summaryrefslogtreecommitdiff
path: root/tests/lean/Hashmap
diff options
context:
space:
mode:
authorSon Ho2024-06-13 22:37:18 +0200
committerSon Ho2024-06-13 22:37:18 +0200
commitd5cf75a0f8209298ad85f46249f14d5c3a24faf6 (patch)
treec101e6bffaf474da394229fa4bda3147409577a0 /tests/lean/Hashmap
parentb3dd78ff4c8785b6ff9bce9927df90f8c78a9109 (diff)
Update the tests
Diffstat (limited to '')
-rw-r--r--tests/lean/Hashmap/Properties.lean30
1 files changed, 15 insertions, 15 deletions
diff --git a/tests/lean/Hashmap/Properties.lean b/tests/lean/Hashmap/Properties.lean
index fcaf5806..5be778e7 100644
--- a/tests/lean/Hashmap/Properties.lean
+++ b/tests/lean/Hashmap/Properties.lean
@@ -137,15 +137,16 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (
distinct_keys l1.v ∧
-- We need this auxiliary property to prove that the keys distinct properties is preserved
(∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1))
- :=
- match l0 with
- | .Nil => by
+ := by
+ cases l0 with
+ | Nil =>
exists true -- TODO: why do we need to do this?
+ simp [insert_in_list]
+ rw [insert_in_list_loop]
simp (config := {contextual := true})
- [insert_in_list, insert_in_list_loop,
- List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
- | .Cons k v tl0 =>
- if h: k = key then by
+ [List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
+ | Cons k v tl0 =>
+ if h: k = key then
rw [insert_in_list]
rw [insert_in_list_loop]
simp [h]
@@ -157,21 +158,21 @@ theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (
. simp [*, distinct_keys] at *
apply hdk
. tauto
- else by
+ else
rw [insert_in_list]
rw [insert_in_list_loop]
simp [h]
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
+ have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by
simp_all [List.v, slot_s_inv_hash]
- have : distinct_keys (List.v tl0) := by checkpoint
+ have : distinct_keys (List.v tl0) := by
simp [distinct_keys] at hdk
simp [hdk, distinct_keys]
progress keep heq as ⟨ b, tl1 .. ⟩
simp only [insert_in_list] at heq
- have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
+ have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by
simp [List.v, slot_s_inv_hash] at *
simp [*]
- have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint
+ have : distinct_keys ((k, v) :: List.v tl1) := by
simp [distinct_keys] at *
simp [*]
-- TODO: canonize addition by default?
@@ -231,7 +232,6 @@ def mk_opaque {α : Sort u} (x : α) : { y : α // y = x} :=
--set_option trace.profiler true
-- For pretty printing (useful when copy-pasting goals)
-attribute [pp_dot] List.length -- use the dot notation when printing
set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse)
-- The proof below is a bit expensive, so we need to increase the maximum number
@@ -305,7 +305,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
-- zeta reduction? For now I have to do this peculiar manipulation
have ⟨ nhm, nhm_eq ⟩ := @mk_opaque (HashMap α) { num_entries := i0, max_load_factor := hm.max_load_factor, max_load := hm.max_load, slots := v }
exists nhm
- have hupdt : lookup nhm key = some value := by checkpoint
+ have hupdt : lookup nhm key = some value := by
simp [lookup, List.lookup] at *
simp_all
have hlkp : ∀ k, ¬ k = key → nhm.lookup k = hm.lookup k := by
@@ -340,7 +340,7 @@ theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value
have _ :
match hm.lookup key with
| none => nhm.len_s = hm.len_s + 1
- | some _ => nhm.len_s = hm.len_s := by checkpoint
+ | some _ => nhm.len_s = hm.len_s := by
simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_t_lookup] at *
-- We have to do a case disjunction
simp_all