summaryrefslogtreecommitdiff
path: root/tests/lean/hashmap
diff options
context:
space:
mode:
authorSon Ho2023-03-07 08:41:57 +0100
committerSon HO2023-06-04 21:44:33 +0200
commitfeb60683216a6d9193d6353605560c6c80a1ab41 (patch)
tree222f61e4c5cbcd166e81d82350afc54b002774df /tests/lean/hashmap
parentb4bad8df4eabb17c71dfa7b24d79d62fc06d0a70 (diff)
Make minor modifications and regenerate the Lean files
Diffstat (limited to 'tests/lean/hashmap')
-rw-r--r--tests/lean/hashmap/Base/Primitives.lean231
-rw-r--r--tests/lean/hashmap/Hashmap/Clauses/Template.lean6
-rw-r--r--tests/lean/hashmap/Hashmap/Funs.lean400
-rw-r--r--tests/lean/hashmap/Hashmap/Types.lean2
4 files changed, 329 insertions, 310 deletions
diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean
index 79958d94..5b64e908 100644
--- a/tests/lean/hashmap/Base/Primitives.lean
+++ b/tests/lean/hashmap/Base/Primitives.lean
@@ -9,74 +9,79 @@ import Mathlib.Tactic.RunCmd
-- Results & monadic combinators
--- TODO: use syntactic conventions and capitalize error, result, etc.
-
-inductive error where
- | assertionFailure: error
- | integerOverflow: error
- | arrayOutOfBounds: error
- | maximumSizeExceeded: error
- | panic: error
+inductive Error where
+ | assertionFailure: Error
+ | integerOverflow: Error
+ | arrayOutOfBounds: Error
+ | maximumSizeExceeded: Error
+ | panic: Error
deriving Repr, BEq
-open error
+open Error
-inductive result (α : Type u) where
- | ret (v: α): result α
- | fail (e: error): result α
+inductive Result (α : Type u) where
+ | ret (v: α): Result α
+ | fail (e: Error): Result α
deriving Repr, BEq
-open result
+open Result
/- HELPERS -/
--- TODO: is there automated syntax for these discriminators?
-def is_ret {α: Type} (r: result α): Bool :=
+def ret? {α: Type} (r: Result α): Bool :=
match r with
- | result.ret _ => true
- | result.fail _ => false
+ | Result.ret _ => true
+ | Result.fail _ => false
-def massert (b:Bool) : result Unit :=
+def massert (b:Bool) : Result Unit :=
if b then .ret () else fail assertionFailure
-def eval_global {α: Type} (x: result α) (_: is_ret x): α :=
+def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
match x with
- | result.fail _ => by contradiction
- | result.ret x => x
+ | Result.fail _ => by contradiction
+ | Result.ret x => x
/- DO-DSL SUPPORT -/
-def bind (x: result α) (f: α -> result β) : result β :=
+def bind (x: Result α) (f: α -> Result β) : Result β :=
match x with
| ret v => f v
| fail v => fail v
--- Allows using result in do-blocks
-instance : Bind result where
+-- Allows using Result in do-blocks
+instance : Bind Result where
bind := bind
-- Allows using return x in do-blocks
-instance : Pure result where
+instance : Pure Result where
pure := fun x => ret x
/- CUSTOM-DSL SUPPORT -/
--- Let-binding the result of a monadic operation is oftentimes not sufficient,
+-- Let-binding the Result of a monadic operation is oftentimes not sufficient,
-- because we may need a hypothesis for equational reasoning in the scope. We
-- rely on subtype, and a custom let-binding operator, in effect recreating our
-- own variant of the do-dsl
-def result.attach : (o : result α) → result { x : α // o = ret x }
+def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
+ match o with
| .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
+ | .fail e => .fail e
-macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, $h⟩ ← result.attach $f)
+macro "let" e:term " ⟵ " f:term : doElem =>
+ `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
--- Silly example of the kind of reasoning that this notation enables
+-- TODO: any way to factorize both definitions?
+macro "let" e:term " <-- " f:term : doElem =>
+ `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
+
+-- We call the hypothesis `h`, in effect making it unavailable to the user
+-- (because too much shadowing). But in practice, once can use the French single
+-- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
+-- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
#eval do
- let h: y <-- .ret (0: Nat)
- let _: y = 0 := by cases h; decide
+ let y <-- .ret (0: Nat)
+ let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
.ret r
@@ -84,36 +89,27 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem =>
-- MACHINE INTEGERS --
----------------------
--- NOTE: we reuse the USize type from prelude.lean, because at least we know
--- it's defined in an idiomatic style that is going to make proofs easy (and
--- indeed, several proofs here are much shortened compared to Aymeric's earlier
--- attempt.) This is not stricto sensu the *correct* thing to do, because one
--- can query at run-time the value of USize, which we do *not* want to do (we
--- don't know what target we'll run on!), but when the day comes, we'll just
--- define our own USize.
--- ANOTHER NOTE: there is USize.sub but it has wraparound semantics, which is
--- not something we want to define (I think), so we use our own monadic sub (but
--- is it in line with the Rust behavior?)
-
--- TODO: I am somewhat under the impression that subtraction is defined as a
--- total function over nats...? the hypothesis in the if condition is not used
--- in the then-branch which confuses me quite a bit
-
--- TODO: add a refinement for the result (just like vec_push_back below) that
--- explains that the toNat of the result (in the case of success) is the sub of
--- the toNat of the arguments (i.e. intrinsic specification)
--- ... do we want intrinsic specifications for the builtins? that might require
--- some careful type annotations in the monadic notation for clients, but may
--- give us more "for free"
+-- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
+-- USize. They are generally defined in an idiomatic style, except that there is
+-- not a single type class to rule them all (more on that below). The absence of
+-- type class is intentional, and allows the Lean compiler to efficiently map
+-- them to machine integers during compilation.
+
+-- USize is designed properly: you cannot reduce `getNumBits` using the
+-- simplifier, meaning that proofs do not depend on the compile-time value of
+-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
+-- support, at least officially, 16-bit microcontrollers, so this seems like a
+-- fine design decision for now.)
-- Note from Chris Bailey: "If there's more than one salient property of your
-- definition then the subtyping strategy might get messy, and the property part
-- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." Try to settle this with a Lean expert on what is the most
--- productive way to go about this?
+-- library_search." So, we will not add refinements on the return values of the
+-- operations defined on Primitives, but will rather rely on custom lemmas to
+-- invert on possible return values of the primitive operations.
--- One needs to perform a little bit of reasoning in order to successfully
--- inject constants into USize, so we provide a general-purpose macro
+-- Machine integer constants, done via `ofNatCore`, which requires a proof that
+-- the `Nat` fits within the desired integer type. We provide a custom tactic.
syntax "intlit" : tactic
@@ -129,12 +125,21 @@ macro_rules
-- Also works for other integer types (at the expense of a needless disjunction)
#eval UInt32.ofNatCore 0 (by intlit)
+-- The machine integer operations (e.g. sub) are always total, which is not what
+-- we want. We therefore define "checked" variants, below. Note that we add a
+-- tiny bit of complexity for the USize variant: we first check whether the
+-- result is < 2^32; if it is, we can compute the definition, rather than
+-- returning a term that is computationally stuck (the comparison to USize.size
+-- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
+-- This is useful for the various #asserts that we want to reduce at
+-- type-checking time.
+
-- Further thoughts: look at what has been done here:
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): result USize :=
+def USize.checked_sub (n: USize) (m: USize): Result USize :=
-- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
if n >= m then
let n' := USize.toNat n
@@ -150,18 +155,19 @@ def USize.checked_sub (n: USize) (m: USize): result USize :=
else
fail integerOverflow
-def USize.checked_add (n: USize) (m: USize): result USize :=
- if h: n.val.val + m.val.val <= 4294967295 then
- .ret ⟨ n.val.val + m.val.val, by
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: n.val + m.val < USize.size then
+@[simp]
+theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
+ match USize.size, usize_size_eq with
+ | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
+ | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
+
+def USize.checked_add (n: USize) (m: USize): Result USize :=
+ if h: n.val + m.val < USize.size then
.ret ⟨ n.val + m.val, h ⟩
else
.fail integerOverflow
-def USize.checked_rem (n: USize) (m: USize): result USize :=
+def USize.checked_rem (n: USize) (m: USize): Result USize :=
if h: m > 0 then
.ret ⟨ n.val % m.val, by
have h1: ↑m.val < USize.size := m.val.isLt
@@ -171,18 +177,13 @@ def USize.checked_rem (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
-def USize.checked_mul (n: USize) (m: USize): result USize :=
- if h: n.val.val * m.val.val <= 4294967295 then
- .ret ⟨ n.val.val * m.val.val, by
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: n.val * m.val < USize.size then
+def USize.checked_mul (n: USize) (m: USize): Result USize :=
+ if h: n.val * m.val < USize.size then
.ret ⟨ n.val * m.val, h ⟩
else
.fail integerOverflow
-def USize.checked_div (n: USize) (m: USize): result USize :=
+def USize.checked_div (n: USize) (m: USize): Result USize :=
if m > 0 then
.ret ⟨ n.val / m.val, by
have h1: ↑n.val < USize.size := n.val.isLt
@@ -192,6 +193,19 @@ def USize.checked_div (n: USize) (m: USize): result USize :=
else
.fail integerOverflow
+-- Test behavior...
+#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
+
+#eval USize.checked_sub 20 10
+-- NOTE: compare with concrete behavior here, which I do not think we want
+#eval USize.sub 0 1
+#eval UInt8.add 255 255
+
+-- We now define a type class that subsumes the various machine integer types, so
+-- as to write a concise definition for scalar_cast, rather than exhaustively
+-- enumerating all of the possible pairs. We remark that Rust has sane semantics
+-- and fails if a cast operation would involve a truncation or modulo.
+
class MachineInteger (t: Type) where
size: Nat
val: t -> Fin size
@@ -209,30 +223,24 @@ run_cmd
end $typeName
))
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst :=
+-- Aeneas only instantiates the destination type (`src` is implicit). We rely on
+-- Lean to infer `src`.
+
+def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
if h: MachineInteger.val x < MachineInteger.size dst then
.ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
else
.fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
-------------
-- VECTORS --
-------------
-- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
-- rather than maximum values (usize_max).
-def vec (α : Type u) := { l : List α // List.length l < USize.size }
+def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-def vec_new (α : Type u): vec α := ⟨ [], by {
+def vec_new (α : Type u): Vec α := ⟨ [], by {
match USize.size, usize_size_eq with
| _, Or.inl rfl => simp
| _, Or.inr rfl => simp
@@ -240,20 +248,20 @@ def vec_new (α : Type u): vec α := ⟨ [], by {
#check vec_new
-def vec_len (α : Type u) (v : vec α) : USize :=
+def vec_len (α : Type u) (v : Vec α) : USize :=
let ⟨ v, l ⟩ := v
USize.ofNatCore (List.length v) l
#eval vec_len Nat (vec_new Nat)
-def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := ()
+def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-- NOTE: old version trying to use a subtype notation, but probably better to
--- leave result elimination to auxiliary lemmas with suitable preconditions
+-- leave Result elimination to auxiliary lemmas with suitable preconditions
-- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
-- make the proof work in that case? Probably need to import tactics from
-- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) //
+def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
:=
if h : List.length v.val + 1 < USize.size then
@@ -272,12 +280,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec
-- annotate `x`, which relieves us of having to write `.val` on the right-hand
-- side of the monadic let.
let v := vec_new Nat
- let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here?
+ let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
-- TODO: strengthen post-condition above and do a demo to show that we can
-- safely eliminate the `fail` case
return (vec_len Nat x)
-def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
+def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
:=
if h : List.length v.val + 1 <= 4294967295 then
return ⟨ List.concat v.val x,
@@ -295,13 +303,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α)
else
fail maximumSizeExceeded
-def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -311,25 +319,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α
else
.fail arrayOutOfBounds
-def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit :=
+def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α :=
+def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
if h: i.val < List.length v.val then
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) :=
+def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
.ret ⟨ List.set v.val i.val x, by
have h: List.length v.val < USize.size := v.property
@@ -349,6 +357,10 @@ def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
y
+/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
+ Use with `simp [ aeneas ]` -/
+register_simp_attr aeneas
+
--------------------
-- ASSERT COMMAND --
--------------------
@@ -358,16 +370,23 @@ open Lean Elab Command Term Meta
syntax (name := assert) "#assert" term: command
@[command_elab assert]
+unsafe
def assertImpl : CommandElab := fun (_stx: Syntax) => do
- logInfo "Reducing and asserting: "
- logInfo _stx[1]
runTermElabM (fun _ => do
- let e ← Term.elabTerm _stx[1] none
- logInfo (Expr.dbgToString e)
- -- How to evaluate the term and compare the result to true?
+ let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
+ if not r then
+ logInfo "Assertion failed for: "
+ logInfo _stx[1]
+ logError "Expression reduced to false"
pure ())
- -- logInfo (Expr.dbgToString (``true))
- -- throwError "TODO: assert"
#eval 2 == 2
#assert (2 == 2)
+
+-------------------
+-- SANITY CHECKS --
+-------------------
+
+-- TODO: add more once we have signed integers
+
+#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean
index 2bc92153..b767a0eb 100644
--- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean
+++ b/tests/lean/hashmap/Hashmap/Clauses/Template.lean
@@ -5,7 +5,7 @@ import Hashmap.Types
/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/
@[simp]
-def hash_map_allocate_slots_loop_terminates (T : Type) (slots : vec (list_t T))
+def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T))
(n : USize) :=
(slots, n)
@@ -16,7 +16,7 @@ macro_rules
/- [hashmap::HashMap::{0}::clear]: termination measure -/
@[simp]
-def hash_map_clear_loop_terminates (T : Type) (slots : vec (list_t T))
+def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T))
(i : USize) :=
(slots, i)
@@ -52,7 +52,7 @@ macro_rules
/- [hashmap::HashMap::{0}::move_elements]: termination measure -/
@[simp]
def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T)
- (slots : vec (list_t T)) (i : USize) :=
+ (slots : Vec (list_t T)) (i : USize) :=
(ntable, slots, i)
syntax "hash_map_move_elements_loop_decreases" term+ : tactic
diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/hashmap/Hashmap/Funs.lean
index 3bdd9dd2..0b3708fa 100644
--- a/tests/lean/hashmap/Hashmap/Funs.lean
+++ b/tests/lean/hashmap/Hashmap/Funs.lean
@@ -5,42 +5,42 @@ import Hashmap.Types
import Hashmap.Clauses.Clauses
/- [hashmap::hash_key] -/
-def hash_key_fwd (k : USize) : result USize :=
- result.ret k
+def hash_key_fwd (k : USize) : Result USize :=
+ Result.ret k
/- [hashmap::HashMap::{0}::allocate_slots] -/
def hash_map_allocate_slots_loop_fwd
- (T : Type) (slots : vec (list_t T)) (n : USize) :
- (result (vec (list_t T)))
+ (T : Type) (slots : Vec (list_t T)) (n : USize) :
+ (Result (Vec (list_t T)))
:=
- if n > (USize.ofNatCore 0 (by intlit))
+ if h: n > (USize.ofNatCore 0 (by intlit))
then
do
- let slots0 <- vec_push_back (list_t T) slots list_t.ListNil
- let n0 <- USize.checked_sub n (USize.ofNatCore 1 (by intlit))
+ let slots0 ← vec_push_back (list_t T) slots list_t.ListNil
+ let n0 ← USize.checked_sub n (USize.ofNatCore 1 (by intlit))
hash_map_allocate_slots_loop_fwd T slots0 n0
- else result.ret slots
+ else Result.ret slots
termination_by hash_map_allocate_slots_loop_fwd slots n =>
hash_map_allocate_slots_loop_terminates T slots n
decreasing_by hash_map_allocate_slots_loop_decreases slots n
/- [hashmap::HashMap::{0}::allocate_slots] -/
def hash_map_allocate_slots_fwd
- (T : Type) (slots : vec (list_t T)) (n : USize) : result (vec (list_t T)) :=
+ (T : Type) (slots : Vec (list_t T)) (n : USize) : Result (Vec (list_t T)) :=
hash_map_allocate_slots_loop_fwd T slots n
/- [hashmap::HashMap::{0}::new_with_capacity] -/
def hash_map_new_with_capacity_fwd
(T : Type) (capacity : USize) (max_load_dividend : USize)
(max_load_divisor : USize) :
- result (hash_map_t T)
+ Result (hash_map_t T)
:=
do
let v := vec_new (list_t T)
- let slots <- hash_map_allocate_slots_fwd T v capacity
- let i <- USize.checked_mul capacity max_load_dividend
- let i0 <- USize.checked_div i max_load_divisor
- result.ret
+ let slots ← hash_map_allocate_slots_fwd T v capacity
+ let i ← USize.checked_mul capacity max_load_dividend
+ let i0 ← USize.checked_div i max_load_divisor
+ Result.ret
{
hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
hash_map_max_load_factor := (max_load_dividend, max_load_divisor),
@@ -49,35 +49,35 @@ def hash_map_new_with_capacity_fwd
}
/- [hashmap::HashMap::{0}::new] -/
-def hash_map_new_fwd (T : Type) : result (hash_map_t T) :=
+def hash_map_new_fwd (T : Type) : Result (hash_map_t T) :=
hash_map_new_with_capacity_fwd T (USize.ofNatCore 32 (by intlit))
(USize.ofNatCore 4 (by intlit)) (USize.ofNatCore 5 (by intlit))
/- [hashmap::HashMap::{0}::clear] -/
def hash_map_clear_loop_fwd_back
- (T : Type) (slots : vec (list_t T)) (i : USize) :
- (result (vec (list_t T)))
+ (T : Type) (slots : Vec (list_t T)) (i : USize) :
+ (Result (Vec (list_t T)))
:=
let i0 := vec_len (list_t T) slots
- if i < i0
+ if h: i < i0
then
do
- let i1 <- USize.checked_add i (USize.ofNatCore 1 (by intlit))
- let slots0 <- vec_index_mut_back (list_t T) slots i list_t.ListNil
+ let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let slots0 ← vec_index_mut_back (list_t T) slots i list_t.ListNil
hash_map_clear_loop_fwd_back T slots0 i1
- else result.ret slots
+ else Result.ret slots
termination_by hash_map_clear_loop_fwd_back slots i =>
hash_map_clear_loop_terminates T slots i
decreasing_by hash_map_clear_loop_decreases slots i
/- [hashmap::HashMap::{0}::clear] -/
def hash_map_clear_fwd_back
- (T : Type) (self : hash_map_t T) : result (hash_map_t T) :=
+ (T : Type) (self : hash_map_t T) : Result (hash_map_t T) :=
do
- let v <-
+ let v ←
hash_map_clear_loop_fwd_back T self.hash_map_slots
(USize.ofNatCore 0 (by intlit))
- result.ret
+ Result.ret
{
hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -86,69 +86,69 @@ def hash_map_clear_fwd_back
}
/- [hashmap::HashMap::{0}::len] -/
-def hash_map_len_fwd (T : Type) (self : hash_map_t T) : result USize :=
- result.ret self.hash_map_num_entries
+def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result USize :=
+ Result.ret self.hash_map_num_entries
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_loop_fwd
- (T : Type) (key : USize) (value : T) (ls : list_t T) : (result Bool) :=
- match ls with
+ (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result Bool) :=
+ match h: ls with
| list_t.ListCons ckey cvalue tl =>
- if ckey = key
- then result.ret false
+ if h: ckey = key
+ then Result.ret false
else hash_map_insert_in_list_loop_fwd T key value tl
- | list_t.ListNil => result.ret true
+ | list_t.ListNil => Result.ret true
termination_by hash_map_insert_in_list_loop_fwd key value ls =>
hash_map_insert_in_list_loop_terminates T key value ls
decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_fwd
- (T : Type) (key : USize) (value : T) (ls : list_t T) : result Bool :=
+ (T : Type) (key : USize) (value : T) (ls : list_t T) : Result Bool :=
hash_map_insert_in_list_loop_fwd T key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_loop_back
- (T : Type) (key : USize) (value : T) (ls : list_t T) : (result (list_t T)) :=
- match ls with
+ (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result (list_t T)) :=
+ match h: ls with
| list_t.ListCons ckey cvalue tl =>
- if ckey = key
- then result.ret (list_t.ListCons ckey value tl)
+ if h: ckey = key
+ then Result.ret (list_t.ListCons ckey value tl)
else
do
- let tl0 <- hash_map_insert_in_list_loop_back T key value tl
- result.ret (list_t.ListCons ckey cvalue tl0)
+ let tl0 ← hash_map_insert_in_list_loop_back T key value tl
+ Result.ret (list_t.ListCons ckey cvalue tl0)
| list_t.ListNil =>
let l := list_t.ListNil
- result.ret (list_t.ListCons key value l)
+ Result.ret (list_t.ListCons key value l)
termination_by hash_map_insert_in_list_loop_back key value ls =>
hash_map_insert_in_list_loop_terminates T key value ls
decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_back
- (T : Type) (key : USize) (value : T) (ls : list_t T) : result (list_t T) :=
+ (T : Type) (key : USize) (value : T) (ls : list_t T) : Result (list_t T) :=
hash_map_insert_in_list_loop_back T key value ls
/- [hashmap::HashMap::{0}::insert_no_resize] -/
def hash_map_insert_no_resize_fwd_back
(T : Type) (self : hash_map_t T) (key : USize) (value : T) :
- result (hash_map_t T)
+ Result (hash_map_t T)
:=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
- let inserted <- hash_map_insert_in_list_fwd T key value l
- if inserted
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
+ let inserted ← hash_map_insert_in_list_fwd T key value l
+ if h: inserted
then
do
- let i0 <- USize.checked_add self.hash_map_num_entries
+ let i0 ← USize.checked_add self.hash_map_num_entries
(USize.ofNatCore 1 (by intlit))
- let l0 <- hash_map_insert_in_list_back T key value l
- let v <- vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
- result.ret
+ let l0 ← hash_map_insert_in_list_back T key value l
+ let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
+ Result.ret
{
hash_map_num_entries := i0,
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -157,9 +157,9 @@ def hash_map_insert_no_resize_fwd_back
}
else
do
- let l0 <- hash_map_insert_in_list_back T key value l
- let v <- vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
- result.ret
+ let l0 ← hash_map_insert_in_list_back T key value l
+ let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
+ Result.ret
{
hash_map_num_entries := self.hash_map_num_entries,
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -168,76 +168,76 @@ def hash_map_insert_no_resize_fwd_back
}
/- [core::num::u32::{9}::MAX] -/
-def core_num_u32_max_body : result UInt32 :=
- result.ret (UInt32.ofNatCore 4294967295 (by intlit))
+def core_num_u32_max_body : Result UInt32 :=
+ Result.ret (UInt32.ofNatCore 4294967295 (by intlit))
def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap::HashMap::{0}::move_elements_from_list] -/
def hash_map_move_elements_from_list_loop_fwd_back
(T : Type) (ntable : hash_map_t T) (ls : list_t T) :
- (result (hash_map_t T))
+ (Result (hash_map_t T))
:=
- match ls with
+ match h: ls with
| list_t.ListCons k v tl =>
do
- let ntable0 <- hash_map_insert_no_resize_fwd_back T ntable k v
+ let ntable0 ← hash_map_insert_no_resize_fwd_back T ntable k v
hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl
- | list_t.ListNil => result.ret ntable
+ | list_t.ListNil => Result.ret ntable
termination_by hash_map_move_elements_from_list_loop_fwd_back ntable ls =>
hash_map_move_elements_from_list_loop_terminates T ntable ls
decreasing_by hash_map_move_elements_from_list_loop_decreases ntable ls
/- [hashmap::HashMap::{0}::move_elements_from_list] -/
def hash_map_move_elements_from_list_fwd_back
- (T : Type) (ntable : hash_map_t T) (ls : list_t T) : result (hash_map_t T) :=
+ (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) :=
hash_map_move_elements_from_list_loop_fwd_back T ntable ls
/- [hashmap::HashMap::{0}::move_elements] -/
def hash_map_move_elements_loop_fwd_back
- (T : Type) (ntable : hash_map_t T) (slots : vec (list_t T)) (i : USize) :
- (result ((hash_map_t T) × (vec (list_t T))))
+ (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) :
+ (Result ((hash_map_t T) × (Vec (list_t T))))
:=
let i0 := vec_len (list_t T) slots
- if i < i0
+ if h: i < i0
then
do
- let l <- vec_index_mut_fwd (list_t T) slots i
+ let l ← vec_index_mut_fwd (list_t T) slots i
let ls := mem_replace_fwd (list_t T) l list_t.ListNil
- let ntable0 <- hash_map_move_elements_from_list_fwd_back T ntable ls
- let i1 <- USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let ntable0 ← hash_map_move_elements_from_list_fwd_back T ntable ls
+ let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
let l0 := mem_replace_back (list_t T) l list_t.ListNil
- let slots0 <- vec_index_mut_back (list_t T) slots i l0
+ let slots0 ← vec_index_mut_back (list_t T) slots i l0
hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1
- else result.ret (ntable, slots)
+ else Result.ret (ntable, slots)
termination_by hash_map_move_elements_loop_fwd_back ntable slots i =>
hash_map_move_elements_loop_terminates T ntable slots i
decreasing_by hash_map_move_elements_loop_decreases ntable slots i
/- [hashmap::HashMap::{0}::move_elements] -/
def hash_map_move_elements_fwd_back
- (T : Type) (ntable : hash_map_t T) (slots : vec (list_t T)) (i : USize) :
- result ((hash_map_t T) × (vec (list_t T)))
+ (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) :
+ Result ((hash_map_t T) × (Vec (list_t T)))
:=
hash_map_move_elements_loop_fwd_back T ntable slots i
/- [hashmap::HashMap::{0}::try_resize] -/
def hash_map_try_resize_fwd_back
- (T : Type) (self : hash_map_t T) : result (hash_map_t T) :=
+ (T : Type) (self : hash_map_t T) : Result (hash_map_t T) :=
do
- let max_usize <- scalar_cast USize core_num_u32_max_c
+ let max_usize ← scalar_cast USize core_num_u32_max_c
let capacity := vec_len (list_t T) self.hash_map_slots
- let n1 <- USize.checked_div max_usize (USize.ofNatCore 2 (by intlit))
+ let n1 ← USize.checked_div max_usize (USize.ofNatCore 2 (by intlit))
let (i, i0) := self.hash_map_max_load_factor
- let i1 <- USize.checked_div n1 i
- if capacity <= i1
+ let i1 ← USize.checked_div n1 i
+ if h: capacity <= i1
then
do
- let i2 <- USize.checked_mul capacity (USize.ofNatCore 2 (by intlit))
- let ntable <- hash_map_new_with_capacity_fwd T i2 i i0
- let (ntable0, _) <-
+ let i2 ← USize.checked_mul capacity (USize.ofNatCore 2 (by intlit))
+ let ntable ← hash_map_new_with_capacity_fwd T i2 i i0
+ let (ntable0, _) ←
hash_map_move_elements_fwd_back T ntable self.hash_map_slots
(USize.ofNatCore 0 (by intlit))
- result.ret
+ Result.ret
{
hash_map_num_entries := self.hash_map_num_entries,
hash_map_max_load_factor := (i, i0),
@@ -245,7 +245,7 @@ def hash_map_try_resize_fwd_back
hash_map_slots := ntable0.hash_map_slots
}
else
- result.ret
+ Result.ret
{
hash_map_num_entries := self.hash_map_num_entries,
hash_map_max_load_factor := (i, i0),
@@ -256,133 +256,133 @@ def hash_map_try_resize_fwd_back
/- [hashmap::HashMap::{0}::insert] -/
def hash_map_insert_fwd_back
(T : Type) (self : hash_map_t T) (key : USize) (value : T) :
- result (hash_map_t T)
+ Result (hash_map_t T)
:=
do
- let self0 <- hash_map_insert_no_resize_fwd_back T self key value
- let i <- hash_map_len_fwd T self0
- if i > self0.hash_map_max_load
+ let self0 ← hash_map_insert_no_resize_fwd_back T self key value
+ let i ← hash_map_len_fwd T self0
+ if h: i > self0.hash_map_max_load
then hash_map_try_resize_fwd_back T self0
- else result.ret self0
+ else Result.ret self0
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
def hash_map_contains_key_in_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (result Bool) :=
- match ls with
+ (T : Type) (key : USize) (ls : list_t T) : (Result Bool) :=
+ match h: ls with
| list_t.ListCons ckey t tl =>
- if ckey = key
- then result.ret true
+ if h: ckey = key
+ then Result.ret true
else hash_map_contains_key_in_list_loop_fwd T key tl
- | list_t.ListNil => result.ret false
+ | list_t.ListNil => Result.ret false
termination_by hash_map_contains_key_in_list_loop_fwd key ls =>
hash_map_contains_key_in_list_loop_terminates T key ls
decreasing_by hash_map_contains_key_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
def hash_map_contains_key_in_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : result Bool :=
+ (T : Type) (key : USize) (ls : list_t T) : Result Bool :=
hash_map_contains_key_in_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::contains_key] -/
def hash_map_contains_key_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : result Bool :=
+ (T : Type) (self : hash_map_t T) (key : USize) : Result Bool :=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_fwd (list_t T) self.hash_map_slots hash_mod
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_contains_key_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_in_list] -/
def hash_map_get_in_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (result T) :=
- match ls with
+ (T : Type) (key : USize) (ls : list_t T) : (Result T) :=
+ match h: ls with
| list_t.ListCons ckey cvalue tl =>
- if ckey = key
- then result.ret cvalue
+ if h: ckey = key
+ then Result.ret cvalue
else hash_map_get_in_list_loop_fwd T key tl
- | list_t.ListNil => result.fail error.panic
+ | list_t.ListNil => Result.fail Error.panic
termination_by hash_map_get_in_list_loop_fwd key ls =>
hash_map_get_in_list_loop_terminates T key ls
decreasing_by hash_map_get_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::get_in_list] -/
def hash_map_get_in_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : result T :=
+ (T : Type) (key : USize) (ls : list_t T) : Result T :=
hash_map_get_in_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::get] -/
def hash_map_get_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : result T :=
+ (T : Type) (self : hash_map_t T) (key : USize) : Result T :=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_fwd (list_t T) self.hash_map_slots hash_mod
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_get_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_loop_fwd
- (T : Type) (ls : list_t T) (key : USize) : (result T) :=
- match ls with
+ (T : Type) (ls : list_t T) (key : USize) : (Result T) :=
+ match h: ls with
| list_t.ListCons ckey cvalue tl =>
- if ckey = key
- then result.ret cvalue
+ if h: ckey = key
+ then Result.ret cvalue
else hash_map_get_mut_in_list_loop_fwd T tl key
- | list_t.ListNil => result.fail error.panic
+ | list_t.ListNil => Result.fail Error.panic
termination_by hash_map_get_mut_in_list_loop_fwd ls key =>
hash_map_get_mut_in_list_loop_terminates T ls key
decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_fwd
- (T : Type) (ls : list_t T) (key : USize) : result T :=
+ (T : Type) (ls : list_t T) (key : USize) : Result T :=
hash_map_get_mut_in_list_loop_fwd T ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_loop_back
- (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : (result (list_t T)) :=
- match ls with
+ (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : (Result (list_t T)) :=
+ match h: ls with
| list_t.ListCons ckey cvalue tl =>
- if ckey = key
- then result.ret (list_t.ListCons ckey ret0 tl)
+ if h: ckey = key
+ then Result.ret (list_t.ListCons ckey ret0 tl)
else
do
- let tl0 <- hash_map_get_mut_in_list_loop_back T tl key ret0
- result.ret (list_t.ListCons ckey cvalue tl0)
- | list_t.ListNil => result.fail error.panic
+ let tl0 ← hash_map_get_mut_in_list_loop_back T tl key ret0
+ Result.ret (list_t.ListCons ckey cvalue tl0)
+ | list_t.ListNil => Result.fail Error.panic
termination_by hash_map_get_mut_in_list_loop_back ls key ret0 =>
hash_map_get_mut_in_list_loop_terminates T ls key
decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_back
- (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : result (list_t T) :=
+ (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : Result (list_t T) :=
hash_map_get_mut_in_list_loop_back T ls key ret0
/- [hashmap::HashMap::{0}::get_mut] -/
def hash_map_get_mut_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : result T :=
+ (T : Type) (self : hash_map_t T) (key : USize) : Result T :=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_get_mut_in_list_fwd T l key
/- [hashmap::HashMap::{0}::get_mut] -/
def hash_map_get_mut_back
(T : Type) (self : hash_map_t T) (key : USize) (ret0 : T) :
- result (hash_map_t T)
+ Result (hash_map_t T)
:=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
- let l0 <- hash_map_get_mut_in_list_back T l key ret0
- let v <- vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
- result.ret
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
+ let l0 ← hash_map_get_mut_in_list_back T l key ret0
+ let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
+ Result.ret
{
hash_map_num_entries := self.hash_map_num_entries,
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -392,85 +392,85 @@ def hash_map_get_mut_back
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (result (Option T)) :=
- match ls with
+ (T : Type) (key : USize) (ls : list_t T) : (Result (Option T)) :=
+ match h: ls with
| list_t.ListCons ckey t tl =>
- if ckey = key
+ if h: ckey = key
then
let mv_ls :=
mem_replace_fwd (list_t T) (list_t.ListCons ckey t tl) list_t.ListNil
- match mv_ls with
- | list_t.ListCons i cvalue tl0 => result.ret (Option.some cvalue)
- | list_t.ListNil => result.fail error.panic
+ match h: mv_ls with
+ | list_t.ListCons i cvalue tl0 => Result.ret (Option.some cvalue)
+ | list_t.ListNil => Result.fail Error.panic
else hash_map_remove_from_list_loop_fwd T key tl
- | list_t.ListNil => result.ret Option.none
+ | list_t.ListNil => Result.ret Option.none
termination_by hash_map_remove_from_list_loop_fwd key ls =>
hash_map_remove_from_list_loop_terminates T key ls
decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : result (Option T) :=
+ (T : Type) (key : USize) (ls : list_t T) : Result (Option T) :=
hash_map_remove_from_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_loop_back
- (T : Type) (key : USize) (ls : list_t T) : (result (list_t T)) :=
- match ls with
+ (T : Type) (key : USize) (ls : list_t T) : (Result (list_t T)) :=
+ match h: ls with
| list_t.ListCons ckey t tl =>
- if ckey = key
+ if h: ckey = key
then
let mv_ls :=
mem_replace_fwd (list_t T) (list_t.ListCons ckey t tl) list_t.ListNil
- match mv_ls with
- | list_t.ListCons i cvalue tl0 => result.ret tl0
- | list_t.ListNil => result.fail error.panic
+ match h: mv_ls with
+ | list_t.ListCons i cvalue tl0 => Result.ret tl0
+ | list_t.ListNil => Result.fail Error.panic
else
do
- let tl0 <- hash_map_remove_from_list_loop_back T key tl
- result.ret (list_t.ListCons ckey t tl0)
- | list_t.ListNil => result.ret list_t.ListNil
+ let tl0 ← hash_map_remove_from_list_loop_back T key tl
+ Result.ret (list_t.ListCons ckey t tl0)
+ | list_t.ListNil => Result.ret list_t.ListNil
termination_by hash_map_remove_from_list_loop_back key ls =>
hash_map_remove_from_list_loop_terminates T key ls
decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_back
- (T : Type) (key : USize) (ls : list_t T) : result (list_t T) :=
+ (T : Type) (key : USize) (ls : list_t T) : Result (list_t T) :=
hash_map_remove_from_list_loop_back T key ls
/- [hashmap::HashMap::{0}::remove] -/
def hash_map_remove_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : result (Option T) :=
+ (T : Type) (self : hash_map_t T) (key : USize) : Result (Option T) :=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
- let x <- hash_map_remove_from_list_fwd T key l
- match x with
- | Option.none => result.ret Option.none
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
+ let x ← hash_map_remove_from_list_fwd T key l
+ match h: x with
+ | Option.none => Result.ret Option.none
| Option.some x0 =>
do
- let _ <- USize.checked_sub self.hash_map_num_entries
+ let _ ← USize.checked_sub self.hash_map_num_entries
(USize.ofNatCore 1 (by intlit))
- result.ret (Option.some x0)
+ Result.ret (Option.some x0)
/- [hashmap::HashMap::{0}::remove] -/
def hash_map_remove_back
- (T : Type) (self : hash_map_t T) (key : USize) : result (hash_map_t T) :=
+ (T : Type) (self : hash_map_t T) (key : USize) : Result (hash_map_t T) :=
do
- let hash <- hash_key_fwd key
+ let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod <- USize.checked_rem hash i
- let l <- vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
- let x <- hash_map_remove_from_list_fwd T key l
- match x with
+ let hash_mod ← USize.checked_rem hash i
+ let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
+ let x ← hash_map_remove_from_list_fwd T key l
+ match h: x with
| Option.none =>
do
- let l0 <- hash_map_remove_from_list_back T key l
- let v <- vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
- result.ret
+ let l0 ← hash_map_remove_from_list_back T key l
+ let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
+ Result.ret
{
hash_map_num_entries := self.hash_map_num_entries,
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -479,11 +479,11 @@ def hash_map_remove_back
}
| Option.some x0 =>
do
- let i0 <- USize.checked_sub self.hash_map_num_entries
+ let i0 ← USize.checked_sub self.hash_map_num_entries
(USize.ofNatCore 1 (by intlit))
- let l0 <- hash_map_remove_from_list_back T key l
- let v <- vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
- result.ret
+ let l0 ← hash_map_remove_from_list_back T key l
+ let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
+ Result.ret
{
hash_map_num_entries := i0,
hash_map_max_load_factor := self.hash_map_max_load_factor,
@@ -492,67 +492,67 @@ def hash_map_remove_back
}
/- [hashmap::test1] -/
-def test1_fwd : result Unit :=
+def test1_fwd : Result Unit :=
do
- let hm <- hash_map_new_fwd UInt64
- let hm0 <-
+ let hm ← hash_map_new_fwd UInt64
+ let hm0 ←
hash_map_insert_fwd_back UInt64 hm (USize.ofNatCore 0 (by intlit))
(UInt64.ofNatCore 42 (by intlit))
- let hm1 <-
+ let hm1 ←
hash_map_insert_fwd_back UInt64 hm0 (USize.ofNatCore 128 (by intlit))
(UInt64.ofNatCore 18 (by intlit))
- let hm2 <-
+ let hm2 ←
hash_map_insert_fwd_back UInt64 hm1 (USize.ofNatCore 1024 (by intlit))
(UInt64.ofNatCore 138 (by intlit))
- let hm3 <-
+ let hm3 ←
hash_map_insert_fwd_back UInt64 hm2 (USize.ofNatCore 1056 (by intlit))
(UInt64.ofNatCore 256 (by intlit))
- let i <- hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit))
- if not (i = (UInt64.ofNatCore 18 (by intlit)))
- then result.fail error.panic
+ let i ← hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit))
+ if h: not (i = (UInt64.ofNatCore 18 (by intlit)))
+ then Result.fail Error.panic
else
do
- let hm4 <-
+ let hm4 ←
hash_map_get_mut_back UInt64 hm3 (USize.ofNatCore 1024 (by intlit))
(UInt64.ofNatCore 56 (by intlit))
- let i0 <-
+ let i0 ←
hash_map_get_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit))
- if not (i0 = (UInt64.ofNatCore 56 (by intlit)))
- then result.fail error.panic
+ if h: not (i0 = (UInt64.ofNatCore 56 (by intlit)))
+ then Result.fail Error.panic
else
do
- let x <-
+ let x ←
hash_map_remove_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit))
- match x with
- | Option.none => result.fail error.panic
+ match h: x with
+ | Option.none => Result.fail Error.panic
| Option.some x0 =>
- if not (x0 = (UInt64.ofNatCore 56 (by intlit)))
- then result.fail error.panic
+ if h: not (x0 = (UInt64.ofNatCore 56 (by intlit)))
+ then Result.fail Error.panic
else
do
- let hm5 <-
+ let hm5 ←
hash_map_remove_back UInt64 hm4
(USize.ofNatCore 1024 (by intlit))
- let i1 <-
+ let i1 ←
hash_map_get_fwd UInt64 hm5 (USize.ofNatCore 0 (by intlit))
- if not (i1 = (UInt64.ofNatCore 42 (by intlit)))
- then result.fail error.panic
+ if h: not (i1 = (UInt64.ofNatCore 42 (by intlit)))
+ then Result.fail Error.panic
else
do
- let i2 <-
+ let i2 ←
hash_map_get_fwd UInt64 hm5
(USize.ofNatCore 128 (by intlit))
- if not (i2 = (UInt64.ofNatCore 18 (by intlit)))
- then result.fail error.panic
+ if h: not (i2 = (UInt64.ofNatCore 18 (by intlit)))
+ then Result.fail Error.panic
else
do
- let i3 <-
+ let i3 ←
hash_map_get_fwd UInt64 hm5
(USize.ofNatCore 1056 (by intlit))
- if not (i3 = (UInt64.ofNatCore 256 (by intlit)))
- then result.fail error.panic
- else result.ret ()
+ if h: not (i3 = (UInt64.ofNatCore 256 (by intlit)))
+ then Result.fail Error.panic
+ else Result.ret ()
/- Unit test for [hashmap::test1] -/
-#assert (test1_fwd = .ret ())
+#assert (test1_fwd == .ret ())
diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/hashmap/Hashmap/Types.lean
index 9f08bd60..750bf6de 100644
--- a/tests/lean/hashmap/Hashmap/Types.lean
+++ b/tests/lean/hashmap/Hashmap/Types.lean
@@ -13,6 +13,6 @@ structure hash_map_t (T : Type) where
hash_map_num_entries : USize
hash_map_max_load_factor : (USize × USize)
hash_map_max_load : USize
- hash_map_slots : vec (list_t T)
+ hash_map_slots : Vec (list_t T)