summaryrefslogtreecommitdiff
path: root/tests/hol4/misc-constants
diff options
context:
space:
mode:
authorNadrieril2024-05-24 17:01:16 +0200
committerNadrieril2024-05-24 17:03:28 +0200
commit3adbe18d36df3767e98f30b760ccd9c6ace640ad (patch)
tree2069246b2f7648e16331bcb24e5cfbc4f996e91f /tests/hol4/misc-constants
parente288482f437a5f259be5f81eb996b5b28158b300 (diff)
Rename some subdirectories for consistency
Diffstat (limited to 'tests/hol4/misc-constants')
-rw-r--r--tests/hol4/misc-constants/Holmakefile5
-rw-r--r--tests/hol4/misc-constants/constantsScript.sml217
-rw-r--r--tests/hol4/misc-constants/constantsTheory.sig538
3 files changed, 0 insertions, 760 deletions
diff --git a/tests/hol4/misc-constants/Holmakefile b/tests/hol4/misc-constants/Holmakefile
deleted file mode 100644
index 3c4b8973..00000000
--- a/tests/hol4/misc-constants/Holmakefile
+++ /dev/null
@@ -1,5 +0,0 @@
-# This file was automatically generated - modify ../Holmakefile.template instead
-INCLUDES = ../../../backends/hol4
-
-all: $(DEFAULT_TARGETS)
-.PHONY: all
diff --git a/tests/hol4/misc-constants/constantsScript.sml b/tests/hol4/misc-constants/constantsScript.sml
deleted file mode 100644
index 40a319c6..00000000
--- a/tests/hol4/misc-constants/constantsScript.sml
+++ /dev/null
@@ -1,217 +0,0 @@
-(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)
-(** [constants] *)
-open primitivesLib divDefLib
-
-val _ = new_theory "constants"
-
-
-(** [constants::X0] *)
-Definition x0_body_def:
- x0_body : u32 result = Return (int_to_u32 0)
-End
-Definition x0_c_def:
- x0_c : u32 = get_return_value x0_body
-End
-
-(** [constants::X1] *)
-Definition x1_body_def:
- x1_body : u32 result = Return core_u32_max
-End
-Definition x1_c_def:
- x1_c : u32 = get_return_value x1_body
-End
-
-(** [constants::X2] *)
-Definition x2_body_def:
- x2_body : u32 result = Return (int_to_u32 3)
-End
-Definition x2_c_def:
- x2_c : u32 = get_return_value x2_body
-End
-
-val incr_fwd_def = Define ‘
- (** [constants::incr]: forward function *)
- incr_fwd (n : u32) : u32 result =
- u32_add n (int_to_u32 1)
-’
-
-(** [constants::X3] *)
-Definition x3_body_def:
- x3_body : u32 result = incr_fwd (int_to_u32 32)
-End
-Definition x3_c_def:
- x3_c : u32 = get_return_value x3_body
-End
-
-val mk_pair0_fwd_def = Define ‘
- (** [constants::mk_pair0]: forward function *)
- mk_pair0_fwd (x : u32) (y : u32) : (u32 # u32) result =
- Return (x, y)
-’
-
-Datatype:
- (** [constants::Pair] *)
- pair_t = <| pair_x : 't1; pair_y : 't2; |>
-End
-
-val mk_pair1_fwd_def = Define ‘
- (** [constants::mk_pair1]: forward function *)
- mk_pair1_fwd (x : u32) (y : u32) : (u32, u32) pair_t result =
- Return (<| pair_x := x; pair_y := y |>)
-’
-
-(** [constants::P0] *)
-Definition p0_body_def:
- p0_body : (u32 # u32) result = mk_pair0_fwd (int_to_u32 0) (int_to_u32 1)
-End
-Definition p0_c_def:
- p0_c : (u32 # u32) = get_return_value p0_body
-End
-
-(** [constants::P1] *)
-Definition p1_body_def:
- p1_body : (u32, u32) pair_t result =
- mk_pair1_fwd (int_to_u32 0) (int_to_u32 1)
-End
-Definition p1_c_def:
- p1_c : (u32, u32) pair_t = get_return_value p1_body
-End
-
-(** [constants::P2] *)
-Definition p2_body_def:
- p2_body : (u32 # u32) result = Return (int_to_u32 0, int_to_u32 1)
-End
-Definition p2_c_def:
- p2_c : (u32 # u32) = get_return_value p2_body
-End
-
-(** [constants::P3] *)
-Definition p3_body_def:
- p3_body : (u32, u32) pair_t result =
- Return (<| pair_x := (int_to_u32 0); pair_y := (int_to_u32 1) |>)
-End
-Definition p3_c_def:
- p3_c : (u32, u32) pair_t = get_return_value p3_body
-End
-
-Datatype:
- (** [constants::Wrap] *)
- wrap_t = <| wrap_val : 't; |>
-End
-
-val wrap_new_fwd_def = Define ‘
- (** [constants::Wrap::{0}::new]: forward function *)
- wrap_new_fwd (val : 't) : 't wrap_t result =
- Return (<| wrap_val := val |>)
-’
-
-(** [constants::Y] *)
-Definition y_body_def:
- y_body : i32 wrap_t result = wrap_new_fwd (int_to_i32 2)
-End
-Definition y_c_def:
- y_c : i32 wrap_t = get_return_value y_body
-End
-
-val unwrap_y_fwd_def = Define ‘
- (** [constants::unwrap_y]: forward function *)
- unwrap_y_fwd : i32 result =
- Return y_c.wrap_val
-’
-
-(** [constants::YVAL] *)
-Definition yval_body_def:
- yval_body : i32 result = unwrap_y_fwd
-End
-Definition yval_c_def:
- yval_c : i32 = get_return_value yval_body
-End
-
-(** [constants::get_z1::Z1] *)
-Definition get_z1_z1_body_def:
- get_z1_z1_body : i32 result = Return (int_to_i32 3)
-End
-Definition get_z1_z1_c_def:
- get_z1_z1_c : i32 = get_return_value get_z1_z1_body
-End
-
-val get_z1_fwd_def = Define ‘
- (** [constants::get_z1]: forward function *)
- get_z1_fwd : i32 result =
- Return get_z1_z1_c
-’
-
-val add_fwd_def = Define ‘
- (** [constants::add]: forward function *)
- add_fwd (a : i32) (b : i32) : i32 result =
- i32_add a b
-’
-
-(** [constants::Q1] *)
-Definition q1_body_def:
- q1_body : i32 result = Return (int_to_i32 5)
-End
-Definition q1_c_def:
- q1_c : i32 = get_return_value q1_body
-End
-
-(** [constants::Q2] *)
-Definition q2_body_def:
- q2_body : i32 result = Return q1_c
-End
-Definition q2_c_def:
- q2_c : i32 = get_return_value q2_body
-End
-
-(** [constants::Q3] *)
-Definition q3_body_def:
- q3_body : i32 result = add_fwd q2_c (int_to_i32 3)
-End
-Definition q3_c_def:
- q3_c : i32 = get_return_value q3_body
-End
-
-val get_z2_fwd_def = Define ‘
- (** [constants::get_z2]: forward function *)
- get_z2_fwd : i32 result =
- do
- i <- get_z1_fwd;
- i0 <- add_fwd i q3_c;
- add_fwd q1_c i0
- od
-’
-
-(** [constants::S1] *)
-Definition s1_body_def:
- s1_body : u32 result = Return (int_to_u32 6)
-End
-Definition s1_c_def:
- s1_c : u32 = get_return_value s1_body
-End
-
-(** [constants::S2] *)
-Definition s2_body_def:
- s2_body : u32 result = incr_fwd s1_c
-End
-Definition s2_c_def:
- s2_c : u32 = get_return_value s2_body
-End
-
-(** [constants::S3] *)
-Definition s3_body_def:
- s3_body : (u32, u32) pair_t result = Return p3_c
-End
-Definition s3_c_def:
- s3_c : (u32, u32) pair_t = get_return_value s3_body
-End
-
-(** [constants::S4] *)
-Definition s4_body_def:
- s4_body : (u32, u32) pair_t result =
- mk_pair1_fwd (int_to_u32 7) (int_to_u32 8)
-End
-Definition s4_c_def:
- s4_c : (u32, u32) pair_t = get_return_value s4_body
-End
-
-val _ = export_theory ()
diff --git a/tests/hol4/misc-constants/constantsTheory.sig b/tests/hol4/misc-constants/constantsTheory.sig
deleted file mode 100644
index 287ad5f5..00000000
--- a/tests/hol4/misc-constants/constantsTheory.sig
+++ /dev/null
@@ -1,538 +0,0 @@
-signature constantsTheory =
-sig
- type thm = Thm.thm
-
- (* Definitions *)
- val add_fwd_def : thm
- val get_z1_fwd_def : thm
- val get_z1_z1_body_def : thm
- val get_z1_z1_c_def : thm
- val get_z2_fwd_def : thm
- val incr_fwd_def : thm
- val mk_pair0_fwd_def : thm
- val mk_pair1_fwd_def : thm
- val p0_body_def : thm
- val p0_c_def : thm
- val p1_body_def : thm
- val p1_c_def : thm
- val p2_body_def : thm
- val p2_c_def : thm
- val p3_body_def : thm
- val p3_c_def : thm
- val pair_t_TY_DEF : thm
- val pair_t_case_def : thm
- val pair_t_pair_x : thm
- val pair_t_pair_x_fupd : thm
- val pair_t_pair_y : thm
- val pair_t_pair_y_fupd : thm
- val pair_t_size_def : thm
- val q1_body_def : thm
- val q1_c_def : thm
- val q2_body_def : thm
- val q2_c_def : thm
- val q3_body_def : thm
- val q3_c_def : thm
- val s1_body_def : thm
- val s1_c_def : thm
- val s2_body_def : thm
- val s2_c_def : thm
- val s3_body_def : thm
- val s3_c_def : thm
- val s4_body_def : thm
- val s4_c_def : thm
- val unwrap_y_fwd_def : thm
- val wrap_new_fwd_def : thm
- val wrap_t_TY_DEF : thm
- val wrap_t_case_def : thm
- val wrap_t_size_def : thm
- val wrap_t_wrap_val : thm
- val wrap_t_wrap_val_fupd : thm
- val x0_body_def : thm
- val x0_c_def : thm
- val x1_body_def : thm
- val x1_c_def : thm
- val x2_body_def : thm
- val x2_c_def : thm
- val x3_body_def : thm
- val x3_c_def : thm
- val y_body_def : thm
- val y_c_def : thm
- val yval_body_def : thm
- val yval_c_def : thm
-
- (* Theorems *)
- val EXISTS_pair_t : thm
- val EXISTS_wrap_t : thm
- val FORALL_pair_t : thm
- val FORALL_wrap_t : thm
- val datatype_pair_t : thm
- val datatype_wrap_t : thm
- val pair_t_11 : thm
- val pair_t_Axiom : thm
- val pair_t_accessors : thm
- val pair_t_accfupds : thm
- val pair_t_case_cong : thm
- val pair_t_case_eq : thm
- val pair_t_component_equality : thm
- val pair_t_fn_updates : thm
- val pair_t_fupdcanon : thm
- val pair_t_fupdcanon_comp : thm
- val pair_t_fupdfupds : thm
- val pair_t_fupdfupds_comp : thm
- val pair_t_induction : thm
- val pair_t_literal_11 : thm
- val pair_t_literal_nchotomy : thm
- val pair_t_nchotomy : thm
- val pair_t_updates_eq_literal : thm
- val wrap_t_11 : thm
- val wrap_t_Axiom : thm
- val wrap_t_accessors : thm
- val wrap_t_accfupds : thm
- val wrap_t_case_cong : thm
- val wrap_t_case_eq : thm
- val wrap_t_component_equality : thm
- val wrap_t_fn_updates : thm
- val wrap_t_fupdfupds : thm
- val wrap_t_fupdfupds_comp : thm
- val wrap_t_induction : thm
- val wrap_t_literal_11 : thm
- val wrap_t_literal_nchotomy : thm
- val wrap_t_nchotomy : thm
- val wrap_t_updates_eq_literal : thm
-
- val constants_grammars : type_grammar.grammar * term_grammar.grammar
-(*
- [divDef] Parent theory of "constants"
-
- [add_fwd_def] Definition
-
- ⊢ ∀a b. add_fwd a b = i32_add a b
-
- [get_z1_fwd_def] Definition
-
- ⊢ get_z1_fwd = Return get_z1_z1_c
-
- [get_z1_z1_body_def] Definition
-
- ⊢ get_z1_z1_body = Return (int_to_i32 3)
-
- [get_z1_z1_c_def] Definition
-
- ⊢ get_z1_z1_c = get_return_value get_z1_z1_body
-
- [get_z2_fwd_def] Definition
-
- ⊢ get_z2_fwd =
- do i <- get_z1_fwd; i0 <- add_fwd i q3_c; add_fwd q1_c i0 od
-
- [incr_fwd_def] Definition
-
- ⊢ ∀n. incr_fwd n = u32_add n (int_to_u32 1)
-
- [mk_pair0_fwd_def] Definition
-
- ⊢ ∀x y. mk_pair0_fwd x y = Return (x,y)
-
- [mk_pair1_fwd_def] Definition
-
- ⊢ ∀x y. mk_pair1_fwd x y = Return <|pair_x := x; pair_y := y|>
-
- [p0_body_def] Definition
-
- ⊢ p0_body = mk_pair0_fwd (int_to_u32 0) (int_to_u32 1)
-
- [p0_c_def] Definition
-
- ⊢ p0_c = get_return_value p0_body
-
- [p1_body_def] Definition
-
- ⊢ p1_body = mk_pair1_fwd (int_to_u32 0) (int_to_u32 1)
-
- [p1_c_def] Definition
-
- ⊢ p1_c = get_return_value p1_body
-
- [p2_body_def] Definition
-
- ⊢ p2_body = Return (int_to_u32 0,int_to_u32 1)
-
- [p2_c_def] Definition
-
- ⊢ p2_c = get_return_value p2_body
-
- [p3_body_def] Definition
-
- ⊢ p3_body = Return <|pair_x := int_to_u32 0; pair_y := int_to_u32 1|>
-
- [p3_c_def] Definition
-
- ⊢ p3_c = get_return_value p3_body
-
- [pair_t_TY_DEF] Definition
-
- ⊢ ∃rep.
- TYPE_DEFINITION
- (λa0'.
- ∀ $var$('pair_t').
- (∀a0'.
- (∃a0 a1.
- a0' =
- (λa0 a1.
- ind_type$CONSTR 0 (a0,a1)
- (λn. ind_type$BOTTOM)) a0 a1) ⇒
- $var$('pair_t') a0') ⇒
- $var$('pair_t') a0') rep
-
- [pair_t_case_def] Definition
-
- ⊢ ∀a0 a1 f. pair_t_CASE (pair_t a0 a1) f = f a0 a1
-
- [pair_t_pair_x] Definition
-
- ⊢ ∀t t0. (pair_t t t0).pair_x = t
-
- [pair_t_pair_x_fupd] Definition
-
- ⊢ ∀f t t0. pair_t t t0 with pair_x updated_by f = pair_t (f t) t0
-
- [pair_t_pair_y] Definition
-
- ⊢ ∀t t0. (pair_t t t0).pair_y = t0
-
- [pair_t_pair_y_fupd] Definition
-
- ⊢ ∀f t t0. pair_t t t0 with pair_y updated_by f = pair_t t (f t0)
-
- [pair_t_size_def] Definition
-
- ⊢ ∀f f1 a0 a1. pair_t_size f f1 (pair_t a0 a1) = 1 + (f a0 + f1 a1)
-
- [q1_body_def] Definition
-
- ⊢ q1_body = Return (int_to_i32 5)
-
- [q1_c_def] Definition
-
- ⊢ q1_c = get_return_value q1_body
-
- [q2_body_def] Definition
-
- ⊢ q2_body = Return q1_c
-
- [q2_c_def] Definition
-
- ⊢ q2_c = get_return_value q2_body
-
- [q3_body_def] Definition
-
- ⊢ q3_body = add_fwd q2_c (int_to_i32 3)
-
- [q3_c_def] Definition
-
- ⊢ q3_c = get_return_value q3_body
-
- [s1_body_def] Definition
-
- ⊢ s1_body = Return (int_to_u32 6)
-
- [s1_c_def] Definition
-
- ⊢ s1_c = get_return_value s1_body
-
- [s2_body_def] Definition
-
- ⊢ s2_body = incr_fwd s1_c
-
- [s2_c_def] Definition
-
- ⊢ s2_c = get_return_value s2_body
-
- [s3_body_def] Definition
-
- ⊢ s3_body = Return p3_c
-
- [s3_c_def] Definition
-
- ⊢ s3_c = get_return_value s3_body
-
- [s4_body_def] Definition
-
- ⊢ s4_body = mk_pair1_fwd (int_to_u32 7) (int_to_u32 8)
-
- [s4_c_def] Definition
-
- ⊢ s4_c = get_return_value s4_body
-
- [unwrap_y_fwd_def] Definition
-
- ⊢ unwrap_y_fwd = Return y_c.wrap_val
-
- [wrap_new_fwd_def] Definition
-
- ⊢ ∀val. wrap_new_fwd val = Return <|wrap_val := val|>
-
- [wrap_t_TY_DEF] Definition
-
- ⊢ ∃rep.
- TYPE_DEFINITION
- (λa0.
- ∀ $var$('wrap_t').
- (∀a0.
- (∃a. a0 =
- (λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
- a) ⇒
- $var$('wrap_t') a0) ⇒
- $var$('wrap_t') a0) rep
-
- [wrap_t_case_def] Definition
-
- ⊢ ∀a f. wrap_t_CASE (wrap_t a) f = f a
-
- [wrap_t_size_def] Definition
-
- ⊢ ∀f a. wrap_t_size f (wrap_t a) = 1 + f a
-
- [wrap_t_wrap_val] Definition
-
- ⊢ ∀t. (wrap_t t).wrap_val = t
-
- [wrap_t_wrap_val_fupd] Definition
-
- ⊢ ∀f t. wrap_t t with wrap_val updated_by f = wrap_t (f t)
-
- [x0_body_def] Definition
-
- ⊢ x0_body = Return (int_to_u32 0)
-
- [x0_c_def] Definition
-
- ⊢ x0_c = get_return_value x0_body
-
- [x1_body_def] Definition
-
- ⊢ x1_body = Return core_u32_max
-
- [x1_c_def] Definition
-
- ⊢ x1_c = get_return_value x1_body
-
- [x2_body_def] Definition
-
- ⊢ x2_body = Return (int_to_u32 3)
-
- [x2_c_def] Definition
-
- ⊢ x2_c = get_return_value x2_body
-
- [x3_body_def] Definition
-
- ⊢ x3_body = incr_fwd (int_to_u32 32)
-
- [x3_c_def] Definition
-
- ⊢ x3_c = get_return_value x3_body
-
- [y_body_def] Definition
-
- ⊢ y_body = wrap_new_fwd (int_to_i32 2)
-
- [y_c_def] Definition
-
- ⊢ y_c = get_return_value y_body
-
- [yval_body_def] Definition
-
- ⊢ yval_body = unwrap_y_fwd
-
- [yval_c_def] Definition
-
- ⊢ yval_c = get_return_value yval_body
-
- [EXISTS_pair_t] Theorem
-
- ⊢ ∀P. (∃p. P p) ⇔ ∃t0 t. P <|pair_x := t0; pair_y := t|>
-
- [EXISTS_wrap_t] Theorem
-
- ⊢ ∀P. (∃w. P w) ⇔ ∃u. P <|wrap_val := u|>
-
- [FORALL_pair_t] Theorem
-
- ⊢ ∀P. (∀p. P p) ⇔ ∀t0 t. P <|pair_x := t0; pair_y := t|>
-
- [FORALL_wrap_t] Theorem
-
- ⊢ ∀P. (∀w. P w) ⇔ ∀u. P <|wrap_val := u|>
-
- [datatype_pair_t] Theorem
-
- ⊢ DATATYPE (record pair_t pair_x pair_y)
-
- [datatype_wrap_t] Theorem
-
- ⊢ DATATYPE (record wrap_t wrap_val)
-
- [pair_t_11] Theorem
-
- ⊢ ∀a0 a1 a0' a1'. pair_t a0 a1 = pair_t a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
-
- [pair_t_Axiom] Theorem
-
- ⊢ ∀f. ∃fn. ∀a0 a1. fn (pair_t a0 a1) = f a0 a1
-
- [pair_t_accessors] Theorem
-
- ⊢ (∀t t0. (pair_t t t0).pair_x = t) ∧
- ∀t t0. (pair_t t t0).pair_y = t0
-
- [pair_t_accfupds] Theorem
-
- ⊢ (∀p f. (p with pair_y updated_by f).pair_x = p.pair_x) ∧
- (∀p f. (p with pair_x updated_by f).pair_y = p.pair_y) ∧
- (∀p f. (p with pair_x updated_by f).pair_x = f p.pair_x) ∧
- ∀p f. (p with pair_y updated_by f).pair_y = f p.pair_y
-
- [pair_t_case_cong] Theorem
-
- ⊢ ∀M M' f.
- M = M' ∧ (∀a0 a1. M' = pair_t a0 a1 ⇒ f a0 a1 = f' a0 a1) ⇒
- pair_t_CASE M f = pair_t_CASE M' f'
-
- [pair_t_case_eq] Theorem
-
- ⊢ pair_t_CASE x f = v ⇔ ∃t t0. x = pair_t t t0 ∧ f t t0 = v
-
- [pair_t_component_equality] Theorem
-
- ⊢ ∀p1 p2. p1 = p2 ⇔ p1.pair_x = p2.pair_x ∧ p1.pair_y = p2.pair_y
-
- [pair_t_fn_updates] Theorem
-
- ⊢ (∀f t t0. pair_t t t0 with pair_x updated_by f = pair_t (f t) t0) ∧
- ∀f t t0. pair_t t t0 with pair_y updated_by f = pair_t t (f t0)
-
- [pair_t_fupdcanon] Theorem
-
- ⊢ ∀p g f.
- p with <|pair_y updated_by f; pair_x updated_by g|> =
- p with <|pair_x updated_by g; pair_y updated_by f|>
-
- [pair_t_fupdcanon_comp] Theorem
-
- ⊢ (∀g f.
- pair_y_fupd f ∘ pair_x_fupd g = pair_x_fupd g ∘ pair_y_fupd f) ∧
- ∀h g f.
- pair_y_fupd f ∘ pair_x_fupd g ∘ h =
- pair_x_fupd g ∘ pair_y_fupd f ∘ h
-
- [pair_t_fupdfupds] Theorem
-
- ⊢ (∀p g f.
- p with <|pair_x updated_by f; pair_x updated_by g|> =
- p with pair_x updated_by f ∘ g) ∧
- ∀p g f.
- p with <|pair_y updated_by f; pair_y updated_by g|> =
- p with pair_y updated_by f ∘ g
-
- [pair_t_fupdfupds_comp] Theorem
-
- ⊢ ((∀g f. pair_x_fupd f ∘ pair_x_fupd g = pair_x_fupd (f ∘ g)) ∧
- ∀h g f.
- pair_x_fupd f ∘ pair_x_fupd g ∘ h = pair_x_fupd (f ∘ g) ∘ h) ∧
- (∀g f. pair_y_fupd f ∘ pair_y_fupd g = pair_y_fupd (f ∘ g)) ∧
- ∀h g f. pair_y_fupd f ∘ pair_y_fupd g ∘ h = pair_y_fupd (f ∘ g) ∘ h
-
- [pair_t_induction] Theorem
-
- ⊢ ∀P. (∀t t0. P (pair_t t t0)) ⇒ ∀p. P p
-
- [pair_t_literal_11] Theorem
-
- ⊢ ∀t01 t1 t02 t2.
- <|pair_x := t01; pair_y := t1|> = <|pair_x := t02; pair_y := t2|> ⇔
- t01 = t02 ∧ t1 = t2
-
- [pair_t_literal_nchotomy] Theorem
-
- ⊢ ∀p. ∃t0 t. p = <|pair_x := t0; pair_y := t|>
-
- [pair_t_nchotomy] Theorem
-
- ⊢ ∀pp. ∃t t0. pp = pair_t t t0
-
- [pair_t_updates_eq_literal] Theorem
-
- ⊢ ∀p t0 t.
- p with <|pair_x := t0; pair_y := t|> =
- <|pair_x := t0; pair_y := t|>
-
- [wrap_t_11] Theorem
-
- ⊢ ∀a a'. wrap_t a = wrap_t a' ⇔ a = a'
-
- [wrap_t_Axiom] Theorem
-
- ⊢ ∀f. ∃fn. ∀a. fn (wrap_t a) = f a
-
- [wrap_t_accessors] Theorem
-
- ⊢ ∀t. (wrap_t t).wrap_val = t
-
- [wrap_t_accfupds] Theorem
-
- ⊢ ∀w f. (w with wrap_val updated_by f).wrap_val = f w.wrap_val
-
- [wrap_t_case_cong] Theorem
-
- ⊢ ∀M M' f.
- M = M' ∧ (∀a. M' = wrap_t a ⇒ f a = f' a) ⇒
- wrap_t_CASE M f = wrap_t_CASE M' f'
-
- [wrap_t_case_eq] Theorem
-
- ⊢ wrap_t_CASE x f = v ⇔ ∃t. x = wrap_t t ∧ f t = v
-
- [wrap_t_component_equality] Theorem
-
- ⊢ ∀w1 w2. w1 = w2 ⇔ w1.wrap_val = w2.wrap_val
-
- [wrap_t_fn_updates] Theorem
-
- ⊢ ∀f t. wrap_t t with wrap_val updated_by f = wrap_t (f t)
-
- [wrap_t_fupdfupds] Theorem
-
- ⊢ ∀w g f.
- w with <|wrap_val updated_by f; wrap_val updated_by g|> =
- w with wrap_val updated_by f ∘ g
-
- [wrap_t_fupdfupds_comp] Theorem
-
- ⊢ (∀g f. wrap_val_fupd f ∘ wrap_val_fupd g = wrap_val_fupd (f ∘ g)) ∧
- ∀h g f.
- wrap_val_fupd f ∘ wrap_val_fupd g ∘ h = wrap_val_fupd (f ∘ g) ∘ h
-
- [wrap_t_induction] Theorem
-
- ⊢ ∀P. (∀t. P (wrap_t t)) ⇒ ∀w. P w
-
- [wrap_t_literal_11] Theorem
-
- ⊢ ∀u1 u2. <|wrap_val := u1|> = <|wrap_val := u2|> ⇔ u1 = u2
-
- [wrap_t_literal_nchotomy] Theorem
-
- ⊢ ∀w. ∃u. w = <|wrap_val := u|>
-
- [wrap_t_nchotomy] Theorem
-
- ⊢ ∀ww. ∃t. ww = wrap_t t
-
- [wrap_t_updates_eq_literal] Theorem
-
- ⊢ ∀w u. w with wrap_val := u = <|wrap_val := u|>
-
-
-*)
-end