diff options
author | Son Ho | 2022-02-11 14:17:29 +0100 |
---|---|---|
committer | Son Ho | 2022-02-11 14:17:29 +0100 |
commit | 26debce3d6614e6f423af32d83372b3e9e292f45 (patch) | |
tree | adeccfee57276d4c9ed26e9168c96b81556926ee /tests/hashmap | |
parent | ecdaaef9e3e57ee2ebbbd35a07e9f8c9195cbba6 (diff) |
Cleanup and reorganize the proofs
Diffstat (limited to 'tests/hashmap')
-rw-r--r-- | tests/hashmap/Hashmap.Properties.fst | 594 |
1 files changed, 293 insertions, 301 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst index f3644dc1..550f8d10 100644 --- a/tests/hashmap/Hashmap.Properties.fst +++ b/tests/hashmap/Hashmap.Properties.fst @@ -12,6 +12,37 @@ module InteractiveHelpers = FStar.InteractiveHelpers #set-options "--z3rlimit 50 --fuel 0 --ifuel 1" +/// The proofs actually caused a lot more trouble than expected, because: +/// - we are blind when doing the proofs. After a very intensive use of F* I got +/// used to it meaning I can *do* proofs in F*, but it still takes me a tremendous +/// amout of energy to visualize the context in my head and, for instance, +/// properly instantiate the lemmas or insert the necessary assertions in the code. +/// I actually often write assertions that I assume just to *check* that those +/// assertions make the proofs pass and are thus indeed the ones I want to prove, +/// which is something very specific to working with F*. +/// - F* is extremely bad at reasoning with quantifiers, which is made worse by +/// the fact we are blind when making proofs. This forced me to be extremely +/// careful about the way I wrote the specs/invariants (by writing "functional" +/// specs and invariants, mostly, so as not to manipulate quantifiers) +/// - F* doesn't encode closures properly, the result being that it is very +/// awkward to reason about functions like `map` or `find`, because we have +/// to introduce auxiliary definitions for the parameters we give to those +/// functions (if we use anonymous lambda functions, we're screwed by the +/// encoding). +/// - we can't easily prove intermediate results which require a recursive proofs +/// inside of other proofs, meaning that whenever we need such a result we need +/// to write an intermediate lemma, which is extremely cumbersome. +/// +/// The result is that I had to poor a lot more thinking than I expected in the below +/// proofs, in particular to: +/// - write invariants and specs that I could *manage* in F* +/// - subdivide all the theorems into very small, modular lemmas that I could reason +/// about independently, in a small context, and with quick responses from F*. +/// +/// Note that in a theorem prover with tactics, most of the below proof would have +/// been extremely straightforward. + + (*** List lemmas *) val index_append_lem (#a : Type0) (ls0 ls1 : list a) (i : nat{i < length ls0 + length ls1}) : @@ -219,32 +250,32 @@ let has_same_binding (#t : Type0) (al : assoc_list t) ((k,v) : binding t) : Type | None -> False | Some (k',v') -> v' == v -let hash_map_t_mem (#t : Type0) (hm : hash_map_t t) (k : key) : bool = +let hash_map_t_mem_s (#t : Type0) (hm : hash_map_t t) (k : key) : bool = existsb (same_key k) (hash_map_t_v hm) -let hash_map_t_len (#t : Type0) (hm : hash_map_t t) : nat = +let hash_map_t_len_s (#t : Type0) (hm : hash_map_t t) : nat = hm.hash_map_num_entries -let slot_t_v_find (#t : Type0) (k : key) (slot : list (binding t)) : option t = +let slot_find (#t : Type0) (k : key) (slot : list (binding t)) : option t = match find (same_key k) slot with | None -> None | Some (_, v) -> Some v -let slot_t_find (#t : Type0) (k : key) (slot : list_t t) : option t = +let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t = match find (same_key k) (list_t_v slot) with | None -> None | Some (_, v) -> Some v // This is a simpler version of the "find" function, which captures the essence // of what happens. -let hash_map_t_find +let hash_map_t_find_s (#t : Type0) (hm : hash_map_t t{length hm.hash_map_slots > 0}) (k : key) : option t = let slots = hm.hash_map_slots in let i = hash_mod_key k (length slots) in let slot = index slots i in - slot_t_find k slot + slot_t_find_s k slot -(*let hash_map_t_find (#t : Type0) (hm : hash_map_t t) (k : key) : option t = +(*let hash_map_t_find_s (#t : Type0) (hm : hash_map_t t) (k : key) : option t = match find (same_key k) (hash_map_t_v hm) with | None -> None | Some (_, v) -> Some v*) @@ -256,6 +287,7 @@ let assoc_list_equiv (#t : Type0) (al0 al1 : assoc_list t) : Type0 = // And the reverse is true for_allP (has_same_binding al0) al1 +(* // Introducing auxiliary definitions to help deal with the quantifiers let not_same_keys_at_j_k @@ -278,13 +310,13 @@ type slot_t_inv_not_same_keys_f (#t : Type0) (i : usize) (slot : list_t t) = -> (k:nat{k < list_t_len slot /\ j < k}) -> Lemma (not_same_keys_at_j_k slot j k) [SMTPat (not_same_keys_at_j_k slot j k)] +*) (**) /// Invariants for the slots -/// Rk.: making sure the quantifiers instantiations work was painful. As always. -let slot_t_v_inv +let slot_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list (binding t)) : bool = // All the bindings are in the proper slot for_all (same_hash_mod_key len i) slot && @@ -348,6 +380,7 @@ let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Ty {:pattern index slots i} slot_t_inv (length slots) i (index slots i) +(* type slots_t_inv_f (#t : Type0) (slots : slots_t t{length slots <= usize_max}) = (i:nat{i < length slots}) -> Lemma (slot_t_inv (length slots) i (index slots i)) @@ -368,6 +401,7 @@ let slots_t_from_fun f i in () +*) /// Base invariant for the hashmap (the complete invariant can be temporarily /// broken between the moment we inserted an element and the moment we resize) @@ -500,12 +534,12 @@ val hash_map_new_with_capacity_fwd_lem | Fail -> False | Return hm -> // The hash map has the specified capacity - we need to reveal this - // otherwise the pre of [hash_map_t_find] is not satisfied. + // otherwise the pre of [hash_map_t_find_s] is not satisfied. length hm.hash_map_slots = capacity /\ // The hash map has 0 values - hash_map_t_len hm = 0 /\ + hash_map_t_len_s hm = 0 /\ // It contains no bindings - (forall k. hash_map_t_find hm k == None) /\ + (forall k. hash_map_t_find_s hm k == None) /\ // We need this low-level property for the invariant (forall(i:nat{i < length hm.hash_map_slots}). index hm.hash_map_slots i == ListNil))) @@ -542,9 +576,9 @@ val hash_map_new_fwd_lem_fun (t : Type0) : // The hash map invariant is satisfied hash_map_t_inv hm /\ // The hash map has 0 values - hash_map_t_len hm = 0 /\ + hash_map_t_len_s hm = 0 /\ // It contains no bindings - (forall k. hash_map_t_find hm k == None))) + (forall k. hash_map_t_find_s hm k == None))) #push-options "--fuel 1" let hash_map_new_fwd_lem_fun t = @@ -609,9 +643,9 @@ val hash_map_clear_fwd_back_lem_fun // The hash map invariant is satisfied hash_map_t_inv hm /\ // The hash map has 0 values - hash_map_t_len hm = 0 /\ + hash_map_t_len_s hm = 0 /\ // It contains no bindings - (forall k. hash_map_t_find hm k == None))) + (forall k. hash_map_t_find_s hm k == None))) // Being lazy: fuel 1 helps a lot... #push-options "--fuel 1" @@ -640,13 +674,15 @@ val hash_map_len_fwd_lem (t : Type0) (self : hash_map_t t) : Lemma ( match hash_map_len_fwd t self with | Fail -> False - | Return l -> l = hash_map_t_len self) + | Return l -> l = hash_map_t_len_s self) let hash_map_len_fwd_lem t self = () (**** insert_in_list *) +(***** insert_in_list'fwd *) + /// [insert_in_list_fwd]: returns true iff the key is not in the list (functional version) val hash_map_insert_in_list_fwd_lem (t : Type0) (key : usize) (value : t) (ls : list_t t) : @@ -655,7 +691,7 @@ val hash_map_insert_in_list_fwd_lem match hash_map_insert_in_list_fwd t key value ls with | Fail -> False | Return b -> - b <==> (slot_t_find key ls == None))) + b <==> (slot_t_find_s key ls == None))) (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" @@ -678,236 +714,34 @@ let rec hash_map_insert_in_list_fwd_lem t key value ls = end #pop-options -(* -/// [insert_in_list] -// TODO: remove -val hash_map_insert_in_list_back_lem - (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : - Lemma - (requires (slot_t_inv len (hash_mod_key key len) ls)) - (ensures ( - match hash_map_insert_in_list_back t key value ls with - | Fail -> False - | Return ls' -> - // The invariant is preserved - slot_t_inv len (hash_mod_key key len) ls' /\ - // [key] maps to [value] - slot_t_find key ls' == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find k' ls' == slot_t_find k' ls) /\ - // The length is incremented, iff we inserted a new key - (match slot_t_find key ls with - | None -> - list_t_v ls' == list_t_v ls @ [(key,value)] /\ - list_t_len ls' = list_t_len ls + 1 - | Some _ -> - list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value) /\ - list_t_len ls' = list_t_len ls))) - (decreases (hash_map_insert_in_list_decreases t key value ls)) - -// I suffered a bit below, but as usual, for the wrong reasons: quantifiers in F* -// are really too painful to work with... -#push-options "--z3rlimit 200 --fuel 1" -let rec hash_map_insert_in_list_back_lem t len key value ls = - let h = hash_mod_key key len in - begin match ls with - | ListCons ckey cvalue ls0 -> - let b = ckey = key in - if b - then - begin - let ls1 = ListCons ckey value ls0 in - let ls_hash_key_lem, ls_not_same_keys_lem = slot_t_inv_to_funs len h ls in - let ls1_hash_key_lem : slot_t_inv_hash_key_f len h ls1 = - fun j -> if j = 0 then () else ls_hash_key_lem j - in - let ls1_not_same_keys_lem : slot_t_inv_not_same_keys_f h ls1 = - fun j k -> ls_not_same_keys_lem j k - in - slot_t_inv_from_funs_lem len h ls1 ls1_hash_key_lem ls1_not_same_keys_lem; - assert(slot_t_inv len (hash_mod_key key len) ls1) - end - else - begin - let ls_hash_key_lem, ls_not_same_keys_lem = slot_t_inv_to_funs len h ls in - let ls0_hash_key_lem : slot_t_inv_hash_key_f len h ls0 = - fun j -> ls_hash_key_lem (j + 1) - in - let ls0_not_same_keys_lem : slot_t_inv_not_same_keys_f h ls0 = - fun j k -> ls_not_same_keys_lem (j + 1) (k + 1) - in - slot_t_inv_from_funs_lem len h ls0 ls0_hash_key_lem ls0_not_same_keys_lem; - assert(slot_t_inv len (hash_mod_key key len) ls0); - hash_map_insert_in_list_back_lem t len key value ls0; - match hash_map_insert_in_list_back t key value ls0 with - | Fail -> () - | Return l -> - let ls1 = ListCons ckey cvalue l in - let l_hash_key_lem, l_not_same_keys_lem = slot_t_inv_to_funs len h l in - let ls1_hash_key_lem : slot_t_inv_hash_key_f len h ls1 = - fun j -> - if j = 0 then - begin - ls_hash_key_lem 0; - assert(hash_mod_key (fst (list_t_index ls1 j)) len = h) - end - else l_hash_key_lem (j - 1) - in - (* Disjunction on whether we added an element or not *) - begin match slot_t_find key ls0 with - | None -> - (* We added an element *) - assert(list_t_v l == list_t_v ls0 @ [(key,value)]); - // assert(list_t_v ls1 == list_t_v ls @ [(key,value)]); - let ls1_not_same_keys_lem : slot_t_inv_not_same_keys_f h ls1 = - fun j k -> - if 0 < j then - l_not_same_keys_lem (j-1) (k-1) - else //if k < list_t_len ls then - begin -// assert_norm(length [(key,value)] = 1); - assert(list_t_index ls1 j == (ckey, cvalue)); - assert(list_t_v ls1 == (ckey, cvalue) :: list_t_v l); - assert(list_t_index ls1 k == list_t_index l (k-1)); -// index_append_lem (list_t_v ls0) [(key,value)] (j-1); - index_append_lem (list_t_v ls0) [(key,value)] (k-1); - if k < list_t_len l then - begin - assert(list_t_index ls1 k == list_t_index ls0 (k-1)); - admit() - end - else - admit() - end - in - slot_t_inv_from_funs_lem len h ls1 ls1_hash_key_lem ls1_not_same_keys_lem - | _ -> - (* We simply updated a binding *) - admit() - end - end - | ListNil -> - let ls0 = ListCons key value ListNil in - assert_norm(list_t_len ls0 == 1); - let ls0_hash_key_lem : slot_t_inv_hash_key_f len h ls0 = - fun j -> () - in - let ls0_not_same_keys_lem : slot_t_inv_not_same_keys_f h ls0 = - fun j k -> () - in - slot_t_inv_from_funs_lem len h ls0 ls0_hash_key_lem ls0_not_same_keys_lem - end -#pop-options -*) - -(**** insert_no_resize *) - -(*val hash_map_insert_no_resize_fwd_back_lem - (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : - Lemma (requires (hash_map_t_inv self)) - (ensures ( - match hash_map_insert_no_resize_fwd_back t self key value with - | Fail -> - (* If we fail, it is necessarily because: - * - we tried to add a new *key* (there was no binding for the key) - * - the [num_entries] counter is already saturaed *) - hash_map_t_find self key == None /\ - hash_map_t_len self = usize_max - | Return hm -> - // The invariant is preserved - hash_map_t_inv hm /\ - // [key] maps to [value] - hash_map_t_find hm key == Some value /\ - // The other bindings are preserved - (forall k'. k' <> key ==> hash_map_t_find hm k' == hash_map_t_find self k') /\ - // The length is incremented, iff we inserted a new key - (match hash_map_t_find self key with - | None -> hash_map_t_len hm = hash_map_t_len hm + 1 - | Some _ -> hash_map_t_len hm = hash_map_t_len hm))) - -let hash_map_insert_no_resize_fwd_back_lem t self key value = - begin match hash_key_fwd key with - | Fail -> () - | Return i -> - let i0 = self.hash_map_num_entries in - let p = self.hash_map_max_load_factor in - let i1 = self.hash_map_max_load in - let v = self.hash_map_slots in - let i2 = vec_len (list_t t) v in - begin match usize_rem i i2 with - | Fail -> () - | Return hash_mod -> - begin match vec_index_mut_fwd (list_t t) v hash_mod with - | Fail -> () - | Return l -> - begin - hash_map_insert_in_list_fwd_lem t key value l; - match hash_map_insert_in_list_fwd t key value l with - | Fail -> () - | Return b -> - if b - then - begin match usize_add i0 1 with - | Fail -> - assert(slot_t_find key l == None); - assert(hash_map_t_len self = usize_max); - () - | Return i3 -> - assert(l == index v hash_mod); - slots_t_inv_to_fun v hash_mod; - assert(slot_t_inv hash_mod (index v hash_mod)); - assert(slot_t_inv (hash_key key) l); - hash_map_insert_in_list_back_lem t key value l; - begin match hash_map_insert_in_list_back t key value l with - | Fail -> admit() - | Return l0 -> - begin match vec_index_mut_back (list_t t) v hash_mod l0 with - | Fail -> admit() - | Return v0 -> - let self0 = Mkhash_map_t i3 p i1 v0 in admit() //Return self0 - end - end - end - else - begin match hash_map_insert_in_list_back t key value l with - | Fail -> admit() - | Return l0 -> - begin match vec_index_mut_back (list_t t) v hash_mod l0 with - | Fail -> admit() - | Return v0 -> - let self0 = Mkhash_map_t i0 p i1 v0 in admit() //Return self0 - end - end - end - end - end - end*) +(***** insert_in_list'back *) /// The proofs about [insert_in_list] backward are easier to do in several steps: /// extrinsic proofs to the rescue! -/// Rk.: those proofs actually caused a lot of trouble because: -/// - F* doesn't encode closures properly, the result being that it is very -/// awkward to reason about functions like `map` or `find`, because we have -/// to introduce auxiliary definitions for the parameters we give to those -/// functions (if we use anonymous lambda functions, we're screwed by the -/// encoding). -/// - F* is extremely bad at reasoning with quantifiers, which is made worse by -/// the fact we are blind when making proofs. This forced us to be extremely -/// careful about the way we wrote our specs/invariants (by writing "functional" -/// specs and invariants, mostly, so as not to manipulate quantifiers) -/// - we can't easily prove intermediate results which require a recursive proofs -/// inside of other proofs, meaning that whenever we need such a result we need -/// to write an intermediate lemma, which is extremely cumbersome. -/// Note that in a theorem prover with tactics, most of the below proof would have -/// been extremely straightforward. In particular, we wouldn't have needed to think -/// much about the invariants, nor to cut the proofs into very small, modular lemmas. +/// We first prove that [insert_in_list] refines the function we wrote above, then +/// use this function to prove the invariants, etc. + +/// We write a helper which "captures" what [insert_in_list] does. +/// We then reason about this helper to prove the high-level properties we want +/// (functional properties, preservation of invariants, etc.). +let hash_map_insert_in_list_s + (#t : Type0) (key : usize) (value : t) (ls : list (binding t)) : + list (binding t) = + // Check if there is already a binding for the key + match find (same_key key) ls with + | None -> + // No binding: append the binding to the end + ls @ [(key,value)] + | Some _ -> + // There is already a binding: update it + find_update (same_key key) ls (key,value) /// [insert_in_list]: if the key is not in the map, appends a new bindings (functional version) -val hash_map_insert_in_list_back_lem_append_fun +val hash_map_insert_in_list_back_lem_append_s (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( - slot_t_find key ls == None)) + slot_t_find_s key ls == None)) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False @@ -916,7 +750,7 @@ val hash_map_insert_in_list_back_lem_append_fun (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" -let rec hash_map_insert_in_list_back_lem_append_fun t key value ls = +let rec hash_map_insert_in_list_back_lem_append_s t key value ls = begin match ls with | ListCons ckey cvalue ls0 -> let b = ckey = key in @@ -924,7 +758,7 @@ let rec hash_map_insert_in_list_back_lem_append_fun t key value ls = then () else begin - hash_map_insert_in_list_back_lem_append_fun t key value ls0; + hash_map_insert_in_list_back_lem_append_s t key value ls0; match hash_map_insert_in_list_back t key value ls0 with | Fail -> () | Return l -> () @@ -934,7 +768,7 @@ let rec hash_map_insert_in_list_back_lem_append_fun t key value ls = #pop-options /// [insert_in_list]: if the key is in the map, we update the binding (functional version) -val hash_map_insert_in_list_back_lem_update_fun +val hash_map_insert_in_list_back_lem_update_s (t : Type0) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( @@ -947,7 +781,7 @@ val hash_map_insert_in_list_back_lem_update_fun (decreases (hash_map_insert_in_list_decreases t key value ls)) #push-options "--fuel 1" -let rec hash_map_insert_in_list_back_lem_update_fun t key value ls = +let rec hash_map_insert_in_list_back_lem_update_s t key value ls = begin match ls with | ListCons ckey cvalue ls0 -> let b = ckey = key in @@ -955,7 +789,7 @@ let rec hash_map_insert_in_list_back_lem_update_fun t key value ls = then () else begin - hash_map_insert_in_list_back_lem_update_fun t key value ls0; + hash_map_insert_in_list_back_lem_update_s t key value ls0; match hash_map_insert_in_list_back t key value ls0 with | Fail -> () | Return l -> () @@ -964,8 +798,25 @@ let rec hash_map_insert_in_list_back_lem_update_fun t key value ls = end #pop-options +/// Put everything together +val hash_map_insert_in_list_back_lem_s + (t : Type0) (key : usize) (value : t) (ls : list_t t) : + Lemma + (ensures ( + match hash_map_insert_in_list_back t key value ls with + | Fail -> False + | Return ls' -> list_t_v ls' == hash_map_insert_in_list_s key value (list_t_v ls))) + +let hash_map_insert_in_list_back_lem_s t key value ls = + match find (same_key key) (list_t_v ls) with + | None -> hash_map_insert_in_list_back_lem_append_s t key value ls + | Some _ -> hash_map_insert_in_list_back_lem_update_s t key value ls + +(***** Invariants of insert_in_list_s *) + /// Auxiliary lemmas -/// Reasoning about the result of [insert_in_list], converted to a "regular" list. +/// We work on [hash_map_insert_in_list_s], the "high-level" version of [insert_in_list'back]. +/// /// Note that in F* we can't have recursive proofs inside of other proofs, contrary /// to Coq, which makes it a bit cumbersome to prove auxiliary results like the /// following ones... @@ -978,7 +829,7 @@ val slot_t_v_for_all_binding_neq_append_lem (requires ( fst b <> key /\ for_all (binding_neq b) ls /\ - slot_t_v_find key ls == None)) + slot_find key ls == None)) (ensures ( for_all (binding_neq b) (ls @ [(key,value)]))) @@ -990,39 +841,61 @@ let rec slot_t_v_for_all_binding_neq_append_lem t key value ls b = slot_t_v_for_all_binding_neq_append_lem t key value cls b #pop-options -val slot_t_v_inv_not_find_append_end_inv_lem +val slot_inv_not_find_append_end_inv_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( - slot_t_v_inv len (hash_mod_key key len) ls /\ - slot_t_v_find key ls == None)) + slot_inv len (hash_mod_key key len) ls /\ + slot_find key ls == None)) (ensures ( let ls' = ls @ [(key,value)] in - slot_t_v_inv len (hash_mod_key key len) ls' /\ - (slot_t_v_find key ls' == Some value) /\ - (forall k'. k' <> key ==> slot_t_v_find k' ls' == slot_t_v_find k' ls))) + slot_inv len (hash_mod_key key len) ls' /\ + (slot_find key ls' == Some value) /\ + (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) #push-options "--fuel 1" -let rec slot_t_v_inv_not_find_append_end_inv_lem t len key value ls = +let rec slot_inv_not_find_append_end_inv_lem t len key value ls = match ls with | [] -> () | (ck, cv) :: cls -> - slot_t_v_inv_not_find_append_end_inv_lem t len key value cls; + slot_inv_not_find_append_end_inv_lem t len key value cls; let h = hash_mod_key key len in let ls' = ls @ [(key,value)] in assert(for_all (same_hash_mod_key len h) ls'); slot_t_v_for_all_binding_neq_append_lem t key value cls (ck, cv); assert(pairwise_rel binding_neq ls'); - assert(slot_t_v_inv len h ls') + assert(slot_inv len h ls') #pop-options +/// [insert_in_list]: if the key is not in the map, appends a new bindings +val hash_map_insert_in_list_s_lem_append + (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : + Lemma + (requires ( + slot_inv len (hash_mod_key key len) ls /\ + slot_find key ls == None)) + (ensures ( + let ls' = hash_map_insert_in_list_s key value ls in + ls' == ls @ [(key,value)] /\ + // The invariant is preserved + slot_inv len (hash_mod_key key len) ls' /\ + // [key] maps to [value] + slot_find key ls' == Some value /\ + // The other bindings are preserved + (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) + +let hash_map_insert_in_list_s_lem_append t len key value ls = + slot_inv_not_find_append_end_inv_lem t len key value ls + /// [insert_in_list]: if the key is not in the map, appends a new bindings (quantifiers) +/// Rk.: we don't use this lemma. +/// TODO: remove? val hash_map_insert_in_list_back_lem_append (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( slot_t_inv len (hash_mod_key key len) ls /\ - slot_t_find key ls == None)) + slot_t_find_s key ls == None)) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False @@ -1031,39 +904,32 @@ val hash_map_insert_in_list_back_lem_append // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] - slot_t_find key ls' == Some value /\ + slot_t_find_s key ls' == Some value /\ // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find k' ls' == slot_t_find k' ls))) + (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) let hash_map_insert_in_list_back_lem_append t len key value ls = - hash_map_insert_in_list_back_lem_append_fun t key value ls; - match hash_map_insert_in_list_back t key value ls with - | Fail -> () - | Return ls' -> - assert(list_t_v ls' == list_t_v ls @ [(key,value)]); - slot_t_v_inv_not_find_append_end_inv_lem t len key value (list_t_v ls) + hash_map_insert_in_list_back_lem_s t key value ls; + hash_map_insert_in_list_s_lem_append t len key value (list_t_v ls) (** Auxiliary lemmas: update case *) -val slot_t_v_find_update_for_all_binding_neq_append_lem +val slot_find_update_for_all_binding_neq_append_lem (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) : Lemma (requires ( fst b <> key /\ - for_all (binding_neq b) ls /\ - True -// slot_t_v_find key ls == None - )) + for_all (binding_neq b) ls)) (ensures ( let ls' = find_update (same_key key) ls (key, value) in for_all (binding_neq b) ls')) #push-options "--fuel 1" -let rec slot_t_v_find_update_for_all_binding_neq_append_lem t key value ls b = +let rec slot_find_update_for_all_binding_neq_append_lem t key value ls b = match ls with | [] -> () | (ck, cv) :: cls -> - slot_t_v_find_update_for_all_binding_neq_append_lem t key value cls b + slot_find_update_for_all_binding_neq_append_lem t key value cls b #pop-options /// Annoying auxiliary lemma we have to prove because there is no way to reason @@ -1080,20 +946,20 @@ let rec for_all_binding_neq_value_indep #t key v0 v1 ls = | _ :: ls' -> for_all_binding_neq_value_indep #t key v0 v1 ls' #pop-options -val slot_t_v_inv_find_append_end_inv_lem +val slot_inv_find_append_end_inv_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : Lemma (requires ( - slot_t_v_inv len (hash_mod_key key len) ls /\ - Some? (slot_t_v_find key ls))) + slot_inv len (hash_mod_key key len) ls /\ + Some? (slot_find key ls))) (ensures ( let ls' = find_update (same_key key) ls (key, value) in - slot_t_v_inv len (hash_mod_key key len) ls' /\ - (slot_t_v_find key ls' == Some value) /\ - (forall k'. k' <> key ==> slot_t_v_find k' ls' == slot_t_v_find k' ls))) + slot_inv len (hash_mod_key key len) ls' /\ + (slot_find key ls' == Some value) /\ + (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) #push-options "--z3rlimit 50 --fuel 1" -let rec slot_t_v_inv_find_append_end_inv_lem t len key value ls = +let rec slot_inv_find_append_end_inv_lem t len key value ls = match ls with | [] -> () | (ck, cv) :: cls -> @@ -1109,25 +975,47 @@ let rec slot_t_v_inv_find_append_end_inv_lem t len key value ls = for_all_binding_neq_value_indep key cv value cls; assert(for_all (binding_neq (ck,value)) cls); assert(pairwise_rel binding_neq ls'); - assert(slot_t_v_inv len (hash_mod_key key len) ls') + assert(slot_inv len (hash_mod_key key len) ls') end else begin - slot_t_v_inv_find_append_end_inv_lem t len key value cls; + slot_inv_find_append_end_inv_lem t len key value cls; assert(for_all (same_hash_mod_key len h) ls'); - slot_t_v_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv); + slot_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv); assert(pairwise_rel binding_neq ls'); - assert(slot_t_v_inv len h ls') + assert(slot_inv len h ls') end #pop-options -/// [insert_in_list]: if the key is in the map, update the bindings (quantifiers) +/// [insert_in_list]: if the key is in the map, update the bindings +val hash_map_insert_in_list_s_lem_update + (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : + Lemma + (requires ( + slot_inv len (hash_mod_key key len) ls /\ + Some? (slot_find key ls))) + (ensures ( + let ls' = hash_map_insert_in_list_s key value ls in + ls' == find_update (same_key key) ls (key,value) /\ + // The invariant is preserved + slot_inv len (hash_mod_key key len) ls' /\ + // [key] maps to [value] + slot_find key ls' == Some value /\ + // The other bindings are preserved + (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls))) + +let hash_map_insert_in_list_s_lem_update t len key value ls = + slot_inv_find_append_end_inv_lem t len key value ls + + +/// [insert_in_list]: if the key is in the map, update the bindings +/// TODO: not used: remove? val hash_map_insert_in_list_back_lem_update (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma (requires ( slot_t_inv len (hash_mod_key key len) ls /\ - Some? (slot_t_find key ls))) + Some? (slot_t_find_s key ls))) (ensures ( match hash_map_insert_in_list_back t key value ls with | Fail -> False @@ -1137,20 +1025,45 @@ val hash_map_insert_in_list_back_lem_update // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] - slot_t_find key ls' == Some value /\ + slot_t_find_s key ls' == Some value /\ // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find k' ls' == slot_t_find k' ls))) + (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls))) let hash_map_insert_in_list_back_lem_update t len key value ls = - hash_map_insert_in_list_back_lem_update_fun t key value ls; - match hash_map_insert_in_list_back t key value ls with - | Fail -> () - | Return ls' -> - slot_t_v_inv_find_append_end_inv_lem t len key value (list_t_v ls) + hash_map_insert_in_list_back_lem_s t key value ls; + hash_map_insert_in_list_s_lem_update t len key value (list_t_v ls) -(** Final lemma about [insert_in_list] *) +(** Final lemmas about [insert_in_list] *) + +/// High-level version +val hash_map_insert_in_list_s_lem + (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) : + Lemma + (requires ( + slot_inv len (hash_mod_key key len) ls)) + (ensures ( + let ls' = hash_map_insert_in_list_s key value ls in + // The invariant is preserved + slot_inv len (hash_mod_key key len) ls' /\ + // [key] maps to [value] + slot_find key ls' == Some value /\ + // The other bindings are preserved + (forall k'. k' <> key ==> slot_find k' ls' == slot_find k' ls) /\ + // The length is incremented, iff we inserted a new key + (match slot_find key ls with + | None -> length ls' = length ls + 1 + | Some _ -> length ls' = length ls))) + +let hash_map_insert_in_list_s_lem t len key value ls = + match slot_find key ls with + | None -> + assert_norm(length [(key,value)] = 1); + hash_map_insert_in_list_s_lem_append t len key value ls + | Some _ -> + hash_map_insert_in_list_s_lem_update t len key value ls /// [insert_in_list] +/// TODO: not used: remove? val hash_map_insert_in_list_back_lem (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) : Lemma @@ -1162,11 +1075,11 @@ val hash_map_insert_in_list_back_lem // The invariant is preserved slot_t_inv len (hash_mod_key key len) ls' /\ // [key] maps to [value] - slot_t_find key ls' == Some value /\ + slot_t_find_s key ls' == Some value /\ // The other bindings are preserved - (forall k'. k' <> key ==> slot_t_find k' ls' == slot_t_find k' ls) /\ + (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls) /\ // The length is incremented, iff we inserted a new key - (match slot_t_find key ls with + (match slot_t_find_s key ls with | None -> list_t_v ls' == list_t_v ls @ [(key,value)] /\ list_t_len ls' = list_t_len ls + 1 @@ -1176,12 +1089,91 @@ val hash_map_insert_in_list_back_lem (decreases (hash_map_insert_in_list_decreases t key value ls)) let hash_map_insert_in_list_back_lem t len key value ls = - match slot_t_find key ls with + hash_map_insert_in_list_back_lem_s t key value ls; + hash_map_insert_in_list_s_lem t len key value (list_t_v ls) + +(**** insert_no_resize *) + +/// We also do a disjunction over the cases + +/// [insert_no_resize]: if the key is not in the map, we insert a new binding +val hash_map_insert_no_resize_fwd_back_lem_insert + (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : + Lemma + (requires ( + hash_map_t_inv self /\ + // The key is not in the map + None? (hash_map_t_find_s self key))) + (ensures ( + match hash_map_insert_no_resize_fwd_back t self key value with + | Fail -> False // Can't fail + | Return hm -> + // The invariant is preserved + hash_map_t_inv hm /\ + // The number of elements is the same + hash_map_t_len_s hm = hash_map_t_len_s self /\ + // The map has been updated with the new binding + (hash_map_t_find_s self key == Some value) /\ + // The other bindings are left unchanged + hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) + +/// The following function captures the "essence" of what [insert_no_resize] does +let hash_map_t_insert_no_resize + (#t : Type0) (hm : hash_map_t t) (key : usize) (value : t) : + result hash_map_t t + // Check if we need to add an element but reached saturation + if None? (hash_map_t_find_s self key) && hash_map_t_len_s self = usize_max then Fail + else + // We didn't saturate: we can insert the element + match hash_map_insert_no_resize_fwd_back_lem_insert with + | Fail -> Fail // Shouldn't get there, but taken care of by proofs below + | + + match hash_map_t_find_s self key with | None -> - assert_norm(length [(key,value)] = 1); - hash_map_insert_in_list_back_lem_append t len key value ls - | Some _ -> - hash_map_insert_in_list_back_lem_update t len key value ls + hash_map_t_len_s self = usize_max + + None? (hash_map_t_find_s self key) /\ + hash_map_t_len_s self = usize_max + +/// [insert_no_resize]: we prove a simple "functional" version of what happens, +/// to simplify further reasoning. +val hash_map_insert_no_resize_fwd_back_lem_fun + (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : + Lemma + (ensures ( + match hash_map_insert_no_resize_fwd_back t self key value with + | Fail -> + // It can fail only if the key is not in the map, and we reached saturation + None? (hash_map_t_find_s self key) /\ + hash_map_t_len_s self = usize_max + | Return hm -> + // If we succeeded, we simply updated the proper slot + let len = + let i = hash_mod_key key + let slots' = + // The invariant is preserved + hash_map_t_inv hm /\ + // The map has been updated + hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) + +/// [insert_no_resize]: if the key is in the map, we succeed and update the binding. +val hash_map_insert_no_resize_fwd_back_lem_update + (t : Type0) (self : hash_map_t t) (key : usize) (value : t) : + Lemma + (requires ( + hash_map_t_inv self /\ + // The key is in the map + Some? (find (same_key key) (hash_map_t_v self)))) + (ensures ( + match hash_map_insert_no_resize_fwd_back t self key value with + | Fail -> False + | Return hm -> + // The invariant is preserved + hash_map_t_inv hm /\ + // The map has been updated + hash_map_t_v hm == find_update (same_key key) (hash_map_t_v self) (key,value))) + (* (**** insert_no_resize *) |