diff options
author | Son Ho | 2023-07-20 15:46:11 +0200 |
---|---|---|
committer | Son Ho | 2023-07-20 15:46:11 +0200 |
commit | e58872aa4dc31f0819fe17b13e6b7e4b0d9635c8 (patch) | |
tree | 8e10b3dced080a71f0ae6f352aa4b3b1a32cc00e /tests/lean/Hashmap | |
parent | 03492250b45855fe9db5e0a28a96166607cd84a1 (diff) |
Make progress on some of the hashmap proofs
Diffstat (limited to 'tests/lean/Hashmap')
-rw-r--r-- | tests/lean/Hashmap/Properties.lean | 167 |
1 files changed, 127 insertions, 40 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean index e065bb36..66c386f2 100644 --- a/tests/lean/Hashmap/Properties.lean +++ b/tests/lean/Hashmap/Properties.lean @@ -3,6 +3,18 @@ import Hashmap.Funs open Primitives open Result +namespace List + +-- TODO: we don't want to use the original List.lookup because it uses BEq +-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? +@[simp] +def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α := + match ls with + | [] => none + | (k, x) :: tl => if k = key then some x else lookup' tl key + +end List + namespace hashmap namespace List @@ -12,10 +24,15 @@ def v {α : Type} (ls: List α) : _root_.List (Usize × α) := | Nil => [] | Cons k x tl => (k, x) :: v tl -def lookup {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α := - match ls with - | [] => none - | (k, x) :: tl => if k = key then some x else lookup tl key +@[simp] theorem v_nil (α : Type) : (Nil : List α).v = [] := by rfl +@[simp] theorem v_cons {α : Type} k x (tl: List α) : (Cons k x tl).v = (k, x) :: v tl := by rfl + +@[simp] +abbrev lookup {α : Type} (ls: List α) (key: Usize) : Option α := + ls.v.lookup' key + +@[simp] +abbrev len {α : Type} (ls : List α) : Int := ls.v.len end List @@ -23,39 +40,51 @@ namespace HashMap abbrev Core.List := _root_.List +namespace List + +end List + +-- TODO: move +@[simp] theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*] +@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*] + +-- TODO: move +theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) : + (x == y) = (if x = y then true else false) := by + split <;> simp_all + theorem insert_in_list_spec0 {α : Type} (key: Usize) (value: α) (ls: List α) : ∃ b, insert_in_list α key value ls = ret b ∧ - (b ↔ List.lookup ls.v key = none) + (b ↔ ls.lookup key = none) := match ls with - | .Nil => by simp [insert_in_list, insert_in_list_loop, List.lookup] + | .Nil => by simp [insert_in_list, insert_in_list_loop] | .Cons k v tl => if h: k = key then -- TODO: The order of k/key matters by - simp [insert_in_list, List.lookup] + simp [insert_in_list] rw [insert_in_list_loop] simp [h] else have ⟨ b, hi ⟩ := insert_in_list_spec0 key value tl by exists b - simp [insert_in_list, List.lookup] + simp [insert_in_list] rw [insert_in_list_loop] -- TODO: Using simp leads to infinite recursion - simp [h] - simp [insert_in_list] at hi - exact hi + simp only [insert_in_list] at hi + simp [*] -- Variation: use progress theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) : ∃ b, insert_in_list α key value ls = ret b ∧ - (b ↔ List.lookup ls.v key = none) + (b ↔ ls.lookup key = none) := match ls with - | .Nil => by simp [insert_in_list, insert_in_list_loop, List.lookup] + | .Nil => by simp [insert_in_list, insert_in_list_loop] | .Cons k v tl => if h: k = key then -- TODO: The order of k/key matters by - simp [insert_in_list, List.lookup] + simp [insert_in_list] rw [insert_in_list_loop] simp [h] else @@ -66,19 +95,17 @@ theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) progress keep as heq as ⟨ b hi ⟩ simp only [insert_in_list] at heq exists b - simp only [heq, hi] - simp [*, List.lookup] -- Variation: use tactics from the beginning theorem insert_in_list_spec2 {α : Type} (key: Usize) (value: α) (ls: List α) : ∃ b, insert_in_list α key value ls = ret b ∧ - (b ↔ (List.lookup ls.v key = none)) + (b ↔ (ls.lookup key = none)) := by induction ls - case Nil => simp [insert_in_list, insert_in_list_loop, List.lookup] + case Nil => simp [insert_in_list, insert_in_list_loop] case Cons k v tl ih => - simp only [insert_in_list, List.lookup] + simp only [insert_in_list] rw [insert_in_list_loop] simp only if h: k = key then @@ -94,26 +121,27 @@ theorem insert_in_list_back_spec {α : Type} (key: Usize) (value: α) (l0: List ∃ l1, insert_in_list_back α key value l0 = ret l1 ∧ -- We update the binding - List.lookup l1.v key = value ∧ - (∀ k, k ≠ key → List.lookup l1.v k = List.lookup l0.v k) + l1.lookup key = value ∧ + (∀ k, k ≠ key → l1.lookup k = l0.lookup k) := match l0 with - | .Nil => by simp [insert_in_list_back, insert_in_list_loop_back, List.lookup]; tauto + | .Nil => by + simp (config := {contextual := true}) [insert_in_list_back, insert_in_list_loop_back] | .Cons k v tl => if h: k = key then by - simp [insert_in_list_back, List.lookup] + simp [insert_in_list_back] rw [insert_in_list_loop_back] - simp [h, List.lookup] + simp [h] intro k1 h1 simp [*] else by - simp [insert_in_list_back, List.lookup] + simp [insert_in_list_back] rw [insert_in_list_loop_back] - simp [h, List.lookup] + simp [h] progress keep as heq as ⟨ tl hp1 hp2 ⟩ simp [insert_in_list_back] at heq - simp (config := {contextual := true}) [*, List.lookup] + simp (config := {contextual := true}) [*] def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst) @@ -132,44 +160,103 @@ def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop := def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v -@[pspec] -theorem insert_in_list_back_spec1 {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) +theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) : ∃ l1, insert_in_list_back α key value l0 = ret l1 ∧ -- We update the binding - List.lookup l1.v key = value ∧ - (∀ k, k ≠ key → List.lookup l1.v k = List.lookup l0.v k) ∧ + l1.lookup key = value ∧ + (∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧ -- We preserve part of the key invariant - slot_s_inv_hash l (hash_mod_key key l) l1.v + slot_s_inv_hash l (hash_mod_key key l) l1.v ∧ + -- Reasoning about the length + match l0.lookup key with + | none => l1.len = l0.len + 1 + | some _ => l1.len = l0.len := match l0 with | .Nil => by - simp [insert_in_list_back, insert_in_list_loop_back, List.lookup, List.v, slot_s_inv_hash] - tauto + simp (config := {contextual := true}) [insert_in_list_back, insert_in_list_loop_back, List.v, slot_s_inv_hash] | .Cons k v tl0 => if h: k = key then by - simp [insert_in_list_back, List.lookup] + simp [insert_in_list_back] rw [insert_in_list_loop_back] - simp [h, List.lookup] + simp [h] constructor . intros; simp [*] . simp [List.v, slot_s_inv_hash] at * simp [*] else by - simp [insert_in_list_back, List.lookup] + simp [insert_in_list_back] rw [insert_in_list_loop_back] - simp [h, List.lookup] + simp [h] have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by simp_all [List.v, slot_s_inv_hash] - progress keep as heq as ⟨ tl1 hp1 hp2 hp3 ⟩ + progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 ⟩ simp only [insert_in_list_back] at heq have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by simp [List.v, slot_s_inv_hash] at * simp [*] - simp (config := {contextual := true}) [*, List.lookup] + -- TODO: canonize addition by default? + simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] +theorem insert_in_list_back_spec_aux1 {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α) + (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v) + (hdk : distinct_keys l0.v) : + ∃ l1, + insert_in_list_back α key value l0 = ret l1 ∧ + -- We update the binding + l1.lookup key = value ∧ + (∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧ + -- We preserve part of the key invariant + slot_s_inv_hash l (hash_mod_key key l) l1.v ∧ + -- Reasoning about the length + (match l0.lookup key with + | none => l1.len = l0.len + 1 + | some _ => l1.len = l0.len) ∧ + -- The keys are distinct + distinct_keys l1.v ∧ + -- We need this auxiliary property to prove that the keys distinct properties is preserved + (∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1)) + := match l0 with + | .Nil => by + simp (config := {contextual := true}) + [insert_in_list_back, insert_in_list_loop_back, + List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel] + | .Cons k v tl0 => + if h: k = key then + by + simp [insert_in_list_back] + rw [insert_in_list_loop_back] + simp [h] + split_target_conjs + . intros; simp [*] + . simp [List.v, slot_s_inv_hash] at * + simp [*] + . simp [*, distinct_keys] at * + apply hdk + . tauto + else + by + simp [insert_in_list_back] + rw [insert_in_list_loop_back] + simp [h] + have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by + simp_all [List.v, slot_s_inv_hash] + have : distinct_keys (List.v tl0) := by + simp [distinct_keys] at hdk + simp [hdk, distinct_keys] + progress keep as heq as ⟨ tl1 hp1 hp2 hp3 hp4 hp5 hp6 ⟩ -- TODO: naming is weird + simp only [insert_in_list_back] at heq + have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by + simp [List.v, slot_s_inv_hash] at * + simp [*] + have : distinct_keys ((k, v) :: List.v tl1) := by + simp [distinct_keys] at * + simp [*] + -- TODO: canonize addition by default? + simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm] end HashMap |