diff options
author | Son Ho | 2023-05-26 17:28:15 +0200 |
---|---|---|
committer | Son HO | 2023-06-04 21:54:38 +0200 |
commit | 446bbc0bdbb4a03d78636ec71f85e13e66b61e08 (patch) | |
tree | eddf6f7013f76e507498742e4d60e0709c2cd960 /tests/hol4/hashmap | |
parent | 27f98ddd67c3c80db947ab257fcce7a30244e813 (diff) |
Make good progress on the proofs of the hashmap in HOL4
Diffstat (limited to '')
-rw-r--r-- | tests/hol4/hashmap/hashmap_PropertiesScript.sml | 732 |
1 files changed, 686 insertions, 46 deletions
diff --git a/tests/hol4/hashmap/hashmap_PropertiesScript.sml b/tests/hol4/hashmap/hashmap_PropertiesScript.sml index 2dc2f375..e96f7e34 100644 --- a/tests/hol4/hashmap/hashmap_PropertiesScript.sml +++ b/tests/hol4/hashmap/hashmap_PropertiesScript.sml @@ -1,19 +1,88 @@ -(*open boolTheory arithmeticTheory integerTheory intLib listTheory stringTheory*) -(*open primitivesArithTheory primitivesBaseTacLib ilistTheory primitivesTheory *) -open primitivesLib listTheory ilistTheory hashmap_TypesTheory hashmap_FunsTheory +open primitivesLib primitivesArithTheory primitivesTheory listTheory ilistTheory hashmap_TypesTheory hashmap_FunsTheory val _ = new_theory "hashmap_Properties" +val pairwise_rel_def = Define ‘ + pairwise_rel p [] = T ∧ + pairwise_rel p (x :: ls) = (EVERY (p x) ls ∧ pairwise_rel p ls) +’ + +(* TODO: move *) +Theorem EVERY_quant_equiv: + ∀p ls. EVERY p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls) +Proof + strip_tac >> Induct_on ‘ls’ + >-(rw [EVERY_DEF, len_def] >> int_tac) >> + rw [EVERY_DEF, len_def, index_eq] >> + equiv_tac + >-( + rw [] >> + Cases_on ‘i = 0’ >> fs [] >> + first_x_assum irule >> + int_tac) >> + rw [] + >-( + first_x_assum (qspec_assume ‘0’) >> fs [] >> + first_x_assum irule >> + qspec_assume ‘ls’ len_pos >> + int_tac) >> + first_x_assum (qspec_assume ‘i + 1’) >> + fs [] >> + sg ‘i + 1 ≠ 0 ∧ i + 1 - 1 = i’ >- int_tac >> fs [] >> + first_x_assum irule >> int_tac +QED + +(* TODO: move *) +Theorem pairwise_rel_quant_equiv: + ∀p ls. pairwise_rel p ls ⇔ + (∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls)) +Proof + strip_tac >> Induct_on ‘ls’ + >-(rw [pairwise_rel_def, len_def] >> int_tac) >> + rw [pairwise_rel_def, len_def] >> + equiv_tac + >-( + (* ==> *) + rw [] >> + sg ‘0 < j’ >- int_tac >> + Cases_on ‘i = 0’ + >-( + simp [index_eq] >> + qspecl_assume [‘p h’, ‘ls’] (iffLR EVERY_quant_equiv) >> + first_x_assum irule >> fs [] >> int_tac + ) >> + rw [index_eq] >> + first_x_assum irule >> int_tac + ) >> + (* <== *) + rw [] + >-( + rw [EVERY_quant_equiv] >> + first_x_assum (qspecl_assume [‘0’, ‘i + 1’]) >> + sg ‘0 < i + 1 ∧ i + 1 - 1 = i’ >- int_tac >> + fs [index_eq] >> + first_x_assum irule >> int_tac + ) >> + sg ‘pairwise_rel p ls’ + >-( + rw [pairwise_rel_def] >> + first_x_assum (qspecl_assume [‘i' + 1’, ‘j' + 1’]) >> + sg ‘0 < i' + 1 ∧ 0 < j' + 1’ >- int_tac >> + fs [index_eq, int_add_minus_same_eq] >> + first_x_assum irule >> int_tac + ) >> + fs [] +QED Type key_t = “:usize” -Definition for_all_def: - for_all p [] = T ∧ - for_all p (x :: ls) = (p x ∧ for_all p ls) -End +val distinct_keys_def = Define ‘ + distinct_keys (ls : (key_t # 't) list) = + pairwise_rel (\x y. FST x ≠ FST y) ls +’ (* Conversion from “:list_t” to “:list” *) -Definition list_t_v: +Definition list_t_v_def: (list_t_v (ListNil : 't list_t) : (key_t # 't) list = []) /\ (list_t_v (ListCons k v tl) = (k, v) :: list_t_v tl) End @@ -39,8 +108,29 @@ Definition slot_t_remove_def: slot_t_remove key ls = remove key (list_t_v ls) End +Definition hash_mod_key_def: + hash_mod_key k (l : int) : int = + case hash_key_fwd k of + | Return k => usize_to_int k % l + | _ => ARB +End + +Definition slot_s_inv_hash_def: + slot_s_inv_hash (l : int) (i : int) (ls : (key_t # 'b) list) : bool = + ∀ k v. MEM (k, v) ls ⇒ hash_mod_key k l = i +End + Definition slot_s_inv_def: - slot_s_inv (i : int) (ls : (key_t # 'b) list) : bool = ( + slot_s_inv (l : int) (i : int) (ls : (key_t # 'b) list) : bool = ( + distinct_keys ls ∧ + slot_s_inv_hash l i ls + ) +End + +(* TODO: try with this invariant: + +Definition slot_s_inv_def:a + slot_s_inv (i : int) (ls : (key_t # 'b) list) : bool = (∀ k. lookup k ls ≠ NONE ⇒ lookup k (remove k ls) = NONE) ∧ (∀ k v. MEM (k, v) ls ⇒ ∃ hk. hash_key_fwd k = Return hk ⇒ @@ -48,8 +138,10 @@ Definition slot_s_inv_def: ) End +*) + Definition slot_t_inv_def: - slot_t_inv (i : int) (s : 't list_t) = slot_s_inv i (list_t_v s) + slot_t_inv (l : int) (i : int) (s : 't list_t) = slot_s_inv l i (list_t_v s) End (* Representation function of the hash map as a list of slots *) @@ -65,7 +157,7 @@ End Definition slots_s_inv_def: slots_s_inv (s : 'a list_t list) = - ∀ (i : int). 0 ≤ i ⇒ i < len s ⇒ slot_t_inv i (index i s) + ∀ (i : int). 0 ≤ i ⇒ i < len s ⇒ slot_t_inv (len s) i (index i s) End Definition slots_t_inv_def: @@ -111,46 +203,41 @@ Definition len_s_def: len_s hm = len (hash_map_t_al_v hm) End -Definition hash_mod_key_def: - hash_mod_key k (l : int) : int = - case hash_key_fwd k of - | Return k => usize_to_int k % l - | _ => ARB -End - Definition slots_t_lookup_def: - slots_t_find (s : 't list_t list) (k : key_t) : 't option = + slots_t_lookup (s : 't list_t list) (k : key_t) : 't option = let i = hash_mod_key k (len s) in let slot = index i s in slot_t_lookup k slot End -Definition find_s_def: - find_s (hm : 't hash_map_t) (k : key_t) : 't option = - slots_t_find (vec_to_list hm.hash_map_slots) k +Definition lookup_s_def: + lookup_s (hm : 't hash_map_t) (k : key_t) : 't option = + slots_t_lookup (vec_to_list hm.hash_map_slots) k End -(* Proofs *) +(*============================================================================* + *============================================================================* + * Proofs + *============================================================================* + *============================================================================*) - -(* TODO: move *) -Theorem for_all_append: - ∀ p ls0 ls1. for_all p ls0 ⇒ for_all p ls1 ⇒ for_all p (ls0 ++ ls1) -Proof - Induct_on ‘ls0’ >> fs [for_all_def] -QED +(*============================================================================* + * New + *============================================================================*) Theorem hash_map_allocate_slots_loop_fwd_spec: ∀ slots n. - for_all (\x. x = ListNil) (vec_to_list slots) ⇒ + EVERY (\x. x = ListNil) (vec_to_list slots) ⇒ len (vec_to_list slots) + usize_to_int n ≤ usize_max ⇒ ∃ nslots. hash_map_allocate_slots_loop_fwd slots n = Return nslots ∧ len (vec_to_list nslots) = len (vec_to_list slots) + usize_to_int n ∧ - for_all (\x. x = ListNil) (vec_to_list nslots) + EVERY (\x. x = ListNil) (vec_to_list nslots) Proof + (* TODO: induction principle for usize, etc. *) Induct_on ‘usize_to_int n’ >> rw [] >> massage >- int_tac >> pure_once_rewrite_tac [hash_map_allocate_slots_loop_fwd_def] >> fs [usize_gt_def] >> massage >> fs [] >> + (* TODO: would be good to simply use progress here *) case_tac >-( sg ‘len (vec_to_list slots) ≤ usize_max’ >- int_tac >> @@ -167,14 +254,576 @@ Proof massage >> gvs [] >> sg ‘v = usize_to_int n - 1’ >- int_tac >> fs [] >> (* *) - progress - >-(irule for_all_append >> fs [for_all_def]) - >-(fs [vec_len_def, len_append, len_def] >> int_tac) - >-(fs [vec_len_def, len_append, len_def] >> int_tac) + progress >> + fs [vec_len_def, len_append, len_def] >> + int_tac ) >> fs [] >> int_tac QED +val _ = save_spec_thm "hash_map_allocate_slots_loop_fwd_spec" + +Theorem hash_map_allocate_slots_fwd_spec: + ∀ n. + usize_to_int n ≤ usize_max ⇒ + ∃ slots. hash_map_allocate_slots_fwd vec_new n = Return slots ∧ + slots_t_inv slots ∧ + len (vec_to_list slots) = usize_to_int n ∧ + EVERY (\x. x = ListNil) (vec_to_list slots) +Proof + rw [] >> + pure_once_rewrite_tac [hash_map_allocate_slots_fwd_def] >> + progress >> gvs [len_def, slots_t_inv_def, slots_s_inv_def, slot_s_inv_hash_def] >> + rw [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def] + >- fs [EVERY_quant_equiv, distinct_keys_def, pairwise_rel_def, list_t_v_def] >> + fs [EVERY_quant_equiv] >> + qpat_assum ‘∀i. _’ sg_dep_rewrite_all_tac >> gvs [list_t_v_def] +QED +val _ = save_spec_thm "hash_map_allocate_slots_fwd_spec" + +(* Auxiliary lemma *) +Theorem FLAT_ListNil_is_nil: + EVERY (λx. x = ListNil) ls ⇒ FLAT (MAP list_t_v ls) = [] +Proof + Induct_on ‘ls’ >> fs [list_t_v_def] +QED + +Theorem hash_map_new_with_capacity_fwd_spec: + ∀ capacity max_load_dividend max_load_divisor. + 0 < usize_to_int max_load_dividend ⇒ + usize_to_int max_load_dividend < usize_to_int max_load_divisor ⇒ + 0 < usize_to_int capacity ⇒ + usize_to_int capacity * usize_to_int max_load_dividend >= usize_to_int max_load_divisor ⇒ + usize_to_int capacity * usize_to_int max_load_dividend <= usize_max ⇒ + ∃ hm. hash_map_new_with_capacity_fwd capacity max_load_dividend max_load_divisor = Return hm ∧ + hash_map_t_inv hm ∧ + len_s hm = 0 ∧ + ∀ k. lookup_s hm k = NONE +Proof + rw [] >> fs [hash_map_new_with_capacity_fwd_def] >> + progress >> + progress >> + progress >> + gvs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + rw [] + >-(massage >> sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs [len_def]) + >-(int_tac) + >-(massage >> metis_tac []) + >-(fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs [len_def]) >> + fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def] >> + fs [EVERY_quant_equiv] >> + (* TODO: sg_dep_rewrite_goal_tac does weird things here *) + first_x_assum (qspec_assume ‘hash_mod_key k (usize_to_int capacity)’) >> + first_x_assum sg_premise_tac + >- ( + fs [hash_mod_key_def, hash_key_fwd_def] >> + massage >> + irule pos_mod_pos_is_pos >> fs []) >> + first_x_assum sg_premise_tac + >-( + fs [hash_mod_key_def, hash_key_fwd_def] >> + massage >> + irule pos_mod_pos_lt >> fs [] + ) >> + fs [list_t_v_def, lookup_def] +QED +val _ = save_spec_thm "hash_map_new_with_capacity_fwd_spec" + +Theorem hash_map_new_fwd_spec: + ∃ hm. hash_map_new_fwd = Return hm ∧ + hash_map_t_inv hm ∧ + ∀ k. lookup_s hm k = NONE ∧ + len_s hm = 0 +Proof + pure_rewrite_tac [hash_map_new_fwd_def] >> + progress >> massage >> fs [] >> + assume_tac usize_bounds >> fs [u16_max_def] >> + int_tac +QED +val _ = save_spec_thm "hash_map_new_fwd_spec" + +(*============================================================================* + * Clear + *============================================================================*) + +(* [clear]: the loop doesn't fail and simply clears the slots starting at index i *) +Theorem hash_map_clear_loop_fwd_back_spec_aux: + ∀ n slots i. + (* Small trick to make the induction work well *) + n = len (vec_to_list slots) - usize_to_int i ⇒ + ∃ slots1. hash_map_clear_loop_fwd_back slots i = Return slots1 ∧ + len (vec_to_list slots1) = len (vec_to_list slots) ∧ + (* The slots before i are left unchanged *) + (∀ j. 0 ≤ j ⇒ j < usize_to_int i ⇒ + j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = index j (vec_to_list slots)) ∧ + (* The slots after i are set to ListNil *) + (∀ j. usize_to_int i ≤ j ⇒ j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = ListNil) +Proof + (* TODO: induction principle for usize, etc. *) + Induct_on ‘n’ >> rw [] >> + pure_once_rewrite_tac [hash_map_clear_loop_fwd_back_def] >> + fs [usize_lt_def, vec_len_def] >> + (* TODO: automate that *) + qspec_assume ‘slots’ vec_len_spec >> massage + >-(case_tac >> rw [] >> int_tac) + >-(rw [] >> int_tac) >> + case_tac + >-( + (* usize_to_int i < len (vec_to_list slots) *) + progress >> + progress >> massage >- int_tac >> + qspecl_assume [‘slots’, ‘i’, ‘ListNil’] vec_update_eq >> fs [] >> + progress >> rw [] + >-( + (* Use the induction hypothesis *) + last_x_assum (qspec_assume ‘j’) >> gvs [] >> + sg ‘j < usize_to_int i + 1’ >- int_tac >> gvs [] >> + (* Use the vec_update eq *) + last_x_assum (qspec_assume ‘int_to_usize j’) >> gvs [vec_len_def] >> massage >> + gvs [] >> + sg ‘j ≠ usize_to_int i’ >- int_tac >> + fs [vec_index_def] >> + massage) >> + Cases_on ‘usize_to_int i = j’ >> fs [vec_index_def] >> + first_x_assum (qspec_assume ‘j’) >> gvs [] >> + sg ‘usize_to_int i + 1 ≤ j’ >- int_tac >> gvs []) + >> + rw [] >> + int_tac +QED + +Theorem hash_map_clear_loop_fwd_back_spec: + ∀ slots. + ∃ slots1. hash_map_clear_loop_fwd_back slots (int_to_usize 0) = Return slots1 ∧ + len (vec_to_list slots1) = len (vec_to_list slots) ∧ + (* All the slots are set to ListNil *) + (∀ j. 0 ≤ j ⇒ j < len (vec_to_list slots) ⇒ + index j (vec_to_list slots1) = ListNil) ∧ + (* The map is empty *) + (FLAT (MAP list_t_v (vec_to_list slots1)) = []) +Proof + rw [] >> + qspecl_assume [‘len (vec_to_list slots) − 0’, ‘slots’, ‘int_to_usize 0’] + hash_map_clear_loop_fwd_back_spec_aux >> + massage >> fs [] >> + irule FLAT_ListNil_is_nil >> + fs [EVERY_quant_equiv] +QED +val _ = save_spec_thm "hash_map_clear_loop_fwd_back_spec" + +Theorem hash_map_clear_fwd_back_spec: + ∀ hm. + hash_map_t_inv hm ⇒ + ∃ hm1. hash_map_clear_fwd_back hm = Return hm1 ∧ + hash_map_t_inv hm1 ∧ + len_s hm1 = 0 ∧ + (∀ k. lookup_s hm1 k = NONE) +Proof + rw [hash_map_clear_fwd_back_def] >> + progress >> + fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def, lookup_s_def] >> + fs [slots_t_lookup_def, slot_t_lookup_def, len_def] >> rw [] + >-((* Prove that the invariant is preserved *) + fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def, len_def] >> + massage >> fs [] >> + conj_tac + >-( + fs [slots_t_inv_def, slots_s_inv_def] >> + rw [slot_t_inv_def, slot_s_inv_def, slot_s_inv_hash_def, list_t_v_def, distinct_keys_def, pairwise_rel_def]) >> + Cases_on ‘hm.hash_map_max_load_factor’ >> gvs [] >> + disj1_tac >> + irule pos_div_pos_is_pos >> + int_tac) >> + fs [hash_mod_key_def, hash_key_fwd_def] >> + (* TODO: would like to do: qpat_assum ‘∀j. _’ sg_dep_rewrite_goal_tac >> *) + first_x_assum (qspec_assume ‘usize_to_int k % len (vec_to_list hm.hash_map_slots)’) >> + fs [] >> + (* TODO: automate that *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >> + qspecl_assume [‘usize_to_int k’, ‘len (vec_to_list hm.hash_map_slots)’] integerTheory.INT_MOD_BOUNDS >> + sg ‘len (vec_to_list hm.hash_map_slots) ≠ 0’ + >-(fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> + fs [] >> + sg ‘~(len (vec_to_list hm.hash_map_slots) < 0)’ >- int_tac >> + fs [list_t_v_def, lookup_def] +QED +val _ = save_spec_thm "hash_map_clear_fwd_back_spec" + + +(*============================================================================* + * Len + *============================================================================*) + +Theorem hash_map_len_spec: + ∀ hm. + hash_map_t_inv hm ⇒ + ∃ x. hash_map_len_fwd hm = Return x ∧ + usize_to_int x = len_s hm +Proof + rw [hash_map_len_fwd_def, hash_map_t_inv_def, hash_map_t_base_inv_def, len_s_def] +QED +val _ = save_spec_thm "hash_map_len_spec" + + +(*============================================================================* + * Insert + *============================================================================*) + +Theorem hash_map_insert_in_list_loop_fwd_spec: + !ls key value. + ∃ b. hash_map_insert_in_list_loop_fwd key value ls = Return b ∧ + (b ⇔ slot_t_lookup key ls = NONE) +Proof + Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_insert_in_list_loop_fwd_def] >> + fs [slot_t_lookup_def, lookup_def, list_t_v_def] >> + rw [] +QED +val _ = save_spec_thm "hash_map_insert_in_list_loop_fwd_spec" + +Theorem hash_map_insert_in_list_fwd_spec: + !ls key value. + ∃ b. hash_map_insert_in_list_fwd key value ls = Return b ∧ + (b ⇔ slot_t_lookup key ls = NONE) +Proof + rw [hash_map_insert_in_list_fwd_def] >> progress >> fs [] +QED +val _ = save_spec_thm "hash_map_insert_in_list_fwd_spec" + +(* Lemma about ‘hash_map_insert_in_list_loop_back’, without the invariant *) +Theorem hash_map_insert_in_list_loop_back_spec_aux: + !ls key value. + ∃ ls1. hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧ + (* We updated the binding for key *) + slot_t_lookup key ls1 = SOME value /\ + (* The other bindings are left unchanged *) + (!k. k <> key ==> slot_t_lookup k ls = slot_t_lookup k ls1) ∧ + (* We preserve part of the key invariant *) + (∀ l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ==> slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls1)) ∧ + (* Reasoning about the length *) + (case slot_t_lookup key ls of + | NONE => len (list_t_v ls1) = len (list_t_v ls) + 1 + | SOME _ => len (list_t_v ls1) = len (list_t_v ls)) +Proof + Induct_on ‘ls’ >> rw [list_t_v_def] >~ [‘ListNil’] >> + pure_once_rewrite_tac [hash_map_insert_in_list_loop_back_def] + >- (rw [slot_t_lookup_def, lookup_def, list_t_v_def, len_def, slot_s_inv_hash_def]) >> + fs [] >> + case_tac >> fs [] + >-(fs [slot_t_lookup_def, lookup_def, list_t_v_def, len_def, slot_s_inv_hash_def] >> + metis_tac []) >> + progress >> + fs [slot_t_lookup_def, lookup_def, list_t_v_def, len_def] >> + rw [] + >-(fs [slot_s_inv_hash_def] >> metis_tac []) >> + case_tac >> fs [] >> int_tac +QED + +(* Auxiliary lemma - TODO: move *) +Theorem hash_map_insert_in_list_loop_back_EVERY_distinct_keys: + ∀k v k1 ls0 ls1. + k1 ≠ k ⇒ + EVERY (λy. k1 ≠ FST y) (list_t_v ls0) ⇒ + pairwise_rel (λx y. FST x ≠ FST y) (list_t_v ls0) ⇒ + hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒ + EVERY (λy. k1 ≠ FST y) (list_t_v ls1) +Proof + Induct_on ‘ls0’ >> rw [pairwise_rel_def] >~ [‘ListNil’] >> + gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] + >-(gvs [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def, list_t_v_def, EVERY_DEF]) >> + pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >> + simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >> + Cases_on ‘u = k’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >> + gvs [distinct_keys_def, list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + metis_tac [] +QED + +Theorem hash_map_insert_in_list_loop_back_distinct_keys: + ∀ k v ls0 ls1. + distinct_keys (list_t_v ls0) ⇒ + hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒ + distinct_keys (list_t_v ls1) +Proof + Induct_on ‘ls0’ >> rw [distinct_keys_def] >~ [‘ListNil’] + >-( + fs [list_t_v_def, hash_map_insert_in_list_loop_back_def] >> + gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF]) >> + last_x_assum (qspecl_assume [‘k’, ‘v’]) >> + pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >> + simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >> + Cases_on ‘u = k’ >> rw [] >> gvs [list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >> + gvs [distinct_keys_def, list_t_v_def, pairwise_rel_def, EVERY_DEF] >> + metis_tac [hash_map_insert_in_list_loop_back_EVERY_distinct_keys] +QED + +Definition insert_in_slot_t_rel_def: + insert_in_slot_t_rel l key value slot slot1 = ( + (* We preserve the invariant *) + slot_t_inv l (hash_mod_key key l) slot1 ∧ + (* We updated the binding for key *) + slot_t_lookup key slot1 = SOME value /\ + (* The other bindings are left unchanged *) + (!k. k <> key ==> slot_t_lookup k slot = slot_t_lookup k slot1) ∧ + (* Reasoning about the length *) + (case slot_t_lookup key slot of + | NONE => len (list_t_v slot1) = len (list_t_v slot) + 1 + | SOME _ => len (list_t_v slot1) = len (list_t_v slot))) +End + +(* Lemma about ‘hash_map_insert_in_list_loop_back’, with the invariant *) +Theorem hash_map_insert_in_list_loop_back_spec: + !i ls key value. + distinct_keys (list_t_v ls) ⇒ + ∃ ls1. hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧ + (∀l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ⇒ + insert_in_slot_t_rel l key value ls ls1) +Proof + rw [slot_t_inv_def, slot_s_inv_def] >> + qspecl_assume [‘ls’, ‘key’, ‘value’] hash_map_insert_in_list_loop_back_spec_aux >> + fs [] >> + qspecl_assume [‘key’, ‘value’, ‘ls’, ‘ls1’] hash_map_insert_in_list_loop_back_distinct_keys >> + gvs [insert_in_slot_t_rel_def, slot_t_inv_def, slot_s_inv_def] +QED +val _ = save_spec_thm "hash_map_insert_in_list_loop_back_spec" + +(* TODO: move and use more *) +Theorem hash_map_t_base_inv_len_slots: + ∀ hm. hash_map_t_base_inv hm ⇒ 0 < len (vec_to_list hm.hash_map_slots) +Proof + rw [hash_map_t_base_inv_def, vec_len_def] >> int_tac +QED + +(* TODO: automatic rewriting? *) +Theorem hash_map_insert_no_resize_fwd_back_branches_eq: + (if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE then + do + i0 <- usize_add hm.hash_map_num_entries (int_to_usize 1); + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od + else + do + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return (hm with hash_map_slots := v) + od) = + (do + i0 <- if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE then + usize_add hm.hash_map_num_entries (int_to_usize 1) + else + Return hm.hash_map_num_entries; + l0 <- + hash_map_insert_in_list_back key value + (vec_index hm.hash_map_slots a); + v <- vec_index_mut_back hm.hash_map_slots a l0; + Return + (hm with <|hash_map_num_entries := i0; hash_map_slots := v|>) + od) +Proof + case_tac >> + fs [bind_def] >> + case_tac >> + case_tac >> + Cases_on ‘hm’ >> fs [] >> + fs [hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_slots_fupd_def] >> + fs [hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_num_entries_fupd_def] +QED + +Theorem hash_map_cond_incr_thm: + ∀ hm key a. + hash_map_t_base_inv hm ⇒ + (slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE ⇒ len_s hm < usize_max) ⇒ + ∃ n. (if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE + then usize_add hm.hash_map_num_entries (int_to_usize 1) + else Return hm.hash_map_num_entries) = Return n ∧ + (if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE + then usize_to_int n = usize_to_int hm.hash_map_num_entries + 1 + else n = hm.hash_map_num_entries) +Proof + rw [] >> + progress >> + massage >> + fs [len_s_def, hash_map_t_base_inv_def] >> + (* TODO: improve massage to not only look at variables *) + qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >> + int_tac +QED + +Theorem hash_map_insert_no_resize_fwd_back_spec_aux: + !hm key value. + (* Using the base invariant, because the full invariant is preserved only + if we resize *) + hash_map_t_base_inv hm ⇒ + (lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒ + ∃ hm1 slot1. hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧ + len (vec_to_list hm1.hash_map_slots) = len (vec_to_list hm.hash_map_slots) ∧ + let l = len (vec_to_list hm.hash_map_slots) in + let i = hash_mod_key key (len (vec_to_list hm.hash_map_slots)) in + let slot = index i (vec_to_list hm.hash_map_slots) in + insert_in_slot_t_rel l key value slot slot1 ∧ + vec_to_list hm1.hash_map_slots = update (vec_to_list hm.hash_map_slots) i slot1 ∧ + hm1.hash_map_max_load_factor = hm.hash_map_max_load_factor ∧ + hm1.hash_map_max_load = hm.hash_map_max_load ∧ + (* Reasoning about the length *) + (case lookup_s hm key of + | NONE => usize_to_int hm1.hash_map_num_entries = usize_to_int hm.hash_map_num_entries + 1 + | SOME _ => hm1.hash_map_num_entries = hm.hash_map_num_entries) +Proof + rw [hash_map_insert_no_resize_fwd_back_def] >> + fs [hash_key_fwd_def] >> + (* TODO: automate this *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> + (* TODO: improve massage to not only look at variables *) + qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >> + imp_res_tac hash_map_t_base_inv_len_slots >> + (* TODO: update usize_rem_spec? *) + qspecl_assume [‘usize_to_int key’, ‘len (vec_to_list hm.hash_map_slots)’] pos_rem_pos_ineqs >> + progress >> + progress >- ( (* TODO: why not done automatically? *) massage >> fs []) >> + progress >> gvs [] >> + (* Taking care of the disjunction *) + fs [hash_map_insert_no_resize_fwd_back_branches_eq] >> + qspecl_assume [‘hm’, ‘key’, ‘a’] hash_map_cond_incr_thm >> gvs [] >> + pop_assum sg_premise_tac + >- (fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def, int_rem_def]) >> + fs [] >> + (* TODO: lemma? *) + sg ‘let l = len (vec_to_list hm.hash_map_slots) in + slot_t_inv l (usize_to_int key % l) (index (usize_to_int key % l) (vec_to_list hm.hash_map_slots))’ + >-(fs [hash_map_t_base_inv_def, slots_t_inv_def, slots_s_inv_def] >> + last_x_assum (qspec_assume ‘usize_to_int a’) >> + gvs [vec_index_def, int_rem_def, slot_t_inv_def, slot_s_inv_def]) >> + fs [] >> + sg ‘usize_to_int a = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ + >-(fs [int_rem_def]) >> + sg ‘int_rem (usize_to_int key) (len (vec_to_list hm.hash_map_slots)) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ + >-(fs [int_rem_def]) >> + fs [] >> + sg ‘distinct_keys (list_t_v (vec_index hm.hash_map_slots a))’ + >-(fs [slot_t_inv_def, slot_s_inv_def, vec_index_def]) >> + fs [hash_map_insert_in_list_back_def] >> + progress >> + progress >- ((* TODO: *) massage >> fs []) >> + (* vec_update *) + qspecl_assume [‘hm.hash_map_slots’, ‘a’, ‘a'’] vec_update_eq >> gvs [] >> + (* Prove the post-condition *) + qexists ‘a'’ >> + rw [] + >-(gvs [insert_in_slot_t_rel_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def, vec_update_def, slot_t_inv_def, slot_s_inv_def] >> + metis_tac []) + >-( + fs [hash_mod_key_def, hash_key_fwd_def, vec_index_def, vec_update_def] >> + sg_dep_rewrite_goal_tac mk_vec_axiom >> gvs []) >> + gvs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def, vec_index_def] >> + case_tac >> fs [] +QED + +(* TODO: move *) +Theorem len_FLAT_MAP_update: + ∀ x ls i. + 0 ≤ i ⇒ i < len ls ⇒ + len (FLAT (MAP list_t_v (update ls i x))) = + len (FLAT (MAP list_t_v ls)) + len (list_t_v x) - len (list_t_v (index i ls)) +Proof + strip_tac >> + Induct_on ‘ls’ + >-(rw [len_def] >> int_tac) >> + rw [] >> + fs [len_def, index_def, update_def] >> + Cases_on ‘i = 0’ >> fs [len_append] + >- int_tac >> + sg ‘0 < i’ >- int_tac >> fs [len_append] >> + first_x_assum (qspec_assume ‘i - 1’) >> + fs [] >> + (* TODO: automate *) + sg ‘0 ≤ i - 1 ∧ i - 1 < len ls’ >- int_tac >> fs [] >> + int_tac +QED + +Theorem hash_map_insert_no_resize_fwd_back_spec: + !hm key value. + (* Using the base invariant, because the full invariant is preserved only + if we resize *) + hash_map_t_base_inv hm ⇒ + (lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒ + ∃ hm1. hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧ + (* We preserve the invariant *) + hash_map_t_base_inv hm1 ∧ + (* We updated the binding for key *) + lookup_s hm1 key = SOME value /\ + (* The other bindings are left unchanged *) + (!k. k <> key ==> lookup_s hm k = lookup_s hm1 k) ∧ + (* Reasoning about the length *) + (case lookup_s hm key of + | NONE => len_s hm1 = len_s hm + 1 + | SOME _ => len_s hm1 = len_s hm) +Proof + rw [] >> + qspecl_assume [‘hm’, ‘key’, ‘value’] hash_map_insert_no_resize_fwd_back_spec_aux >> gvs [] >> + (* TODO: automate this *) + qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> + (* TODO: improve massage to not only look at variables *) + qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >> + imp_res_tac hash_map_t_base_inv_len_slots >> + (* TODO: update usize_rem_spec? *) + qspecl_assume [‘usize_to_int key’, ‘len (vec_to_list hm.hash_map_slots)’] pos_mod_pos_ineqs >> + massage >> gvs [] >> + (* We need the invariant of hm1 to prove some of the postconditions *) + sg ‘hash_map_t_base_inv hm1’ + >-( + fs [hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >> + rw [] + >-( + sg_dep_rewrite_goal_tac len_FLAT_MAP_update + >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + fs [insert_in_slot_t_rel_def] >> + fs [hash_mod_key_def, hash_key_fwd_def] >> + Cases_on ‘lookup_s hm key’ >> + fs [lookup_s_def, slots_t_lookup_def, slot_t_lookup_def, hash_mod_key_def, hash_key_fwd_def] >> + int_tac) >> + fs [slots_t_inv_def, slots_s_inv_def] >> + rw [] >> + (* Proof of the slot property: has the slot been updated∃ *) + Cases_on ‘i = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> fs [] + >-( + sg_dep_rewrite_goal_tac index_update_diff + >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + fs [insert_in_slot_t_rel_def]) >> + sg_dep_rewrite_goal_tac index_update_same + >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + fs []) >> + (* Prove the rest of the postcondition *) + rw [] + >-((* The binding for key is updated *) + fs [lookup_s_def, slots_t_lookup_def] >> + sg_dep_rewrite_goal_tac index_update_diff + >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + fs [insert_in_slot_t_rel_def]) + >-((* The other bindings are unchanged *) + fs [lookup_s_def, slots_t_lookup_def] >> + Cases_on ‘hash_mod_key k (len (vec_to_list hm.hash_map_slots)) = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> gvs [] + >-( + sg_dep_rewrite_goal_tac index_update_diff + >-(fs [hash_mod_key_def, hash_key_fwd_def]) >> + fs [insert_in_slot_t_rel_def]) >> + sg_dep_rewrite_goal_tac index_update_same + >-(fs [hash_mod_key_def, hash_key_fwd_def] >> irule pos_mod_pos_lt >> massage >> fs []) >> + fs [insert_in_slot_t_rel_def]) >> + (* Length *) + Cases_on ‘lookup_s hm key’ >> + gvs [insert_in_slot_t_rel_def, hash_map_t_inv_def, hash_map_t_base_inv_def, len_s_def] +QED +val _ = save_spec_thm "hash_map_insert_no_resize_fwd_back_spec" (* Theorem nth_mut_fwd_spec: @@ -414,16 +1063,6 @@ QED * Invariant proof 2: functional version of the invariant *) -val pairwise_rel_def = Define ‘ - pairwise_rel p [] = T ∧ - pairwise_rel p (x :: ls) = (for_all (p x) ls ∧ pairwise_rel p ls) -’ - -val distinct_keys_f_def = Define ‘ - distinct_keys_f (ls : (u32 # 't) list) = - pairwise_rel (\x y. FST x ≠ FST y) ls -’ - Theorem distinct_keys_f_insert_for_all: ∀k v k1 ls0 ls1. k1 ≠ k ⇒ @@ -541,3 +1180,4 @@ Proof QED val _ = export_theory () +*) |