + #assert (test_copy_int_fwd == .ret ()) + + /- [no_nested_borrows::is_cons] -/ + def is_cons_fwd (T : Type) (l : list_t T) : Result Bool := + match h: l with + | list_t.ListCons t l0 => Result.ret true + | list_t.ListNil => Result.ret false + + /- [no_nested_borrows::test_is_cons] -/ + def test_is_cons_fwd : Result Unit := + do + let l := list_t.ListNil + let b ← + is_cons_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit)) l) + if h: not b + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_is_cons] -/ + #assert (test_is_cons_fwd == .ret ()) + + /- [no_nested_borrows::split_list] -/ + def split_list_fwd (T : Type) (l : list_t T) : Result (T × (list_t T)) := + match h: l with + | list_t.ListCons hd tl => Result.ret (hd, tl) + | list_t.ListNil => Result.fail Error.panic + + /- [no_nested_borrows::test_split_list] -/ + def test_split_list_fwd : Result Unit := + do + let l := list_t.ListNil + let p ← + split_list_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit)) + l) + let (hd, _) := p + if h: not (hd = (Int32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_split_list] -/ + #assert (test_split_list_fwd == .ret ()) + + /- [no_nested_borrows::choose] -/ + def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T := + if h: b + then Result.ret x + else Result.ret y + + /- [no_nested_borrows::choose] -/ + def choose_back + (T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) := + if h: b + then Result.ret (ret0, y) + else Result.ret (x, ret0) + + /- [no_nested_borrows::choose_test] -/ + def choose_test_fwd : Result Unit := + do + let z ← + choose_fwd Int32 true (Int32.ofNatCore 0 (by intlit)) + (Int32.ofNatCore 0 (by intlit)) + let z0 ← Int32.checked_add z (Int32.ofNatCore 1 (by intlit)) + if h: not (z0 = (Int32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + do + let (x, y) ← + choose_back Int32 true (Int32.ofNatCore 0 (by intlit)) + (Int32.ofNatCore 0 (by intlit)) z0 + if h: not (x = (Int32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + if h: not (y = (Int32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::choose_test] -/ + #assert (choose_test_fwd == .ret ()) + + /- [no_nested_borrows::test_char] -/ + def test_char_fwd : Result Char := + Result.ret 'a' + + /- [no_nested_borrows::NodeElem] -/ + mutual inductive node_elem_t (T : Type) := + | NodeElemCons : tree_t T -> node_elem_t T -> node_elem_t T + | NodeElemNil : node_elem_t T + + /- [no_nested_borrows::Tree] -/ + inductive tree_t (T : Type) := + | TreeLeaf : T -> tree_t T + | TreeNode : T -> node_elem_t T -> tree_t T -> tree_t T + + /- [no_nested_borrows::list_length] -/ + def list_length_fwd (T : Type) (l : list_t T) : Result UInt32 := + match h: l with + | list_t.ListCons t l1 => + do + let i ← list_length_fwd T l1 + UInt32.checked_add (UInt32.ofNatCore 1 (by intlit)) i + | list_t.ListNil => Result.ret (UInt32.ofNatCore 0 (by intlit)) + + /- [no_nested_borrows::list_nth_shared] -/ + def list_nth_shared_fwd (T : Type) (l : list_t T) (i : UInt32) : Result T := + match h: l with + | list_t.ListCons x tl => + if h: i = (UInt32.ofNatCore 0 (by intlit)) + then Result.ret x + else + do + let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit)) + list_nth_shared_fwd T tl i0 + | list_t.ListNil => Result.fail Error.panic + + /- [no_nested_borrows::list_nth_mut] -/ + def list_nth_mut_fwd (T : Type) (l : list_t T) (i : UInt32) : Result T := + match h: l with + | list_t.ListCons x tl => + if h: i = (UInt32.ofNatCore 0 (by intlit)) + then Result.ret x + else + do + let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit)) + list_nth_mut_fwd T tl i0 + | list_t.ListNil => Result.fail Error.panic + + /- [no_nested_borrows::list_nth_mut] -/ + def list_nth_mut_back + (T : Type) (l : list_t T) (i : UInt32) (ret0 : T) : Result (list_t T) := + match h: l with + | list_t.ListCons x tl => + if h: i = (UInt32.ofNatCore 0 (by intlit)) + then Result.ret (list_t.ListCons ret0 tl) + else + do + let i0 ← UInt32.checked_sub i (UInt32.ofNatCore 1 (by intlit)) + let tl0 ← list_nth_mut_back T tl i0 ret0 + Result.ret (list_t.ListCons x tl0) + | list_t.ListNil => Result.fail Error.panic + + /- [no_nested_borrows::list_rev_aux] -/ + def list_rev_aux_fwd + (T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) := + match h: li with + | list_t.ListCons hd tl => list_rev_aux_fwd T tl (list_t.ListCons hd lo) + | list_t.ListNil => Result.ret lo + + /- [no_nested_borrows::list_rev] -/ + def list_rev_fwd_back (T : Type) (l : list_t T) : Result (list_t T) := + let li := mem_replace_fwd (list_t T) l list_t.ListNil + list_rev_aux_fwd T li list_t.ListNil + + /- [no_nested_borrows::test_list_functions] -/ + def test_list_functions_fwd : Result Unit := + do + let l := list_t.ListNil + let l0 := list_t.ListCons (Int32.ofNatCore 2 (by intlit)) l + let l1 := list_t.ListCons (Int32.ofNatCore 1 (by intlit)) l0 + let i ← + list_length_fwd Int32 (list_t.ListCons (Int32.ofNatCore 0 (by intlit)) + l1) + if h: not (i = (UInt32.ofNatCore 3 (by intlit))) + then Result.fail Error.panic + else + do + let i0 ← + list_nth_shared_fwd Int32 (list_t.ListCons + (Int32.ofNatCore 0 (by intlit)) l1) + (UInt32.ofNatCore 0 (by intlit)) + if h: not (i0 = (Int32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else + do + let i1 ← + list_nth_shared_fwd Int32 (list_t.ListCons + (Int32.ofNatCore 0 (by intlit)) l1) + (UInt32.ofNatCore 1 (by intlit)) + if h: not (i1 = (Int32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + do + let i2 ← + list_nth_shared_fwd Int32 (list_t.ListCons + (Int32.ofNatCore 0 (by intlit)) l1) + (UInt32.ofNatCore 2 (by intlit)) + if h: not (i2 = (Int32.ofNatCore 2 (by intlit))) + then Result.fail Error.panic + else + do + let ls ← + list_nth_mut_back Int32 (list_t.ListCons + (Int32.ofNatCore 0 (by intlit)) l1) + (UInt32.ofNatCore 1 (by intlit)) + (Int32.ofNatCore 3 (by intlit)) + let i3 ← + list_nth_shared_fwd Int32 ls + (UInt32.ofNatCore 0 (by intlit)) + if h: not (i3 = (Int32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else + do + let i4 ← + list_nth_shared_fwd Int32 ls + (UInt32.ofNatCore 1 (by intlit)) + if h: not (i4 = (Int32.ofNatCore 3 (by intlit))) + then Result.fail Error.panic + else + do + let i5 ← + list_nth_shared_fwd Int32 ls + (UInt32.ofNatCore 2 (by intlit)) + if h: not (i5 = (Int32.ofNatCore 2 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_list_functions] -/ + #assert (test_list_functions_fwd == .ret ()) + + /- [no_nested_borrows::id_mut_pair1] -/ + def id_mut_pair1_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := + Result.ret (x, y) + + /- [no_nested_borrows::id_mut_pair1] -/ + def id_mut_pair1_back + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := ret0 + Result.ret (t, t0) + + /- [no_nested_borrows::id_mut_pair2] -/ + def id_mut_pair2_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := p + Result.ret (t, t0) + + /- [no_nested_borrows::id_mut_pair2] -/ + def id_mut_pair2_back + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := ret0 + Result.ret (t, t0) + + /- [no_nested_borrows::id_mut_pair3] -/ + def id_mut_pair3_fwd (T1 T2 : Type) (x : T1) (y : T2) : Result (T1 × T2) := + Result.ret (x, y) + + /- [no_nested_borrows::id_mut_pair3] -/ + def id_mut_pair3_back'a + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T1) : Result T1 := + Result.ret ret0 + + /- [no_nested_borrows::id_mut_pair3] -/ + def id_mut_pair3_back'b + (T1 T2 : Type) (x : T1) (y : T2) (ret0 : T2) : Result T2 := + Result.ret ret0 + + /- [no_nested_borrows::id_mut_pair4] -/ + def id_mut_pair4_fwd (T1 T2 : Type) (p : (T1 × T2)) : Result (T1 × T2) := + let (t, t0) := p + Result.ret (t, t0) + + /- [no_nested_borrows::id_mut_pair4] -/ + def id_mut_pair4_back'a + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T1) : Result T1 := + Result.ret ret0 + + /- [no_nested_borrows::id_mut_pair4] -/ + def id_mut_pair4_back'b + (T1 T2 : Type) (p : (T1 × T2)) (ret0 : T2) : Result T2 := + Result.ret ret0 + + /- [no_nested_borrows::StructWithTuple] -/ + structure struct_with_tuple_t (T1 T2 : Type) where + + struct_with_tuple_p : (T1 × T2) + + + /- [no_nested_borrows::new_tuple1] -/ + def new_tuple1_fwd : Result (struct_with_tuple_t UInt32 UInt32) := + Result.ret + { + struct_with_tuple_p := ((UInt32.ofNatCore 1 (by intlit)), + (UInt32.ofNatCore 2 (by intlit))) + } + + /- [no_nested_borrows::new_tuple2] -/ + def new_tuple2_fwd : Result (struct_with_tuple_t Int16 Int16) := + Result.ret + { + struct_with_tuple_p := ((Int16.ofNatCore 1 (by intlit)), + (Int16.ofNatCore 2 (by intlit))) + } + + /- [no_nested_borrows::new_tuple3] -/ + def new_tuple3_fwd : Result (struct_with_tuple_t UInt64 Int64) := + Result.ret + { + struct_with_tuple_p := ((UInt64.ofNatCore 1 (by intlit)), + (Int64.ofNatCore 2 (by intlit))) + } + + /- [no_nested_borrows::StructWithPair] -/ + structure struct_with_pair_t (T1 T2 : Type) where + + struct_with_pair_p : pair_t T1 T2 + + + /- [no_nested_borrows::new_pair1] -/ + def new_pair1_fwd : Result (struct_with_pair_t UInt32 UInt32) := + Result.ret + { + struct_with_pair_p := { + pair_x := (UInt32.ofNatCore 1 (by intlit)), + pair_y := (UInt32.ofNatCore 2 (by intlit)) + } + } + + /- [no_nested_borrows::test_constants] -/ + def test_constants_fwd : Result Unit := + do + let swt ← new_tuple1_fwd + let (i, _) := swt.struct_with_tuple_p + if h: not (i = (UInt32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + do + let swt0 ← new_tuple2_fwd + let (i0, _) := swt0.struct_with_tuple_p + if h: not (i0 = (Int16.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + do + let swt1 ← new_tuple3_fwd + let (i1, _) := swt1.struct_with_tuple_p + if h: not (i1 = (UInt64.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else + do + let swp ← new_pair1_fwd + if h: not (swp.struct_with_pair_p.pair_x = + (UInt32.ofNatCore 1 (by intlit))) + then Result.fail Error.panic + else Result.ret () + + /- Unit test for [no_nested_borrows::test_constants] -/ + #assert (test_constants_fwd == .ret ()) + + /- [no_nested_borrows::test_weird_borrows1] -/ + def test_weird_borrows1_fwd : Result Unit := + Result.ret () + + /- Unit test for [no_nested_borrows::test_weird_borrows1] -/ + #assert (test_weird_borrows1_fwd == .ret ()) + + /- [no_nested_borrows::test_mem_replace] -/ + def test_mem_replace_fwd_back (px : UInt32) : Result UInt32 := + let y := mem_replace_fwd UInt32 px (UInt32.ofNatCore 1 (by intlit)) + if h: not (y = (UInt32.ofNatCore 0 (by intlit))) + then Result.fail Error.panic + else Result.ret (UInt32.ofNatCore 2 (by intlit)) + + /- [no_nested_borrows::test_shared_borrow_bool1] -/ + def test_shared_borrow_bool1_fwd (b : Bool) : Result UInt32 := + if h: b + then Result.ret (UInt32.ofNatCore 0 (by intlit)) + else Result.ret (UInt32.ofNatCore 1 (by intlit)) + + /- [no_nested_borrows::test_shared_borrow_bool2] -/ + def test_shared_borrow_bool2_fwd : Result UInt32 := + Result.ret (UInt32.ofNatCore 0 (by intlit)) + + /- [no_nested_borrows::test_shared_borrow_enum1] -/ + def test_shared_borrow_enum1_fwd (l : list_t UInt32) : Result UInt32 := + match h: l with + | list_t.ListCons i l0 => Result.ret (UInt32.ofNatCore 1 (by intlit)) + | list_t.ListNil => Result.ret (UInt32.ofNatCore 0 (by intlit)) + + /- [no_nested_borrows::test_shared_borrow_enum2] -/ + def test_shared_borrow_enum2_fwd : Result UInt32 := + Result.ret (UInt32.ofNatCore 0 (by intlit)) + diff --git a/tests/lean/misc-no_nested_borrows/lakefile.lean b/tests/lean/misc-no_nested_borrows/lakefile.lean new file mode 100644 index 00000000..e4460813 --- /dev/null +++ b/tests/lean/misc-no_nested_borrows/lakefile.lean @@ -0,0 +1,18 @@ +import Lake +open Lake DSL + +require mathlib from git + "https://github.com/leanprover-community/mathlib4.git" + +package «no_nested_borrows» { + -- add package configuration options here +} + +lean_lib «Base» { + -- add library configuration options here +} + +lean_lib «NoNestedBorrows» { + -- add library configuration options here +} + |