summaryrefslogtreecommitdiff
path: root/tests/lean/hashmap
diff options
context:
space:
mode:
authorSon Ho2023-05-09 10:40:19 +0200
committerSon HO2023-06-04 21:44:33 +0200
commit50d1542f830b7ceb73efd34573b6b56b4971a114 (patch)
treec73b6c415b39cdbc3d92ec3056a2521445ff8afc /tests/lean/hashmap
parent4078f2569b362920a648622be73761cddde8a288 (diff)
Regenerate the translated files for Lean
Diffstat (limited to '')
-rw-r--r--tests/lean/hashmap/Base/Primitives.lean622
-rw-r--r--tests/lean/hashmap/Hashmap/Clauses/Clauses.lean18
-rw-r--r--tests/lean/hashmap/Hashmap/Clauses/Template.lean16
-rw-r--r--tests/lean/hashmap/Hashmap/Funs.lean183
-rw-r--r--tests/lean/hashmap/Hashmap/Types.lean8
-rw-r--r--tests/lean/hashmap_on_disk/Base/Primitives.lean622
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean44
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean16
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean5
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Funs.lean205
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean4
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Types.lean8
12 files changed, 1055 insertions, 696 deletions
diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean
index 5b64e908..034f41b2 100644
--- a/tests/lean/hashmap/Base/Primitives.lean
+++ b/tests/lean/hashmap/Base/Primitives.lean
@@ -3,6 +3,28 @@ import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
+--------------------
+-- ASSERT COMMAND --
+--------------------
+
+open Lean Elab Command Term Meta
+
+syntax (name := assert) "#assert" term: command
+
+@[command_elab assert]
+unsafe
+def assertImpl : CommandElab := fun (_stx: Syntax) => do
+ runTermElabM (fun _ => do
+ let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
+ if not r then
+ logInfo "Assertion failed for: "
+ logInfo _stx[1]
+ logError "Expression reduced to false"
+ pure ())
+
+#eval 2 == 2
+#assert (2 == 2)
+
-------------
-- PRELUDE --
-------------
@@ -12,6 +34,7 @@ import Mathlib.Tactic.RunCmd
inductive Error where
| assertionFailure: Error
| integerOverflow: Error
+ | divisionByZero: Error
| arrayOutOfBounds: Error
| maximumSizeExceeded: Error
| panic: Error
@@ -89,17 +112,13 @@ macro "let" e:term " <-- " f:term : doElem =>
-- MACHINE INTEGERS --
----------------------
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
+-- We redefine our machine integers types.
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
+-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
+-- using the simplifier, meaning that proofs do not depend on the compile-time value of
+-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
+-- least officially, 16-bit microcontrollers, so this seems like a fine design decision
+-- for now.)
-- Note from Chris Bailey: "If there's more than one salient property of your
-- definition then the subtyping strategy might get messy, and the property part
@@ -111,236 +130,435 @@ macro "let" e:term " <-- " f:term : doElem =>
-- Machine integer constants, done via `ofNatCore`, which requires a proof that
-- the `Nat` fits within the desired integer type. We provide a custom tactic.
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
+open System.Platform.getNumBits
+
+-- TODO: is there a way of only importing System.Platform.getNumBits?
+--
+@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
+
+-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
+-- We keep the F* convention for now.
+@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
+@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
+@[simp] def I8.min : Int := - (HPow.hPow 2 7)
+@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
+@[simp] def I16.min : Int := - (HPow.hPow 2 15)
+@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
+@[simp] def I32.min : Int := -(HPow.hPow 2 31)
+@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
+@[simp] def I64.min : Int := -(HPow.hPow 2 63)
+@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
+@[simp] def I128.min : Int := -(HPow.hPow 2 127)
+@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
+@[simp] def Usize.min : Int := 0
+@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
+@[simp] def U8.min : Int := 0
+@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
+@[simp] def U16.min : Int := 0
+@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
+@[simp] def U32.min : Int := 0
+@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
+@[simp] def U64.min : Int := 0
+@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
+@[simp] def U128.min : Int := 0
+@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
+
+#assert (I8.min == -128)
+#assert (I8.max == 127)
+#assert (I16.min == -32768)
+#assert (I16.max == 32767)
+#assert (I32.min == -2147483648)
+#assert (I32.max == 2147483647)
+#assert (I64.min == -9223372036854775808)
+#assert (I64.max == 9223372036854775807)
+#assert (I128.min == -170141183460469231731687303715884105728)
+#assert (I128.max == 170141183460469231731687303715884105727)
+#assert (U8.min == 0)
+#assert (U8.max == 255)
+#assert (U16.min == 0)
+#assert (U16.max == 65535)
+#assert (U32.min == 0)
+#assert (U32.max == 4294967295)
+#assert (U64.min == 0)
+#assert (U64.max == 18446744073709551615)
+#assert (U128.min == 0)
+#assert (U128.max == 340282366920938463463374607431768211455)
+
+inductive ScalarTy :=
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+def Scalar.min (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.min
+ | .I8 => I8.min
+ | .I16 => I16.min
+ | .I32 => I32.min
+ | .I64 => I64.min
+ | .I128 => I128.min
+ | .Usize => Usize.min
+ | .U8 => U8.min
+ | .U16 => U16.min
+ | .U32 => U32.min
+ | .U64 => U64.min
+ | .U128 => U128.min
+
+def Scalar.max (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.max
+ | .I8 => I8.max
+ | .I16 => I16.max
+ | .I32 => I32.max
+ | .I64 => I64.max
+ | .I128 => I128.max
+ | .Usize => Usize.max
+ | .U8 => U8.max
+ | .U16 => U16.max
+ | .U32 => U32.max
+ | .U64 => U64.max
+ | .U128 => U128.max
+
+-- "Conservative" bounds
+-- We use those because we can't compare to the isize bounds (which can't
+-- reduce at compile-time). Whenever we perform an arithmetic operation like
+-- addition we need to check that the result is in bounds: we first compare
+-- to the conservative bounds, which reduce, then compare to the real bounds.
-- This is useful for the various #asserts that we want to reduce at
-- type-checking time.
+def Scalar.cMin (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => I32.min
+ | _ => Scalar.min ty
+
+def Scalar.cMax (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => I32.max
+ | .Usize => U32.max
+ | _ => Scalar.max ty
+
+theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
+theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
+
+structure Scalar (ty : ScalarTy) where
+ val : Int
+ hmin : Scalar.min ty <= val
+ hmax : val <= Scalar.max ty
+
+theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
+ Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
+ (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
+ := by sorry
+
+def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
+ (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
+ { val := x, hmin := hmin, hmax := hmax }
+
+def Scalar.ofInt {ty : ScalarTy} (x : Int)
+ (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
+ let hmin: Scalar.min ty <= x := by sorry
+ let hmax: x <= Scalar.max ty := by sorry
+ Scalar.ofIntCore x hmin hmax
-- Further thoughts: look at what has been done here:
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
+def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
+ -- TODO: write this with only one if then else
+ if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
+ if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
+ let hmin: Scalar.min ty <= x := by sorry
+ let hmax: x <= Scalar.max ty := by sorry
+ return Scalar.ofIntCore x hmin hmax
+ else fail integerOverflow
+ else fail integerOverflow
+
+def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
+
+def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
+
+-- Checking that the % operation in Lean computes the same as the remainder operation in Rust
+#assert 1 % 2 = (1:Int)
+#assert (-1) % 2 = -1
+#assert 1 % (-2) = 1
+#assert (-1) % (-2) = -1
+
+def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
+
+def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val + y.val)
+
+def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val - y.val)
+
+def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val * y.val)
+
+-- TODO: instances of +, -, * etc. for scalars
+
+-- Cast an integer from a [src_ty] to a [tgt_ty]
+-- TODO: check the semantics of casts in Rust
+def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
+ Scalar.tryMk tgt_ty x.val
+
+-- The scalar types
+-- We declare the definitions as reducible so that Lean can unfold them (useful
+-- for type class resolution for instance).
+@[reducible] def Isize := Scalar .Isize
+@[reducible] def I8 := Scalar .I8
+@[reducible] def I16 := Scalar .I16
+@[reducible] def I32 := Scalar .I32
+@[reducible] def I64 := Scalar .I64
+@[reducible] def I128 := Scalar .I128
+@[reducible] def Usize := Scalar .Usize
+@[reducible] def U8 := Scalar .U8
+@[reducible] def U16 := Scalar .U16
+@[reducible] def U32 := Scalar .U32
+@[reducible] def U64 := Scalar .U64
+@[reducible] def U128 := Scalar .U128
+
+-- TODO: below: not sure this is the best way.
+-- Should we rather overload operations like +, -, etc.?
+-- Also, it is possible to automate the generation of those definitions
+-- with macros (but would it be a good idea? It would be less easy to
+-- read the file, which is not supposed to change a lot)
+
+-- Negation
+
+/--
+Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
+one here.
+
+The notation typeclass for heterogeneous addition.
+This enables the notation `- a : β` where `a : α`.
+-/
+class HNeg (α : Type u) (β : outParam (Type v)) where
+ /-- `- a` computes the negation of `a`.
+ The meaning of this notation is type-dependent. -/
+ hNeg : α → β
+
+prefix:75 "-" => HNeg.hNeg
+
+instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
+instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
+instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
+instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
+instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
+instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
+
+-- Addition
+instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hAdd x y := Scalar.add x y
+
+-- Substraction
+instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hSub x y := Scalar.sub x y
+
+-- Multiplication
+instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMul x y := Scalar.mul x y
+
+-- Division
+instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hDiv x y := Scalar.div x y
+
+-- Remainder
+instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMod x y := Scalar.rem x y
+
+-- ofIntCore
+-- TODO: typeclass?
+def Isize.ofIntCore := @Scalar.ofIntCore .Isize
+def I8.ofIntCore := @Scalar.ofIntCore .I8
+def I16.ofIntCore := @Scalar.ofIntCore .I16
+def I32.ofIntCore := @Scalar.ofIntCore .I32
+def I64.ofIntCore := @Scalar.ofIntCore .I64
+def I128.ofIntCore := @Scalar.ofIntCore .I128
+def Usize.ofIntCore := @Scalar.ofIntCore .Usize
+def U8.ofIntCore := @Scalar.ofIntCore .U8
+def U16.ofIntCore := @Scalar.ofIntCore .U16
+def U32.ofIntCore := @Scalar.ofIntCore .U32
+def U64.ofIntCore := @Scalar.ofIntCore .U64
+def U128.ofIntCore := @Scalar.ofIntCore .U128
+
+-- ofInt
+-- TODO: typeclass?
+def Isize.ofInt := @Scalar.ofInt .Isize
+def I8.ofInt := @Scalar.ofInt .I8
+def I16.ofInt := @Scalar.ofInt .I16
+def I32.ofInt := @Scalar.ofInt .I32
+def I64.ofInt := @Scalar.ofInt .I64
+def I128.ofInt := @Scalar.ofInt .I128
+def Usize.ofInt := @Scalar.ofInt .Usize
+def U8.ofInt := @Scalar.ofInt .U8
+def U16.ofInt := @Scalar.ofInt .U16
+def U32.ofInt := @Scalar.ofInt .U32
+def U64.ofInt := @Scalar.ofInt .U64
+def U128.ofInt := @Scalar.ofInt .U128
+
+-- Comparisons
+instance {ty} : LT (Scalar ty) where
+ lt a b := LT.lt a.val b.val
+
+instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
+
+instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
+instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
+
+theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
+ | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
+
+theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
+ h ▸ rfl
+
+theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
+ fun h' => absurd (val_eq_of_eq h') h
+
+instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
+ fun i j =>
+ match decEq i.val j.val with
+ | isTrue h => isTrue (Scalar.eq_of_val_eq h)
+ | isFalse h => isFalse (Scalar.ne_of_val_ne h)
+
+def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
+
+-- Tactic to prove that integers are in bounds
+syntax "intlit" : tactic
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
+macro_rules
+ | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
+
+-- -- We now define a type class that subsumes the various machine integer types, so
+-- -- as to write a concise definition for scalar_cast, rather than exhaustively
+-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
+-- -- and fails if a cast operation would involve a truncation or modulo.
+
+-- class MachineInteger (t: Type) where
+-- size: Nat
+-- val: t -> Fin size
+-- ofNatCore: (n:Nat) -> LT.lt n size -> t
+
+-- set_option hygiene false in
+-- run_cmd
+-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
+-- Lean.Elab.Command.elabCommand (← `(
+-- namespace $typeName
+-- instance: MachineInteger $typeName where
+-- size := size
+-- val := val
+-- ofNatCore := ofNatCore
+-- end $typeName
+-- ))
+
+-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
+-- -- Lean to infer `src`.
+
+-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
+-- if h: MachineInteger.val x < MachineInteger.size dst then
+-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
+-- else
+-- .fail integerOverflow
-------------
-- VECTORS --
-------------
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
+def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-#check vec_new
+def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-def vec_len (α : Type u) (v : Vec α) : USize :=
+def vec_len (α : Type u) (v : Vec α) : Usize :=
let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
+ Usize.ofIntCore (List.length v) (by sorry) l
def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
:=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
+ if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
+ return ⟨ List.concat v.val x, by sorry ⟩
else
fail maximumSizeExceeded
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
+def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
+def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
+ -- TODO: maybe we should redefine a list library which uses integers
+ -- (instead of natural numbers)
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
.ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
+ have h: List.length v.val <= Usize.max := v.property
rewrite [ List.length_set v.val i.val x ]
assumption
else
.fail arrayOutOfBounds
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
+def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
+ if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
+ let h: i < List.length v.val := by sorry
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
+def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
+def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
+ if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
+ let h: i < List.length v.val := by sorry
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
+def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
.ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
+ have h: List.length v.val <= Usize.max := v.property
rewrite [ List.length_set v.val i.val x ]
assumption
@@ -360,33 +578,3 @@ def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
Use with `simp [ aeneas ]` -/
register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean
index fad5c11a..197b0a6a 100644
--- a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean
+++ b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean
@@ -1,11 +1,11 @@
--- [hashmap]: the decreases clauses
+-- [hashmap]: templates for the decreases clauses
import Base.Primitives
import Hashmap.Types
/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/
@[simp]
def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T))
- (n : USize) :=
+ (n : Usize) :=
(slots, n)
/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
@@ -16,7 +16,7 @@ macro_rules
/- [hashmap::HashMap::{0}::clear]: termination measure -/
@[simp]
def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T))
- (i : USize) :=
+ (i : Usize) :=
(slots, i)
/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/
@@ -26,7 +26,7 @@ macro_rules
/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/
@[simp]
-def hash_map_insert_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
(value : T) (ls : list_t T) :=
(key, value, ls)
@@ -51,7 +51,7 @@ macro_rules
/- [hashmap::HashMap::{0}::move_elements]: termination measure -/
@[simp]
def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T)
- (slots : Vec (list_t T)) (i : USize) :=
+ (slots : Vec (list_t T)) (i : Usize) :=
(ntable, slots, i)
/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
@@ -62,7 +62,7 @@ macro_rules
/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
@[simp]
-def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
@@ -74,7 +74,7 @@ macro_rules
/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/
@[simp]
-def hash_map_get_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
@@ -86,7 +86,7 @@ macro_rules
/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
@[simp]
def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T)
- (key : USize) :=
+ (key : Usize) :=
(ls, key)
/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
@@ -96,7 +96,7 @@ macro_rules
/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/
@[simp]
-def hash_map_remove_from_list_loop_terminates (T : Type) (key : USize)
+def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean
index 7ba079f2..560592c8 100644
--- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean
+++ b/tests/lean/hashmap/Hashmap/Clauses/Template.lean
@@ -6,7 +6,7 @@ import Hashmap.Types
/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/
@[simp]
def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T))
- (n : USize) :=
+ (n : Usize) :=
(slots, n)
/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
@@ -17,7 +17,7 @@ macro_rules
/- [hashmap::HashMap::{0}::clear]: termination measure -/
@[simp]
def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T))
- (i : USize) :=
+ (i : Usize) :=
(slots, i)
/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/
@@ -27,7 +27,7 @@ macro_rules
/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/
@[simp]
-def hash_map_insert_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
(value : T) (ls : list_t T) :=
(key, value, ls)
@@ -52,7 +52,7 @@ macro_rules
/- [hashmap::HashMap::{0}::move_elements]: termination measure -/
@[simp]
def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T)
- (slots : Vec (list_t T)) (i : USize) :=
+ (slots : Vec (list_t T)) (i : Usize) :=
(ntable, slots, i)
/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
@@ -63,7 +63,7 @@ macro_rules
/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
@[simp]
-def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
@@ -75,7 +75,7 @@ macro_rules
/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/
@[simp]
-def hash_map_get_in_list_loop_terminates (T : Type) (key : USize)
+def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
@@ -87,7 +87,7 @@ macro_rules
/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
@[simp]
def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T)
- (key : USize) :=
+ (key : Usize) :=
(ls, key)
/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
@@ -97,7 +97,7 @@ macro_rules
/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/
@[simp]
-def hash_map_remove_from_list_loop_terminates (T : Type) (key : USize)
+def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
(ls : list_t T) :=
(key, ls)
diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/hashmap/Hashmap/Funs.lean
index 535ac9b2..77b1a157 100644
--- a/tests/lean/hashmap/Hashmap/Funs.lean
+++ b/tests/lean/hashmap/Hashmap/Funs.lean
@@ -5,19 +5,19 @@ import Hashmap.Types
import Hashmap.Clauses.Clauses
/- [hashmap::hash_key] -/
-def hash_key_fwd (k : USize) : Result USize :=
+def hash_key_fwd (k : Usize) : Result Usize :=
Result.ret k
/- [hashmap::HashMap::{0}::allocate_slots] -/
def hash_map_allocate_slots_loop_fwd
- (T : Type) (slots : Vec (list_t T)) (n : USize) :
+ (T : Type) (slots : Vec (list_t T)) (n : Usize) :
(Result (Vec (list_t T)))
:=
- if h: n > (USize.ofNatCore 0 (by intlit))
+ if h: n > (Usize.ofInt 0 (by intlit))
then
do
let slots0 ← vec_push_back (list_t T) slots list_t.Nil
- let n0 ← USize.checked_sub n (USize.ofNatCore 1 (by intlit))
+ let n0 ← n - (Usize.ofInt 1 (by intlit))
hash_map_allocate_slots_loop_fwd T slots0 n0
else Result.ret slots
termination_by hash_map_allocate_slots_loop_fwd slots n =>
@@ -26,23 +26,23 @@ decreasing_by hash_map_allocate_slots_loop_decreases slots n
/- [hashmap::HashMap::{0}::allocate_slots] -/
def hash_map_allocate_slots_fwd
- (T : Type) (slots : Vec (list_t T)) (n : USize) : Result (Vec (list_t T)) :=
+ (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) :=
hash_map_allocate_slots_loop_fwd T slots n
/- [hashmap::HashMap::{0}::new_with_capacity] -/
def hash_map_new_with_capacity_fwd
- (T : Type) (capacity : USize) (max_load_dividend : USize)
- (max_load_divisor : USize) :
+ (T : Type) (capacity : Usize) (max_load_dividend : Usize)
+ (max_load_divisor : Usize) :
Result (hash_map_t T)
:=
do
let v := vec_new (list_t T)
let slots ← hash_map_allocate_slots_fwd T v capacity
- let i ← USize.checked_mul capacity max_load_dividend
- let i0 ← USize.checked_div i max_load_divisor
+ let i ← capacity * max_load_dividend
+ let i0 ← i / max_load_divisor
Result.ret
{
- hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
+ hash_map_num_entries := (Usize.ofInt 0 (by intlit)),
hash_map_max_load_factor := (max_load_dividend, max_load_divisor),
hash_map_max_load := i0,
hash_map_slots := slots
@@ -50,19 +50,19 @@ def hash_map_new_with_capacity_fwd
/- [hashmap::HashMap::{0}::new] -/
def hash_map_new_fwd (T : Type) : Result (hash_map_t T) :=
- hash_map_new_with_capacity_fwd T (USize.ofNatCore 32 (by intlit))
- (USize.ofNatCore 4 (by intlit)) (USize.ofNatCore 5 (by intlit))
+ hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit))
+ (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit))
/- [hashmap::HashMap::{0}::clear] -/
def hash_map_clear_loop_fwd_back
- (T : Type) (slots : Vec (list_t T)) (i : USize) :
+ (T : Type) (slots : Vec (list_t T)) (i : Usize) :
(Result (Vec (list_t T)))
:=
let i0 := vec_len (list_t T) slots
if h: i < i0
then
do
- let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let i1 ← i + (Usize.ofInt 1 (by intlit))
let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil
hash_map_clear_loop_fwd_back T slots0 i1
else Result.ret slots
@@ -76,22 +76,22 @@ def hash_map_clear_fwd_back
do
let v ←
hash_map_clear_loop_fwd_back T self.hash_map_slots
- (USize.ofNatCore 0 (by intlit))
+ (Usize.ofInt 0 (by intlit))
Result.ret
{
self
with
- hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
+ hash_map_num_entries := (Usize.ofInt 0 (by intlit)),
hash_map_slots := v
}
/- [hashmap::HashMap::{0}::len] -/
-def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result USize :=
+def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize :=
Result.ret self.hash_map_num_entries
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_loop_fwd
- (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result Bool) :=
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result Bool) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -104,12 +104,12 @@ decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_fwd
- (T : Type) (key : USize) (value : T) (ls : list_t T) : Result Bool :=
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool :=
hash_map_insert_in_list_loop_fwd T key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_loop_back
- (T : Type) (key : USize) (value : T) (ls : list_t T) : (Result (list_t T)) :=
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result (list_t T)) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -126,25 +126,24 @@ decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_back
- (T : Type) (key : USize) (value : T) (ls : list_t T) : Result (list_t T) :=
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) :=
hash_map_insert_in_list_loop_back T key value ls
/- [hashmap::HashMap::{0}::insert_no_resize] -/
def hash_map_insert_no_resize_fwd_back
- (T : Type) (self : hash_map_t T) (key : USize) (value : T) :
+ (T : Type) (self : hash_map_t T) (key : Usize) (value : T) :
Result (hash_map_t T)
:=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
let inserted ← hash_map_insert_in_list_fwd T key value l
if h: inserted
then
do
- let i0 ← USize.checked_add self.hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit))
let l0 ← hash_map_insert_in_list_back T key value l
let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
Result.ret
@@ -156,9 +155,9 @@ def hash_map_insert_no_resize_fwd_back
Result.ret { self with hash_map_slots := v }
/- [core::num::u32::{9}::MAX] -/
-def core_num_u32_max_body : Result UInt32 :=
- Result.ret (UInt32.ofNatCore 4294967295 (by intlit))
-def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp)
+def core_num_u32_max_body : Result U32 :=
+ Result.ret (U32.ofInt 4294967295 (by intlit))
+def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap::HashMap::{0}::move_elements_from_list] -/
def hash_map_move_elements_from_list_loop_fwd_back
@@ -182,7 +181,7 @@ def hash_map_move_elements_from_list_fwd_back
/- [hashmap::HashMap::{0}::move_elements] -/
def hash_map_move_elements_loop_fwd_back
- (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) :
+ (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) :
(Result ((hash_map_t T) × (Vec (list_t T))))
:=
let i0 := vec_len (list_t T) slots
@@ -192,7 +191,7 @@ def hash_map_move_elements_loop_fwd_back
let l ← vec_index_mut_fwd (list_t T) slots i
let ls := mem_replace_fwd (list_t T) l list_t.Nil
let ntable0 ← hash_map_move_elements_from_list_fwd_back T ntable ls
- let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let i1 ← i + (Usize.ofInt 1 (by intlit))
let l0 := mem_replace_back (list_t T) l list_t.Nil
let slots0 ← vec_index_mut_back (list_t T) slots i l0
hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1
@@ -203,7 +202,7 @@ decreasing_by hash_map_move_elements_loop_decreases ntable slots i
/- [hashmap::HashMap::{0}::move_elements] -/
def hash_map_move_elements_fwd_back
- (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : USize) :
+ (T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) :
Result ((hash_map_t T) × (Vec (list_t T)))
:=
hash_map_move_elements_loop_fwd_back T ntable slots i
@@ -212,19 +211,19 @@ def hash_map_move_elements_fwd_back
def hash_map_try_resize_fwd_back
(T : Type) (self : hash_map_t T) : Result (hash_map_t T) :=
do
- let max_usize ← scalar_cast USize core_num_u32_max_c
+ let max_usize ← Scalar.cast .Usize core_num_u32_max_c
let capacity := vec_len (list_t T) self.hash_map_slots
- let n1 ← USize.checked_div max_usize (USize.ofNatCore 2 (by intlit))
+ let n1 ← max_usize / (Usize.ofInt 2 (by intlit))
let (i, i0) := self.hash_map_max_load_factor
- let i1 ← USize.checked_div n1 i
+ let i1 ← n1 / i
if h: capacity <= i1
then
do
- let i2 ← USize.checked_mul capacity (USize.ofNatCore 2 (by intlit))
+ let i2 ← capacity * (Usize.ofInt 2 (by intlit))
let ntable ← hash_map_new_with_capacity_fwd T i2 i i0
let (ntable0, _) ←
hash_map_move_elements_fwd_back T ntable self.hash_map_slots
- (USize.ofNatCore 0 (by intlit))
+ (Usize.ofInt 0 (by intlit))
Result.ret
{
ntable0
@@ -236,7 +235,7 @@ def hash_map_try_resize_fwd_back
/- [hashmap::HashMap::{0}::insert] -/
def hash_map_insert_fwd_back
- (T : Type) (self : hash_map_t T) (key : USize) (value : T) :
+ (T : Type) (self : hash_map_t T) (key : Usize) (value : T) :
Result (hash_map_t T)
:=
do
@@ -248,7 +247,7 @@ def hash_map_insert_fwd_back
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
def hash_map_contains_key_in_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (Result Bool) :=
+ (T : Type) (key : Usize) (ls : list_t T) : (Result Bool) :=
match h: ls with
| list_t.Cons ckey t tl =>
if h: ckey = key
@@ -261,22 +260,22 @@ decreasing_by hash_map_contains_key_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
def hash_map_contains_key_in_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : Result Bool :=
+ (T : Type) (key : Usize) (ls : list_t T) : Result Bool :=
hash_map_contains_key_in_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::contains_key] -/
def hash_map_contains_key_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : Result Bool :=
+ (T : Type) (self : hash_map_t T) (key : Usize) : Result Bool :=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_contains_key_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_in_list] -/
def hash_map_get_in_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (Result T) :=
+ (T : Type) (key : Usize) (ls : list_t T) : (Result T) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -289,22 +288,22 @@ decreasing_by hash_map_get_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::get_in_list] -/
def hash_map_get_in_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : Result T :=
+ (T : Type) (key : Usize) (ls : list_t T) : Result T :=
hash_map_get_in_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::get] -/
def hash_map_get_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : Result T :=
+ (T : Type) (self : hash_map_t T) (key : Usize) : Result T :=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_get_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_loop_fwd
- (T : Type) (ls : list_t T) (key : USize) : (Result T) :=
+ (T : Type) (ls : list_t T) (key : Usize) : (Result T) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -317,12 +316,12 @@ decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_fwd
- (T : Type) (ls : list_t T) (key : USize) : Result T :=
+ (T : Type) (ls : list_t T) (key : Usize) : Result T :=
hash_map_get_mut_in_list_loop_fwd T ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_loop_back
- (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : (Result (list_t T)) :=
+ (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : (Result (list_t T)) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -338,28 +337,28 @@ decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_back
- (T : Type) (ls : list_t T) (key : USize) (ret0 : T) : Result (list_t T) :=
+ (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) :=
hash_map_get_mut_in_list_loop_back T ls key ret0
/- [hashmap::HashMap::{0}::get_mut] -/
def hash_map_get_mut_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : Result T :=
+ (T : Type) (self : hash_map_t T) (key : Usize) : Result T :=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
hash_map_get_mut_in_list_fwd T l key
/- [hashmap::HashMap::{0}::get_mut] -/
def hash_map_get_mut_back
- (T : Type) (self : hash_map_t T) (key : USize) (ret0 : T) :
+ (T : Type) (self : hash_map_t T) (key : Usize) (ret0 : T) :
Result (hash_map_t T)
:=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
let l0 ← hash_map_get_mut_in_list_back T l key ret0
let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
@@ -367,7 +366,7 @@ def hash_map_get_mut_back
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_loop_fwd
- (T : Type) (key : USize) (ls : list_t T) : (Result (Option T)) :=
+ (T : Type) (key : Usize) (ls : list_t T) : (Result (Option T)) :=
match h: ls with
| list_t.Cons ckey t tl =>
if h: ckey = key
@@ -385,12 +384,12 @@ decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_fwd
- (T : Type) (key : USize) (ls : list_t T) : Result (Option T) :=
+ (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) :=
hash_map_remove_from_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_loop_back
- (T : Type) (key : USize) (ls : list_t T) : (Result (list_t T)) :=
+ (T : Type) (key : Usize) (ls : list_t T) : (Result (list_t T)) :=
match h: ls with
| list_t.Cons ckey t tl =>
if h: ckey = key
@@ -411,33 +410,32 @@ decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_back
- (T : Type) (key : USize) (ls : list_t T) : Result (list_t T) :=
+ (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) :=
hash_map_remove_from_list_loop_back T key ls
/- [hashmap::HashMap::{0}::remove] -/
def hash_map_remove_fwd
- (T : Type) (self : hash_map_t T) (key : USize) : Result (Option T) :=
+ (T : Type) (self : hash_map_t T) (key : Usize) : Result (Option T) :=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
let x ← hash_map_remove_from_list_fwd T key l
match h: x with
| Option.none => Result.ret Option.none
| Option.some x0 =>
do
- let _ ← USize.checked_sub self.hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let _ ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit))
Result.ret (Option.some x0)
/- [hashmap::HashMap::{0}::remove] -/
def hash_map_remove_back
- (T : Type) (self : hash_map_t T) (key : USize) : Result (hash_map_t T) :=
+ (T : Type) (self : hash_map_t T) (key : Usize) : Result (hash_map_t T) :=
do
let hash ← hash_key_fwd key
let i := vec_len (list_t T) self.hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
let x ← hash_map_remove_from_list_fwd T key l
match h: x with
@@ -448,8 +446,7 @@ def hash_map_remove_back
Result.ret { self with hash_map_slots := v }
| Option.some x0 =>
do
- let i0 ← USize.checked_sub self.hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let i0 ← self.hash_map_num_entries - (Usize.ofInt 1 (by intlit))
let l0 ← hash_map_remove_from_list_back T key l
let v ← vec_index_mut_back (list_t T) self.hash_map_slots hash_mod l0
Result.ret
@@ -458,65 +455,59 @@ def hash_map_remove_back
/- [hashmap::test1] -/
def test1_fwd : Result Unit :=
do
- let hm ← hash_map_new_fwd UInt64
+ let hm ← hash_map_new_fwd U64
let hm0 ←
- hash_map_insert_fwd_back UInt64 hm (USize.ofNatCore 0 (by intlit))
- (UInt64.ofNatCore 42 (by intlit))
+ hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit))
+ (U64.ofInt 42 (by intlit))
let hm1 ←
- hash_map_insert_fwd_back UInt64 hm0 (USize.ofNatCore 128 (by intlit))
- (UInt64.ofNatCore 18 (by intlit))
+ hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit))
+ (U64.ofInt 18 (by intlit))
let hm2 ←
- hash_map_insert_fwd_back UInt64 hm1 (USize.ofNatCore 1024 (by intlit))
- (UInt64.ofNatCore 138 (by intlit))
+ hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit))
+ (U64.ofInt 138 (by intlit))
let hm3 ←
- hash_map_insert_fwd_back UInt64 hm2 (USize.ofNatCore 1056 (by intlit))
- (UInt64.ofNatCore 256 (by intlit))
- let i ← hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit))
- if h: not (i = (UInt64.ofNatCore 18 (by intlit)))
+ hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit))
+ (U64.ofInt 256 (by intlit))
+ let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit))
+ if h: not (i = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let hm4 ←
- hash_map_get_mut_back UInt64 hm3 (USize.ofNatCore 1024 (by intlit))
- (UInt64.ofNatCore 56 (by intlit))
- let i0 ←
- hash_map_get_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit))
- if h: not (i0 = (UInt64.ofNatCore 56 (by intlit)))
+ hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit))
+ (U64.ofInt 56 (by intlit))
+ let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit))
+ if h: not (i0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
let x ←
- hash_map_remove_fwd UInt64 hm4 (USize.ofNatCore 1024 (by intlit))
+ hash_map_remove_fwd U64 hm4 (Usize.ofInt 1024 (by intlit))
match h: x with
| Option.none => Result.fail Error.panic
| Option.some x0 =>
- if h: not (x0 = (UInt64.ofNatCore 56 (by intlit)))
+ if h: not (x0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
let hm5 ←
- hash_map_remove_back UInt64 hm4
- (USize.ofNatCore 1024 (by intlit))
+ hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit))
let i1 ←
- hash_map_get_fwd UInt64 hm5 (USize.ofNatCore 0 (by intlit))
- if h: not (i1 = (UInt64.ofNatCore 42 (by intlit)))
+ hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit))
+ if h: not (i1 = (U64.ofInt 42 (by intlit)))
then Result.fail Error.panic
else
do
let i2 ←
- hash_map_get_fwd UInt64 hm5
- (USize.ofNatCore 128 (by intlit))
- if h: not (i2 = (UInt64.ofNatCore 18 (by intlit)))
+ hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit))
+ if h: not (i2 = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let i3 ←
- hash_map_get_fwd UInt64 hm5
- (USize.ofNatCore 1056 (by intlit))
- if h: not (i3 = (UInt64.ofNatCore 256 (by intlit)))
+ hash_map_get_fwd U64 hm5
+ (Usize.ofInt 1056 (by intlit))
+ if h: not (i3 = (U64.ofInt 256 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
-/- Unit test for [hashmap::test1] -/
-#assert (test1_fwd == .ret ())
-
diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/hashmap/Hashmap/Types.lean
index 9e9e5c03..6eabf7da 100644
--- a/tests/lean/hashmap/Hashmap/Types.lean
+++ b/tests/lean/hashmap/Hashmap/Types.lean
@@ -4,13 +4,13 @@ import Base.Primitives
/- [hashmap::List] -/
inductive list_t (T : Type) :=
-| Cons : USize -> T -> list_t T -> list_t T
+| Cons : Usize -> T -> list_t T -> list_t T
| Nil : list_t T
/- [hashmap::HashMap] -/
structure hash_map_t (T : Type) where
- hash_map_num_entries : USize
- hash_map_max_load_factor : (USize × USize)
- hash_map_max_load : USize
+ hash_map_num_entries : Usize
+ hash_map_max_load_factor : (Usize × Usize)
+ hash_map_max_load : Usize
hash_map_slots : Vec (list_t T)
diff --git a/tests/lean/hashmap_on_disk/Base/Primitives.lean b/tests/lean/hashmap_on_disk/Base/Primitives.lean
index 5b64e908..034f41b2 100644
--- a/tests/lean/hashmap_on_disk/Base/Primitives.lean
+++ b/tests/lean/hashmap_on_disk/Base/Primitives.lean
@@ -3,6 +3,28 @@ import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
+--------------------
+-- ASSERT COMMAND --
+--------------------
+
+open Lean Elab Command Term Meta
+
+syntax (name := assert) "#assert" term: command
+
+@[command_elab assert]
+unsafe
+def assertImpl : CommandElab := fun (_stx: Syntax) => do
+ runTermElabM (fun _ => do
+ let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
+ if not r then
+ logInfo "Assertion failed for: "
+ logInfo _stx[1]
+ logError "Expression reduced to false"
+ pure ())
+
+#eval 2 == 2
+#assert (2 == 2)
+
-------------
-- PRELUDE --
-------------
@@ -12,6 +34,7 @@ import Mathlib.Tactic.RunCmd
inductive Error where
| assertionFailure: Error
| integerOverflow: Error
+ | divisionByZero: Error
| arrayOutOfBounds: Error
| maximumSizeExceeded: Error
| panic: Error
@@ -89,17 +112,13 @@ macro "let" e:term " <-- " f:term : doElem =>
-- MACHINE INTEGERS --
----------------------
--- NOTE: we reuse the fixed-width integer types from prelude.lean: UInt8, ...,
--- USize. They are generally defined in an idiomatic style, except that there is
--- not a single type class to rule them all (more on that below). The absence of
--- type class is intentional, and allows the Lean compiler to efficiently map
--- them to machine integers during compilation.
+-- We redefine our machine integers types.
--- USize is designed properly: you cannot reduce `getNumBits` using the
--- simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really
--- support, at least officially, 16-bit microcontrollers, so this seems like a
--- fine design decision for now.)
+-- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
+-- using the simplifier, meaning that proofs do not depend on the compile-time value of
+-- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
+-- least officially, 16-bit microcontrollers, so this seems like a fine design decision
+-- for now.)
-- Note from Chris Bailey: "If there's more than one salient property of your
-- definition then the subtyping strategy might get messy, and the property part
@@ -111,236 +130,435 @@ macro "let" e:term " <-- " f:term : doElem =>
-- Machine integer constants, done via `ofNatCore`, which requires a proof that
-- the `Nat` fits within the desired integer type. We provide a custom tactic.
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic|
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => decide
- | _, Or.inr rfl => decide)
-
--- This is how the macro is expected to be used
-#eval USize.ofNatCore 0 (by intlit)
-
--- Also works for other integer types (at the expense of a needless disjunction)
-#eval UInt32.ofNatCore 0 (by intlit)
-
--- The machine integer operations (e.g. sub) are always total, which is not what
--- we want. We therefore define "checked" variants, below. Note that we add a
--- tiny bit of complexity for the USize variant: we first check whether the
--- result is < 2^32; if it is, we can compute the definition, rather than
--- returning a term that is computationally stuck (the comparison to USize.size
--- cannot reduce at compile-time, per the remark about regarding `getNumBits`).
+open System.Platform.getNumBits
+
+-- TODO: is there a way of only importing System.Platform.getNumBits?
+--
+@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
+
+-- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
+-- We keep the F* convention for now.
+@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
+@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
+@[simp] def I8.min : Int := - (HPow.hPow 2 7)
+@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
+@[simp] def I16.min : Int := - (HPow.hPow 2 15)
+@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
+@[simp] def I32.min : Int := -(HPow.hPow 2 31)
+@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
+@[simp] def I64.min : Int := -(HPow.hPow 2 63)
+@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
+@[simp] def I128.min : Int := -(HPow.hPow 2 127)
+@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
+@[simp] def Usize.min : Int := 0
+@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
+@[simp] def U8.min : Int := 0
+@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
+@[simp] def U16.min : Int := 0
+@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
+@[simp] def U32.min : Int := 0
+@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
+@[simp] def U64.min : Int := 0
+@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
+@[simp] def U128.min : Int := 0
+@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
+
+#assert (I8.min == -128)
+#assert (I8.max == 127)
+#assert (I16.min == -32768)
+#assert (I16.max == 32767)
+#assert (I32.min == -2147483648)
+#assert (I32.max == 2147483647)
+#assert (I64.min == -9223372036854775808)
+#assert (I64.max == 9223372036854775807)
+#assert (I128.min == -170141183460469231731687303715884105728)
+#assert (I128.max == 170141183460469231731687303715884105727)
+#assert (U8.min == 0)
+#assert (U8.max == 255)
+#assert (U16.min == 0)
+#assert (U16.max == 65535)
+#assert (U32.min == 0)
+#assert (U32.max == 4294967295)
+#assert (U64.min == 0)
+#assert (U64.max == 18446744073709551615)
+#assert (U128.min == 0)
+#assert (U128.max == 340282366920938463463374607431768211455)
+
+inductive ScalarTy :=
+| Isize
+| I8
+| I16
+| I32
+| I64
+| I128
+| Usize
+| U8
+| U16
+| U32
+| U64
+| U128
+
+def Scalar.min (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.min
+ | .I8 => I8.min
+ | .I16 => I16.min
+ | .I32 => I32.min
+ | .I64 => I64.min
+ | .I128 => I128.min
+ | .Usize => Usize.min
+ | .U8 => U8.min
+ | .U16 => U16.min
+ | .U32 => U32.min
+ | .U64 => U64.min
+ | .U128 => U128.min
+
+def Scalar.max (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => Isize.max
+ | .I8 => I8.max
+ | .I16 => I16.max
+ | .I32 => I32.max
+ | .I64 => I64.max
+ | .I128 => I128.max
+ | .Usize => Usize.max
+ | .U8 => U8.max
+ | .U16 => U16.max
+ | .U32 => U32.max
+ | .U64 => U64.max
+ | .U128 => U128.max
+
+-- "Conservative" bounds
+-- We use those because we can't compare to the isize bounds (which can't
+-- reduce at compile-time). Whenever we perform an arithmetic operation like
+-- addition we need to check that the result is in bounds: we first compare
+-- to the conservative bounds, which reduce, then compare to the real bounds.
-- This is useful for the various #asserts that we want to reduce at
-- type-checking time.
+def Scalar.cMin (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => I32.min
+ | _ => Scalar.min ty
+
+def Scalar.cMax (ty : ScalarTy) : Int :=
+ match ty with
+ | .Isize => I32.max
+ | .Usize => U32.max
+ | _ => Scalar.max ty
+
+theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
+theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
+
+structure Scalar (ty : ScalarTy) where
+ val : Int
+ hmin : Scalar.min ty <= val
+ hmax : val <= Scalar.max ty
+
+theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
+ Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
+ (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
+ := by sorry
+
+def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
+ (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
+ { val := x, hmin := hmin, hmax := hmax }
+
+def Scalar.ofInt {ty : ScalarTy} (x : Int)
+ (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
+ let hmin: Scalar.min ty <= x := by sorry
+ let hmax: x <= Scalar.max ty := by sorry
+ Scalar.ofIntCore x hmin hmax
-- Further thoughts: look at what has been done here:
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
-- and
-- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
-- which both contain a fair amount of reasoning already!
-def USize.checked_sub (n: USize) (m: USize): Result USize :=
- -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed?
- if n >= m then
- let n' := USize.toNat n
- let m' := USize.toNat n
- let r := USize.ofNatCore (n' - m') (by
- have h: n' - m' <= n' := by
- apply Nat.sub_le_of_le_add
- case h => rewrite [ Nat.add_comm ]; apply Nat.le_add_left
- apply Nat.lt_of_le_of_lt h
- apply n.val.isLt
- )
- return r
- else
- fail integerOverflow
-
-@[simp]
-theorem usize_fits (n: Nat) (h: n <= 4294967295): n < USize.size :=
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => Nat.lt_of_le_of_lt h (by decide)
- | _, Or.inr rfl => Nat.lt_of_le_of_lt h (by decide)
-
-def USize.checked_add (n: USize) (m: USize): Result USize :=
- if h: n.val + m.val < USize.size then
- .ret ⟨ n.val + m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_rem (n: USize) (m: USize): Result USize :=
- if h: m > 0 then
- .ret ⟨ n.val % m.val, by
- have h1: ↑m.val < USize.size := m.val.isLt
- have h2: n.val.val % m.val.val < m.val.val := @Nat.mod_lt n.val m.val h
- apply Nat.lt_trans h2 h1
- ⟩
- else
- .fail integerOverflow
+def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
+ -- TODO: write this with only one if then else
+ if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
+ if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
+ let hmin: Scalar.min ty <= x := by sorry
+ let hmax: x <= Scalar.max ty := by sorry
+ return Scalar.ofIntCore x hmin hmax
+ else fail integerOverflow
+ else fail integerOverflow
+
+def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
+
+def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
+
+-- Checking that the % operation in Lean computes the same as the remainder operation in Rust
+#assert 1 % 2 = (1:Int)
+#assert (-1) % 2 = -1
+#assert 1 % (-2) = 1
+#assert (-1) % (-2) = -1
+
+def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
+
+def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val + y.val)
+
+def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val - y.val)
+
+def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
+ Scalar.tryMk ty (x.val * y.val)
+
+-- TODO: instances of +, -, * etc. for scalars
+
+-- Cast an integer from a [src_ty] to a [tgt_ty]
+-- TODO: check the semantics of casts in Rust
+def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
+ Scalar.tryMk tgt_ty x.val
+
+-- The scalar types
+-- We declare the definitions as reducible so that Lean can unfold them (useful
+-- for type class resolution for instance).
+@[reducible] def Isize := Scalar .Isize
+@[reducible] def I8 := Scalar .I8
+@[reducible] def I16 := Scalar .I16
+@[reducible] def I32 := Scalar .I32
+@[reducible] def I64 := Scalar .I64
+@[reducible] def I128 := Scalar .I128
+@[reducible] def Usize := Scalar .Usize
+@[reducible] def U8 := Scalar .U8
+@[reducible] def U16 := Scalar .U16
+@[reducible] def U32 := Scalar .U32
+@[reducible] def U64 := Scalar .U64
+@[reducible] def U128 := Scalar .U128
+
+-- TODO: below: not sure this is the best way.
+-- Should we rather overload operations like +, -, etc.?
+-- Also, it is possible to automate the generation of those definitions
+-- with macros (but would it be a good idea? It would be less easy to
+-- read the file, which is not supposed to change a lot)
+
+-- Negation
+
+/--
+Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
+one here.
+
+The notation typeclass for heterogeneous addition.
+This enables the notation `- a : β` where `a : α`.
+-/
+class HNeg (α : Type u) (β : outParam (Type v)) where
+ /-- `- a` computes the negation of `a`.
+ The meaning of this notation is type-dependent. -/
+ hNeg : α → β
+
+prefix:75 "-" => HNeg.hNeg
+
+instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
+instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
+instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
+instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
+instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
+instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
+
+-- Addition
+instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hAdd x y := Scalar.add x y
+
+-- Substraction
+instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hSub x y := Scalar.sub x y
+
+-- Multiplication
+instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMul x y := Scalar.mul x y
+
+-- Division
+instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hDiv x y := Scalar.div x y
+
+-- Remainder
+instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
+ hMod x y := Scalar.rem x y
+
+-- ofIntCore
+-- TODO: typeclass?
+def Isize.ofIntCore := @Scalar.ofIntCore .Isize
+def I8.ofIntCore := @Scalar.ofIntCore .I8
+def I16.ofIntCore := @Scalar.ofIntCore .I16
+def I32.ofIntCore := @Scalar.ofIntCore .I32
+def I64.ofIntCore := @Scalar.ofIntCore .I64
+def I128.ofIntCore := @Scalar.ofIntCore .I128
+def Usize.ofIntCore := @Scalar.ofIntCore .Usize
+def U8.ofIntCore := @Scalar.ofIntCore .U8
+def U16.ofIntCore := @Scalar.ofIntCore .U16
+def U32.ofIntCore := @Scalar.ofIntCore .U32
+def U64.ofIntCore := @Scalar.ofIntCore .U64
+def U128.ofIntCore := @Scalar.ofIntCore .U128
+
+-- ofInt
+-- TODO: typeclass?
+def Isize.ofInt := @Scalar.ofInt .Isize
+def I8.ofInt := @Scalar.ofInt .I8
+def I16.ofInt := @Scalar.ofInt .I16
+def I32.ofInt := @Scalar.ofInt .I32
+def I64.ofInt := @Scalar.ofInt .I64
+def I128.ofInt := @Scalar.ofInt .I128
+def Usize.ofInt := @Scalar.ofInt .Usize
+def U8.ofInt := @Scalar.ofInt .U8
+def U16.ofInt := @Scalar.ofInt .U16
+def U32.ofInt := @Scalar.ofInt .U32
+def U64.ofInt := @Scalar.ofInt .U64
+def U128.ofInt := @Scalar.ofInt .U128
+
+-- Comparisons
+instance {ty} : LT (Scalar ty) where
+ lt a b := LT.lt a.val b.val
+
+instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
+
+instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
+instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
+
+theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
+ | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
+
+theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
+ h ▸ rfl
+
+theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
+ fun h' => absurd (val_eq_of_eq h') h
+
+instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
+ fun i j =>
+ match decEq i.val j.val with
+ | isTrue h => isTrue (Scalar.eq_of_val_eq h)
+ | isFalse h => isFalse (Scalar.ne_of_val_ne h)
+
+def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
+
+-- Tactic to prove that integers are in bounds
+syntax "intlit" : tactic
-def USize.checked_mul (n: USize) (m: USize): Result USize :=
- if h: n.val * m.val < USize.size then
- .ret ⟨ n.val * m.val, h ⟩
- else
- .fail integerOverflow
-
-def USize.checked_div (n: USize) (m: USize): Result USize :=
- if m > 0 then
- .ret ⟨ n.val / m.val, by
- have h1: ↑n.val < USize.size := n.val.isLt
- have h2: n.val.val / m.val.val <= n.val.val := @Nat.div_le_self n.val m.val
- apply Nat.lt_of_le_of_lt h2 h1
- ⟩
- else
- .fail integerOverflow
-
--- Test behavior...
-#eval assert! USize.checked_sub 10 20 == fail integerOverflow; 0
-
-#eval USize.checked_sub 20 10
--- NOTE: compare with concrete behavior here, which I do not think we want
-#eval USize.sub 0 1
-#eval UInt8.add 255 255
-
--- We now define a type class that subsumes the various machine integer types, so
--- as to write a concise definition for scalar_cast, rather than exhaustively
--- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- and fails if a cast operation would involve a truncation or modulo.
-
-class MachineInteger (t: Type) where
- size: Nat
- val: t -> Fin size
- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
-set_option hygiene false in
-run_cmd
- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
- Lean.Elab.Command.elabCommand (← `(
- namespace $typeName
- instance: MachineInteger $typeName where
- size := size
- val := val
- ofNatCore := ofNatCore
- end $typeName
- ))
-
--- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- Lean to infer `src`.
-
-def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
- if h: MachineInteger.val x < MachineInteger.size dst then
- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
- else
- .fail integerOverflow
+macro_rules
+ | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
+
+-- -- We now define a type class that subsumes the various machine integer types, so
+-- -- as to write a concise definition for scalar_cast, rather than exhaustively
+-- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
+-- -- and fails if a cast operation would involve a truncation or modulo.
+
+-- class MachineInteger (t: Type) where
+-- size: Nat
+-- val: t -> Fin size
+-- ofNatCore: (n:Nat) -> LT.lt n size -> t
+
+-- set_option hygiene false in
+-- run_cmd
+-- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
+-- Lean.Elab.Command.elabCommand (← `(
+-- namespace $typeName
+-- instance: MachineInteger $typeName where
+-- size := size
+-- val := val
+-- ofNatCore := ofNatCore
+-- end $typeName
+-- ))
+
+-- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
+-- -- Lean to infer `src`.
+
+-- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
+-- if h: MachineInteger.val x < MachineInteger.size dst then
+-- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
+-- else
+-- .fail integerOverflow
-------------
-- VECTORS --
-------------
--- Note: unlike F*, Lean seems to use strict upper bounds (e.g. USize.size)
--- rather than maximum values (usize_max).
-def Vec (α : Type u) := { l : List α // List.length l < USize.size }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by {
- match USize.size, usize_size_eq with
- | _, Or.inl rfl => simp
- | _, Or.inr rfl => simp
- } ⟩
+def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-#check vec_new
+def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-def vec_len (α : Type u) (v : Vec α) : USize :=
+def vec_len (α : Type u) (v : Vec α) : Usize :=
let ⟨ v, l ⟩ := v
- USize.ofNatCore (List.length v) l
-
-#eval vec_len Nat (vec_new Nat)
+ Usize.ofIntCore (List.length v) (by sorry) l
def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
--- NOTE: old version trying to use a subtype notation, but probably better to
--- leave Result elimination to auxiliary lemmas with suitable preconditions
--- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one
--- make the proof work in that case? Probably need to import tactics from
--- mathlib to deal with inequalities... would love to see an example.
-def vec_push_back_old (α : Type u) (v : Vec α) (x : α) : { res: Result (Vec α) //
- match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1}
- :=
- if h : List.length v.val + 1 < USize.size then
- ⟨ return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩, by simp ⟩
- else
- ⟨ fail maximumSizeExceeded, by simp ⟩
-
-#eval do
- -- NOTE: the // notation is syntactic sugar for Subtype, a refinement with
- -- fields val and property. However, Lean's elaborator can automatically
- -- select the `val` field if the context provides a type annotation. We
- -- annotate `x`, which relieves us of having to write `.val` on the right-hand
- -- side of the monadic let.
- let v := vec_new Nat
- let x: Vec Nat ← (vec_push_back_old Nat v 1: Result (Vec Nat)) -- WHY do we need the type annotation here?
- -- TODO: strengthen post-condition above and do a demo to show that we can
- -- safely eliminate the `fail` case
- return (vec_len Nat x)
-
def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
:=
- if h : List.length v.val + 1 <= 4294967295 then
- return ⟨ List.concat v.val x,
- by
- rw [List.length_concat]
- have h': 4294967295 < USize.size := by intlit
- apply Nat.lt_of_le_of_lt h h'
- ⟩
- else if h: List.length v.val + 1 < USize.size then
- return ⟨List.concat v.val x,
- by
- rw [List.length_concat]
- assumption
- ⟩
+ if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
+ return ⟨ List.concat v.val x, by sorry ⟩
else
fail maximumSizeExceeded
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
+def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_insert_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
+def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
+ -- TODO: maybe we should redefine a list library which uses integers
+ -- (instead of natural numbers)
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
.ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
+ have h: List.length v.val <= Usize.max := v.property
rewrite [ List.length_set v.val i.val x ]
assumption
else
.fail arrayOutOfBounds
-def vec_index_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
+def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
+ if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
+ let h: i < List.length v.val := by sorry
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_back (α : Type u) (v: Vec α) (i: USize) (_: α): Result Unit :=
+def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
if i.val < List.length v.val then
.ret ()
else
.fail arrayOutOfBounds
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: USize): Result α :=
- if h: i.val < List.length v.val then
+def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
+ if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
+ let h: i < List.length v.val := by sorry
.ret (List.get v.val ⟨i.val, h⟩)
else
.fail arrayOutOfBounds
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: USize) (x: α): Result (Vec α) :=
+def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
if i.val < List.length v.val then
+ let i : Nat :=
+ match i.val with
+ | .ofNat n => n
+ | .negSucc n => by sorry -- TODO: we can't get here
+ let isLt: i < USize.size := by sorry
+ let i : Fin USize.size := { val := i, isLt := isLt }
.ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val < USize.size := v.property
+ have h: List.length v.val <= Usize.max := v.property
rewrite [ List.length_set v.val i.val x ]
assumption
@@ -360,33 +578,3 @@ def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
Use with `simp [ aeneas ]` -/
register_simp_attr aeneas
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------------
--- SANITY CHECKS --
--------------------
-
--- TODO: add more once we have signed integers
-
-#assert (USize.checked_rem 1 2 == .ret 1)
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean
index 1b69eb2f..a4dc996a 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean
+++ b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean
@@ -1,39 +1,37 @@
--- [hashmap_main]: the decreases clauses
import Base.Primitives
import HashmapMain.Types
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/
@[simp]
def hashmap_hash_map_allocate_slots_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (n : USize) :=
+ (slots : Vec (hashmap_list_t T)) (n : Usize) :=
(slots, n)
+/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) =>
`(tactic| sorry)
-/- [hashmap_main::hashmap::HashMap::{0}::clear_slots]: termination measure -/
+/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/
@[simp]
-def hashmap_hash_map_clear_slots_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (i : USize) :=
+def hashmap_hash_map_clear_loop_terminates (T : Type)
+ (slots : Vec (hashmap_list_t T)) (i : Usize) :=
(slots, i)
-syntax "hashmap_hash_map_clear_slots_loop_decreases" term+ : tactic
-
+/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/
+syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic
macro_rules
-| `(tactic| hashmap_hash_map_clear_slots_loop_decreases $slots $i) =>
- `(tactic| sorry)
+| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/
@[simp]
-def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
(value : T) (ls : hashmap_list_t T) :=
(key, value, ls)
+/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/
syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) =>
`(tactic| sorry)
@@ -44,8 +42,8 @@ def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type)
(ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) :=
(ntable, ls)
+/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/
syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable
$ls) =>`(tactic| sorry)
@@ -53,12 +51,12 @@ $ls) =>`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/
@[simp]
def hashmap_hash_map_move_elements_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : USize)
+ (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize)
:=
(ntable, slots, i)
+/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) =>
`(tactic| sorry)
@@ -66,46 +64,46 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
@[simp]
def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type)
- (key : USize) (ls : hashmap_list_t T) :=
+ (key : Usize) (ls : hashmap_list_t T) :=
(key, ls)
+/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) =>
`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/
@[simp]
-def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
(ls : hashmap_list_t T) :=
(key, ls)
+/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/
syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
@[simp]
def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type)
- (ls : hashmap_list_t T) (key : USize) :=
+ (ls : hashmap_list_t T) (key : Usize) :=
(ls, key)
+/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) =>
`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/
@[simp]
-def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
(ls : hashmap_list_t T) :=
(key, ls)
+/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/
syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic
-
macro_rules
| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) =>
`(tactic| sorry)
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean
index 753c92ac..33802597 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean
+++ b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean
@@ -6,7 +6,7 @@ import HashmapMain.Types
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/
@[simp]
def hashmap_hash_map_allocate_slots_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (n : USize) :=
+ (slots : Vec (hashmap_list_t T)) (n : Usize) :=
(slots, n)
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
@@ -18,7 +18,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/
@[simp]
def hashmap_hash_map_clear_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (i : USize) :=
+ (slots : Vec (hashmap_list_t T)) (i : Usize) :=
(slots, i)
/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/
@@ -28,7 +28,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/
@[simp]
-def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
(value : T) (ls : hashmap_list_t T) :=
(key, value, ls)
@@ -53,7 +53,7 @@ $ls) =>`(tactic| sorry)
/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/
@[simp]
def hashmap_hash_map_move_elements_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : USize)
+ (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize)
:=
(ntable, slots, i)
@@ -66,7 +66,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
@[simp]
def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type)
- (key : USize) (ls : hashmap_list_t T) :=
+ (key : Usize) (ls : hashmap_list_t T) :=
(key, ls)
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
@@ -77,7 +77,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/
@[simp]
-def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
(ls : hashmap_list_t T) :=
(key, ls)
@@ -89,7 +89,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
@[simp]
def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type)
- (ls : hashmap_list_t T) (key : USize) :=
+ (ls : hashmap_list_t T) (key : Usize) :=
(ls, key)
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
@@ -100,7 +100,7 @@ macro_rules
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/
@[simp]
-def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : USize)
+def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
(ls : hashmap_list_t T) :=
(key, ls)
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean
new file mode 100644
index 00000000..a5103acc
--- /dev/null
+++ b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean
@@ -0,0 +1,5 @@
+import Base.Primitives
+import HashmapMain.Types
+import HashmapMain.Opaque
+
+def opaque_defs : OpaqueDefs := by sorry
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean b/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean
index 2be03d98..342c3833 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean
+++ b/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean
@@ -2,25 +2,23 @@
-- [hashmap_main]: function definitions
import Base.Primitives
import HashmapMain.Types
-import HashmapMain.Opaque
+import HashmapMain.ExternalFuns
import HashmapMain.Clauses.Clauses
-section variable (opaque_defs: OpaqueDefs)
-
/- [hashmap_main::hashmap::hash_key] -/
-def hashmap_hash_key_fwd (k : USize) : Result USize :=
+def hashmap_hash_key_fwd (k : Usize) : Result Usize :=
Result.ret k
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/
def hashmap_hash_map_allocate_slots_loop_fwd
- (T : Type) (slots : Vec (hashmap_list_t T)) (n : USize) :
+ (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) :
(Result (Vec (hashmap_list_t T)))
:=
- if h: n > (USize.ofNatCore 0 (by intlit))
+ if h: n > (Usize.ofInt 0 (by intlit))
then
do
let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil
- let n0 ← USize.checked_sub n (USize.ofNatCore 1 (by intlit))
+ let n0 ← n - (Usize.ofInt 1 (by intlit))
hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0
else Result.ret slots
termination_by hashmap_hash_map_allocate_slots_loop_fwd slots n =>
@@ -29,25 +27,25 @@ decreasing_by hashmap_hash_map_allocate_slots_loop_decreases slots n
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/
def hashmap_hash_map_allocate_slots_fwd
- (T : Type) (slots : Vec (hashmap_list_t T)) (n : USize) :
+ (T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) :
Result (Vec (hashmap_list_t T))
:=
hashmap_hash_map_allocate_slots_loop_fwd T slots n
/- [hashmap_main::hashmap::HashMap::{0}::new_with_capacity] -/
def hashmap_hash_map_new_with_capacity_fwd
- (T : Type) (capacity : USize) (max_load_dividend : USize)
- (max_load_divisor : USize) :
+ (T : Type) (capacity : Usize) (max_load_dividend : Usize)
+ (max_load_divisor : Usize) :
Result (hashmap_hash_map_t T)
:=
do
let v := vec_new (hashmap_list_t T)
let slots ← hashmap_hash_map_allocate_slots_fwd T v capacity
- let i ← USize.checked_mul capacity max_load_dividend
- let i0 ← USize.checked_div i max_load_divisor
+ let i ← capacity * max_load_dividend
+ let i0 ← i / max_load_divisor
Result.ret
{
- hashmap_hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
+ hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)),
hashmap_hash_map_max_load_factor :=
(max_load_dividend, max_load_divisor),
hashmap_hash_map_max_load := i0,
@@ -56,19 +54,19 @@ def hashmap_hash_map_new_with_capacity_fwd
/- [hashmap_main::hashmap::HashMap::{0}::new] -/
def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) :=
- hashmap_hash_map_new_with_capacity_fwd T (USize.ofNatCore 32 (by intlit))
- (USize.ofNatCore 4 (by intlit)) (USize.ofNatCore 5 (by intlit))
+ hashmap_hash_map_new_with_capacity_fwd T (Usize.ofInt 32 (by intlit))
+ (Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit))
/- [hashmap_main::hashmap::HashMap::{0}::clear] -/
def hashmap_hash_map_clear_loop_fwd_back
- (T : Type) (slots : Vec (hashmap_list_t T)) (i : USize) :
+ (T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) :
(Result (Vec (hashmap_list_t T)))
:=
let i0 := vec_len (hashmap_list_t T) slots
if h: i < i0
then
do
- let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let i1 ← i + (Usize.ofInt 1 (by intlit))
let slots0 ←
vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil
hashmap_hash_map_clear_loop_fwd_back T slots0 i1
@@ -83,23 +81,23 @@ def hashmap_hash_map_clear_fwd_back
do
let v ←
hashmap_hash_map_clear_loop_fwd_back T self.hashmap_hash_map_slots
- (USize.ofNatCore 0 (by intlit))
+ (Usize.ofInt 0 (by intlit))
Result.ret
{
self
with
- hashmap_hash_map_num_entries := (USize.ofNatCore 0 (by intlit)),
+ hashmap_hash_map_num_entries := (Usize.ofInt 0 (by intlit)),
hashmap_hash_map_slots := v
}
/- [hashmap_main::hashmap::HashMap::{0}::len] -/
def hashmap_hash_map_len_fwd
- (T : Type) (self : hashmap_hash_map_t T) : Result USize :=
+ (T : Type) (self : hashmap_hash_map_t T) : Result Usize :=
Result.ret self.hashmap_hash_map_num_entries
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_loop_fwd
- (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) :
+ (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) :
(Result Bool)
:=
match h: ls with
@@ -114,12 +112,12 @@ decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_fwd
- (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) : Result Bool :=
+ (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool :=
hashmap_hash_map_insert_in_list_loop_fwd T key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_loop_back
- (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) :
+ (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) :
(Result (hashmap_list_t T))
:=
match h: ls with
@@ -139,28 +137,28 @@ decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_back
- (T : Type) (key : USize) (value : T) (ls : hashmap_list_t T) :
+ (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) :
Result (hashmap_list_t T)
:=
hashmap_hash_map_insert_in_list_loop_back T key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_no_resize] -/
def hashmap_hash_map_insert_no_resize_fwd_back
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) (value : T) :
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) :
Result (hashmap_hash_map_t T)
:=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l
if h: inserted
then
do
- let i0 ← USize.checked_add self.hashmap_hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let i0 ← self.hashmap_hash_map_num_entries +
+ (Usize.ofInt 1 (by intlit))
let l0 ← hashmap_hash_map_insert_in_list_back T key value l
let v ←
vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots
@@ -180,9 +178,9 @@ def hashmap_hash_map_insert_no_resize_fwd_back
Result.ret { self with hashmap_hash_map_slots := v }
/- [core::num::u32::{9}::MAX] -/
-def core_num_u32_max_body : Result UInt32 :=
- Result.ret (UInt32.ofNatCore 4294967295 (by intlit))
-def core_num_u32_max_c : UInt32 := eval_global core_num_u32_max_body (by simp)
+def core_num_u32_max_body : Result U32 :=
+ Result.ret (U32.ofInt 4294967295 (by intlit))
+def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/
def hashmap_hash_map_move_elements_from_list_loop_fwd_back
@@ -210,7 +208,7 @@ def hashmap_hash_map_move_elements_from_list_fwd_back
/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/
def hashmap_hash_map_move_elements_loop_fwd_back
(T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T))
- (i : USize) :
+ (i : Usize) :
(Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))))
:=
let i0 := vec_len (hashmap_list_t T) slots
@@ -221,7 +219,7 @@ def hashmap_hash_map_move_elements_loop_fwd_back
let ls := mem_replace_fwd (hashmap_list_t T) l hashmap_list_t.Nil
let ntable0 ←
hashmap_hash_map_move_elements_from_list_fwd_back T ntable ls
- let i1 ← USize.checked_add i (USize.ofNatCore 1 (by intlit))
+ let i1 ← i + (Usize.ofInt 1 (by intlit))
let l0 := mem_replace_back (hashmap_list_t T) l hashmap_list_t.Nil
let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0
hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1
@@ -233,7 +231,7 @@ decreasing_by hashmap_hash_map_move_elements_loop_decreases ntable slots i
/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/
def hashmap_hash_map_move_elements_fwd_back
(T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T))
- (i : USize) :
+ (i : Usize) :
Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T)))
:=
hashmap_hash_map_move_elements_loop_fwd_back T ntable slots i
@@ -242,19 +240,19 @@ def hashmap_hash_map_move_elements_fwd_back
def hashmap_hash_map_try_resize_fwd_back
(T : Type) (self : hashmap_hash_map_t T) : Result (hashmap_hash_map_t T) :=
do
- let max_usize ← scalar_cast USize core_num_u32_max_c
+ let max_usize ← Scalar.cast .Usize core_num_u32_max_c
let capacity := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let n1 ← USize.checked_div max_usize (USize.ofNatCore 2 (by intlit))
+ let n1 ← max_usize / (Usize.ofInt 2 (by intlit))
let (i, i0) := self.hashmap_hash_map_max_load_factor
- let i1 ← USize.checked_div n1 i
+ let i1 ← n1 / i
if h: capacity <= i1
then
do
- let i2 ← USize.checked_mul capacity (USize.ofNatCore 2 (by intlit))
+ let i2 ← capacity * (Usize.ofInt 2 (by intlit))
let ntable ← hashmap_hash_map_new_with_capacity_fwd T i2 i i0
let (ntable0, _) ←
hashmap_hash_map_move_elements_fwd_back T ntable
- self.hashmap_hash_map_slots (USize.ofNatCore 0 (by intlit))
+ self.hashmap_hash_map_slots (Usize.ofInt 0 (by intlit))
Result.ret
{
ntable0
@@ -266,7 +264,7 @@ def hashmap_hash_map_try_resize_fwd_back
/- [hashmap_main::hashmap::HashMap::{0}::insert] -/
def hashmap_hash_map_insert_fwd_back
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) (value : T) :
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (value : T) :
Result (hashmap_hash_map_t T)
:=
do
@@ -278,7 +276,7 @@ def hashmap_hash_map_insert_fwd_back
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/
def hashmap_hash_map_contains_key_in_list_loop_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result Bool) :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result Bool) :=
match h: ls with
| hashmap_list_t.Cons ckey t tl =>
if h: ckey = key
@@ -291,23 +289,23 @@ decreasing_by hashmap_hash_map_contains_key_in_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/
def hashmap_hash_map_contains_key_in_list_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : Result Bool :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool :=
hashmap_hash_map_contains_key_in_list_loop_fwd T key ls
/- [hashmap_main::hashmap::HashMap::{0}::contains_key] -/
def hashmap_hash_map_contains_key_fwd
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result Bool :=
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result Bool :=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
hashmap_hash_map_contains_key_in_list_fwd T key l
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/
def hashmap_hash_map_get_in_list_loop_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result T) :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result T) :=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -320,23 +318,23 @@ decreasing_by hashmap_hash_map_get_in_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/
def hashmap_hash_map_get_in_list_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : Result T :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T :=
hashmap_hash_map_get_in_list_loop_fwd T key ls
/- [hashmap_main::hashmap::HashMap::{0}::get] -/
def hashmap_hash_map_get_fwd
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result T :=
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T :=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
hashmap_hash_map_get_in_list_fwd T key l
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_loop_fwd
- (T : Type) (ls : hashmap_list_t T) (key : USize) : (Result T) :=
+ (T : Type) (ls : hashmap_list_t T) (key : Usize) : (Result T) :=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
if h: ckey = key
@@ -349,12 +347,12 @@ decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_fwd
- (T : Type) (ls : hashmap_list_t T) (key : USize) : Result T :=
+ (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T :=
hashmap_hash_map_get_mut_in_list_loop_fwd T ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_loop_back
- (T : Type) (ls : hashmap_list_t T) (key : USize) (ret0 : T) :
+ (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) :
(Result (hashmap_list_t T))
:=
match h: ls with
@@ -372,31 +370,31 @@ decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_back
- (T : Type) (ls : hashmap_list_t T) (key : USize) (ret0 : T) :
+ (T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) :
Result (hashmap_list_t T)
:=
hashmap_hash_map_get_mut_in_list_loop_back T ls key ret0
/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/
def hashmap_hash_map_get_mut_fwd
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result T :=
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result T :=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
hashmap_hash_map_get_mut_in_list_fwd T l key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut] -/
def hashmap_hash_map_get_mut_back
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) (ret0 : T) :
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) (ret0 : T) :
Result (hashmap_hash_map_t T)
:=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
let l0 ← hashmap_hash_map_get_mut_in_list_back T l key ret0
@@ -407,7 +405,7 @@ def hashmap_hash_map_get_mut_back
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_loop_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : (Result (Option T)) :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (Option T)) :=
match h: ls with
| hashmap_list_t.Cons ckey t tl =>
if h: ckey = key
@@ -426,12 +424,12 @@ decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_fwd
- (T : Type) (key : USize) (ls : hashmap_list_t T) : Result (Option T) :=
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) :=
hashmap_hash_map_remove_from_list_loop_fwd T key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_loop_back
- (T : Type) (key : USize) (ls : hashmap_list_t T) :
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) :
(Result (hashmap_list_t T))
:=
match h: ls with
@@ -455,18 +453,18 @@ decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_back
- (T : Type) (key : USize) (ls : hashmap_list_t T) :
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) :
Result (hashmap_list_t T)
:=
hashmap_hash_map_remove_from_list_loop_back T key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove] -/
def hashmap_hash_map_remove_fwd
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) : Result (Option T) :=
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) : Result (Option T) :=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
let x ← hashmap_hash_map_remove_from_list_fwd T key l
@@ -474,19 +472,19 @@ def hashmap_hash_map_remove_fwd
| Option.none => Result.ret Option.none
| Option.some x0 =>
do
- let _ ← USize.checked_sub self.hashmap_hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let _ ← self.hashmap_hash_map_num_entries -
+ (Usize.ofInt 1 (by intlit))
Result.ret (Option.some x0)
/- [hashmap_main::hashmap::HashMap::{0}::remove] -/
def hashmap_hash_map_remove_back
- (T : Type) (self : hashmap_hash_map_t T) (key : USize) :
+ (T : Type) (self : hashmap_hash_map_t T) (key : Usize) :
Result (hashmap_hash_map_t T)
:=
do
let hash ← hashmap_hash_key_fwd key
let i := vec_len (hashmap_list_t T) self.hashmap_hash_map_slots
- let hash_mod ← USize.checked_rem hash i
+ let hash_mod ← hash % i
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
let x ← hashmap_hash_map_remove_from_list_fwd T key l
@@ -500,8 +498,8 @@ def hashmap_hash_map_remove_back
Result.ret { self with hashmap_hash_map_slots := v }
| Option.some x0 =>
do
- let i0 ← USize.checked_sub self.hashmap_hash_map_num_entries
- (USize.ofNatCore 1 (by intlit))
+ let i0 ← self.hashmap_hash_map_num_entries -
+ (Usize.ofInt 1 (by intlit))
let l0 ← hashmap_hash_map_remove_from_list_back T key l
let v ←
vec_index_mut_back (hashmap_list_t T) self.hashmap_hash_map_slots
@@ -516,79 +514,73 @@ def hashmap_hash_map_remove_back
/- [hashmap_main::hashmap::test1] -/
def hashmap_test1_fwd : Result Unit :=
do
- let hm ← hashmap_hash_map_new_fwd UInt64
+ let hm ← hashmap_hash_map_new_fwd U64
let hm0 ←
- hashmap_hash_map_insert_fwd_back UInt64 hm
- (USize.ofNatCore 0 (by intlit)) (UInt64.ofNatCore 42 (by intlit))
+ hashmap_hash_map_insert_fwd_back U64 hm (Usize.ofInt 0 (by intlit))
+ (U64.ofInt 42 (by intlit))
let hm1 ←
- hashmap_hash_map_insert_fwd_back UInt64 hm0
- (USize.ofNatCore 128 (by intlit)) (UInt64.ofNatCore 18 (by intlit))
+ hashmap_hash_map_insert_fwd_back U64 hm0 (Usize.ofInt 128 (by intlit))
+ (U64.ofInt 18 (by intlit))
let hm2 ←
- hashmap_hash_map_insert_fwd_back UInt64 hm1
- (USize.ofNatCore 1024 (by intlit)) (UInt64.ofNatCore 138 (by intlit))
+ hashmap_hash_map_insert_fwd_back U64 hm1 (Usize.ofInt 1024 (by intlit))
+ (U64.ofInt 138 (by intlit))
let hm3 ←
- hashmap_hash_map_insert_fwd_back UInt64 hm2
- (USize.ofNatCore 1056 (by intlit)) (UInt64.ofNatCore 256 (by intlit))
- let i ←
- hashmap_hash_map_get_fwd UInt64 hm3 (USize.ofNatCore 128 (by intlit))
- if h: not (i = (UInt64.ofNatCore 18 (by intlit)))
+ hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit))
+ (U64.ofInt 256 (by intlit))
+ let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit))
+ if h: not (i = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let hm4 ←
- hashmap_hash_map_get_mut_back UInt64 hm3
- (USize.ofNatCore 1024 (by intlit))
- (UInt64.ofNatCore 56 (by intlit))
+ hashmap_hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit))
+ (U64.ofInt 56 (by intlit))
let i0 ←
- hashmap_hash_map_get_fwd UInt64 hm4
- (USize.ofNatCore 1024 (by intlit))
- if h: not (i0 = (UInt64.ofNatCore 56 (by intlit)))
+ hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit))
+ if h: not (i0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
let x ←
- hashmap_hash_map_remove_fwd UInt64 hm4
- (USize.ofNatCore 1024 (by intlit))
+ hashmap_hash_map_remove_fwd U64 hm4
+ (Usize.ofInt 1024 (by intlit))
match h: x with
| Option.none => Result.fail Error.panic
| Option.some x0 =>
- if h: not (x0 = (UInt64.ofNatCore 56 (by intlit)))
+ if h: not (x0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
let hm5 ←
- hashmap_hash_map_remove_back UInt64 hm4
- (USize.ofNatCore 1024 (by intlit))
+ hashmap_hash_map_remove_back U64 hm4
+ (Usize.ofInt 1024 (by intlit))
let i1 ←
- hashmap_hash_map_get_fwd UInt64 hm5
- (USize.ofNatCore 0 (by intlit))
- if h: not (i1 = (UInt64.ofNatCore 42 (by intlit)))
+ hashmap_hash_map_get_fwd U64 hm5
+ (Usize.ofInt 0 (by intlit))
+ if h: not (i1 = (U64.ofInt 42 (by intlit)))
then Result.fail Error.panic
else
do
let i2 ←
- hashmap_hash_map_get_fwd UInt64 hm5
- (USize.ofNatCore 128 (by intlit))
- if h: not (i2 = (UInt64.ofNatCore 18 (by intlit)))
+ hashmap_hash_map_get_fwd U64 hm5
+ (Usize.ofInt 128 (by intlit))
+ if h: not (i2 = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let i3 ←
- hashmap_hash_map_get_fwd UInt64 hm5
- (USize.ofNatCore 1056 (by intlit))
- if h: not (i3 = (UInt64.ofNatCore 256 (by intlit)))
+ hashmap_hash_map_get_fwd U64 hm5
+ (Usize.ofInt 1056 (by intlit))
+ if h: not (i3 = (U64.ofInt 256 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
-/- Unit test for [hashmap_main::hashmap::test1] -/
-#assert (hashmap_test1_fwd == .ret ())
-
/- [hashmap_main::insert_on_disk] -/
def insert_on_disk_fwd
- (key : USize) (value : UInt64) (st : State) : Result (State × Unit) :=
+ (key : Usize) (value : U64) (st : State) : Result (State × Unit) :=
do
let (st0, hm) ← opaque_defs.hashmap_utils_deserialize_fwd st
- let hm0 ← hashmap_hash_map_insert_fwd_back UInt64 hm key value
+ let hm0 ← hashmap_hash_map_insert_fwd_back U64 hm key value
let (st1, _) ← opaque_defs.hashmap_utils_serialize_fwd hm0 st0
Result.ret (st1, ())
@@ -596,6 +588,3 @@ def insert_on_disk_fwd
def main_fwd : Result Unit :=
Result.ret ()
-/- Unit test for [hashmap_main::main] -/
-#assert (main_fwd == .ret ())
-
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean b/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean
index 3531e6e0..d98f431a 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean
+++ b/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean
@@ -7,9 +7,9 @@ structure OpaqueDefs where
/- [hashmap_main::hashmap_utils::deserialize] -/
hashmap_utils_deserialize_fwd
- : State -> Result (State × (hashmap_hash_map_t UInt64))
+ : State -> Result (State × (hashmap_hash_map_t U64))
/- [hashmap_main::hashmap_utils::serialize] -/
hashmap_utils_serialize_fwd
- : hashmap_hash_map_t UInt64 -> State -> Result (State × Unit)
+ : hashmap_hash_map_t U64 -> State -> Result (State × Unit)
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean b/tests/lean/hashmap_on_disk/HashmapMain/Types.lean
index 989dd2a9..0509fbbd 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean
+++ b/tests/lean/hashmap_on_disk/HashmapMain/Types.lean
@@ -4,14 +4,14 @@ import Base.Primitives
/- [hashmap_main::hashmap::List] -/
inductive hashmap_list_t (T : Type) :=
-| Cons : USize -> T -> hashmap_list_t T -> hashmap_list_t T
+| Cons : Usize -> T -> hashmap_list_t T -> hashmap_list_t T
| Nil : hashmap_list_t T
/- [hashmap_main::hashmap::HashMap] -/
structure hashmap_hash_map_t (T : Type) where
- hashmap_hash_map_num_entries : USize
- hashmap_hash_map_max_load_factor : (USize × USize)
- hashmap_hash_map_max_load : USize
+ hashmap_hash_map_num_entries : Usize
+ hashmap_hash_map_max_load_factor : (Usize × Usize)
+ hashmap_hash_map_max_load : Usize
hashmap_hash_map_slots : Vec (hashmap_list_t T)
/- The state type used in the state-error monad -/