summaryrefslogtreecommitdiff
path: root/tests/hashmap/Hashmap.Properties.fst
diff options
context:
space:
mode:
authorSon Ho2022-11-11 21:34:29 +0100
committerSon HO2022-11-14 14:21:04 +0100
commit6db835db88c4bcf0e00ce1a7a6bc396382b393c3 (patch)
tree3b2a9d46467cf313e3af641cd164e61af2a09541 /tests/hashmap/Hashmap.Properties.fst
parentb191070501ceafdd49c999385c4410848249fe18 (diff)
Reorganize the project to prepare for new backends
Diffstat (limited to 'tests/hashmap/Hashmap.Properties.fst')
-rw-r--r--tests/hashmap/Hashmap.Properties.fst3247
1 files changed, 0 insertions, 3247 deletions
diff --git a/tests/hashmap/Hashmap.Properties.fst b/tests/hashmap/Hashmap.Properties.fst
deleted file mode 100644
index 21a46c73..00000000
--- a/tests/hashmap/Hashmap.Properties.fst
+++ /dev/null
@@ -1,3247 +0,0 @@
-(** Properties about the hashmap *)
-module Hashmap.Properties
-open Primitives
-open FStar.List.Tot
-open FStar.Mul
-open Hashmap.Types
-open Hashmap.Clauses
-open Hashmap.Funs
-
-#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
-
-let _align_fsti = ()
-
-/// The proofs:
-/// ===========
-///
-/// The proof strategy is to do exactly as with Low* proofs (we initially tried to
-/// prove more properties in one go, but it was a mistake):
-/// - prove that, under some preconditions, the low-level functions translated
-/// from Rust refine some higher-level functions
-/// - do functional proofs about those high-level functions to prove interesting
-/// properties about the hash map operations, and invariant preservation
-/// - combine everything
-///
-/// The fact that we work in a pure setting allows us to be more modular than when
-/// working with effects. For instance we can do a case disjunction (see the proofs
-/// for insert, which study the cases where the key is already/not in the hash map
-/// in separate proofs - we had initially tried to do them in one step: it is doable
-/// but requires some work, and the F* response time quickly becomes annoying while
-/// making progress, so we split them). We can also easily prove a refinement lemma,
-/// study the model, *then* combine those to also prove that the low-level function
-/// preserves the invariants, rather than do everything at once as is usually the
-/// case when doing intrinsic proofs with effects (I remember that having to prove
-/// invariants in one go *and* a refinement step, even small, can be extremely
-/// difficult in Low*).
-
-
-(*** Utilities *)
-
-/// We need many small helpers and lemmas, mostly about lists (and the ones we list
-/// here are not in the standard F* library).
-
-val index_append_lem (#a : Type0) (ls0 ls1 : list a) (i : nat{i < length ls0 + length ls1}) :
- Lemma (
- (i < length ls0 ==> index (ls0 @ ls1) i == index ls0 i) /\
- (i >= length ls0 ==> index (ls0 @ ls1) i == index ls1 (i - length ls0)))
- [SMTPat (index (ls0 @ ls1) i)]
-
-#push-options "--fuel 1"
-let rec index_append_lem #a ls0 ls1 i =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- if i = 0 then ()
- else index_append_lem ls0' ls1 (i-1)
-#pop-options
-
-val index_map_lem (#a #b: Type0) (f : a -> Tot b) (ls : list a)
- (i : nat{i < length ls}) :
- Lemma (
- index (map f ls) i == f (index ls i))
- [SMTPat (index (map f ls) i)]
-
-#push-options "--fuel 1"
-let rec index_map_lem #a #b f ls i =
- match ls with
- | [] -> ()
- | x :: ls' ->
- if i = 0 then ()
- else index_map_lem f ls' (i-1)
-#pop-options
-
-val for_all_append (#a : Type0) (f : a -> Tot bool) (ls0 ls1 : list a) :
- Lemma (for_all f (ls0 @ ls1) = (for_all f ls0 && for_all f ls1))
-
-#push-options "--fuel 1"
-let rec for_all_append #a f ls0 ls1 =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- for_all_append f ls0' ls1
-#pop-options
-
-/// Filter a list, stopping after we removed one element
-val filter_one (#a : Type) (f : a -> bool) (ls : list a) : list a
-
-let rec filter_one #a f ls =
- match ls with
- | [] -> []
- | x :: ls' -> if f x then x :: filter_one f ls' else ls'
-
-val find_append (#a : Type) (f : a -> bool) (ls0 ls1 : list a) :
- Lemma (
- find f (ls0 @ ls1) ==
- begin match find f ls0 with
- | Some x -> Some x
- | None -> find f ls1
- end)
-
-#push-options "--fuel 1"
-let rec find_append #a f ls0 ls1 =
- match ls0 with
- | [] -> ()
- | x :: ls0' ->
- if f x then
- begin
- assert(ls0 @ ls1 == x :: (ls0' @ ls1));
- assert(find f (ls0 @ ls1) == find f (x :: (ls0' @ ls1)));
- // Why do I have to do this?! Is it because of subtyping??
- assert(
- match find f (ls0 @ ls1) with
- | Some x' -> x' == x
- | None -> False)
- end
- else find_append f ls0' ls1
-#pop-options
-
-val length_flatten_update :
- #a:Type
- -> ls:list (list a)
- -> i:nat{i < length ls}
- -> x:list a ->
- Lemma (
- // We want this property:
- // ```
- // length (flatten (list_update ls i x)) =
- // length (flatten ls) - length (index ls i) + length x
- // ```
- length (flatten (list_update ls i x)) + length (index ls i) =
- length (flatten ls) + length x)
-
-#push-options "--fuel 1"
-let rec length_flatten_update #a ls i x =
- match ls with
- | x' :: ls' ->
- assert(flatten ls == x' @ flatten ls'); // Triggers patterns
- assert(length (flatten ls) == length x' + length (flatten ls'));
- if i = 0 then
- begin
- let ls1 = x :: ls' in
- assert(list_update ls i x == ls1);
- assert(flatten ls1 == x @ flatten ls'); // Triggers patterns
- assert(length (flatten ls1) == length x + length (flatten ls'));
- ()
- end
- else
- begin
- length_flatten_update ls' (i-1) x;
- let ls1 = x' :: list_update ls' (i-1) x in
- assert(flatten ls1 == x' @ flatten (list_update ls' (i-1) x)) // Triggers patterns
- end
-#pop-options
-
-val length_flatten_index :
- #a:Type
- -> ls:list (list a)
- -> i:nat{i < length ls} ->
- Lemma (
- length (flatten ls) >= length (index ls i))
-
-#push-options "--fuel 1"
-let rec length_flatten_index #a ls i =
- match ls with
- | x' :: ls' ->
- assert(flatten ls == x' @ flatten ls'); // Triggers patterns
- assert(length (flatten ls) == length x' + length (flatten ls'));
- if i = 0 then ()
- else length_flatten_index ls' (i-1)
-#pop-options
-
-val forall_index_equiv_list_for_all
- (#a : Type) (pred : a -> Tot bool) (ls : list a) :
- Lemma ((forall (i:nat{i < length ls}). pred (index ls i)) <==> for_all pred ls)
-
-#push-options "--fuel 1"
-let rec forall_index_equiv_list_for_all pred ls =
- match ls with
- | [] -> ()
- | x :: ls' ->
- assert(forall (i:nat{i < length ls'}). index ls' i == index ls (i+1));
- assert(forall (i:nat{0 < i /\ i < length ls}). index ls i == index ls' (i-1));
- assert(index ls 0 == x);
- forall_index_equiv_list_for_all pred ls'
-#pop-options
-
-val find_update:
- #a:Type
- -> f:(a -> Tot bool)
- -> ls:list a
- -> x:a
- -> ls':list a{length ls' == length ls}
-#push-options "--fuel 1"
-let rec find_update #a f ls x =
- match ls with
- | [] -> []
- | hd::tl ->
- if f hd then x :: tl else hd :: find_update f tl x
-#pop-options
-
-val pairwise_distinct : #a:eqtype -> ls:list a -> Tot bool
-let rec pairwise_distinct (#a : eqtype) (ls : list a) : Tot bool =
- match ls with
- | [] -> true
- | x :: ls' -> List.Tot.for_all (fun y -> x <> y) ls' && pairwise_distinct ls'
-
-val pairwise_rel : #a:Type -> pred:(a -> a -> Tot bool) -> ls:list a -> Tot bool
-let rec pairwise_rel #a pred ls =
- match ls with
- | [] -> true
- | x :: ls' ->
- for_all (pred x) ls' && pairwise_rel pred ls'
-
-#push-options "--fuel 1"
-let rec flatten_append (#a : Type) (l1 l2: list (list a)) :
- Lemma (flatten (l1 @ l2) == flatten l1 @ flatten l2) =
- match l1 with
- | [] -> ()
- | x :: l1' ->
- flatten_append l1' l2;
- append_assoc x (flatten l1') (flatten l2)
-#pop-options
-
-/// We don't use anonymous functions as parameters to other functions, but rather
-/// introduce auxiliary functions instead: otherwise we can't reason (because
-/// F*'s encoding to the SMT is imprecise for functions)
-let fst_is_disctinct (#a : eqtype) (#b : Type0) (p0 : a & b) (p1 : a & b) : Type0 =
- fst p0 <> fst p1
-
-(*** Lemmas about Primitives *)
-/// TODO: move those lemmas
-
-// TODO: rename to 'insert'?
-val list_update_index_dif_lem
- (#a : Type0) (ls : list a) (i : nat{i < length ls}) (x : a)
- (j : nat{j < length ls}) :
- Lemma (requires (j <> i))
- (ensures (index (list_update ls i x) j == index ls j))
- [SMTPat (index (list_update ls i x) j)]
-
-#push-options "--fuel 1"
-let rec list_update_index_dif_lem #a ls i x j =
- match ls with
- | x' :: ls ->
- if i = 0 then ()
- else if j = 0 then ()
- else
- list_update_index_dif_lem ls (i-1) x (j-1)
-#pop-options
-
-val map_list_update_lem
- (#a #b: Type0) (f : a -> Tot b)
- (ls : list a) (i : nat{i < length ls}) (x : a) :
- Lemma (list_update (map f ls) i (f x) == map f (list_update ls i x))
- [SMTPat (list_update (map f ls) i (f x))]
-
-#push-options "--fuel 1"
-let rec map_list_update_lem #a #b f ls i x =
- match ls with
- | x' :: ls' ->
- if i = 0 then ()
- else map_list_update_lem f ls' (i-1) x
-#pop-options
-
-(*** Invariants, models *)
-
-(**** Internals *)
-/// The following invariants, models, representation functions... are mostly
-/// for the purpose of the proofs.
-
-let is_pos_usize (n : nat) : Type0 = 0 < n /\ n <= usize_max
-type pos_usize = x:usize{x > 0}
-
-type binding (t : Type0) = key & t
-
-type slots_t (t : Type0) = vec (list_t t)
-
-/// We represent hash maps as associative lists
-type assoc_list (t : Type0) = list (binding t)
-
-/// Representation function for [list_t]
-let rec list_t_v (#t : Type0) (ls : list_t t) : assoc_list t =
- match ls with
- | ListNil -> []
- | ListCons k v tl -> (k,v) :: list_t_v tl
-
-let list_t_len (#t : Type0) (ls : list_t t) : nat = length (list_t_v ls)
-let list_t_index (#t : Type0) (ls : list_t t) (i : nat{i < list_t_len ls}) : binding t =
- index (list_t_v ls) i
-
-type slot_s (t : Type0) = list (binding t)
-type slots_s (t : Type0) = list (slot_s t)
-
-type slot_t (t : Type0) = list_t t
-let slot_t_v #t = list_t_v #t
-
-/// Representation function for the slots.
-let slots_t_v (#t : Type0) (slots : slots_t t) : slots_s t =
- map slot_t_v slots
-
-/// Representation function for the slots, seen as an associative list.
-let slots_t_al_v (#t : Type0) (slots : slots_t t) : assoc_list t =
- flatten (map list_t_v slots)
-
-/// High-level type for the hash-map, seen as a list of associative lists (one
-/// list per slot). This is the representation we use most, internally. Note that
-/// we later introduce a [map_s] representation, which is the one used in the
-/// lemmas shown to the user.
-type hash_map_s t = list (slot_s t)
-
-// TODO: why not always have the condition on the length?
-// 'nes': "non-empty slots"
-type hash_map_s_nes (t : Type0) : Type0 =
- hm:hash_map_s t{is_pos_usize (length hm)}
-
-/// Representation function for [hash_map_t] as a list of slots
-let hash_map_t_v (#t : Type0) (hm : hash_map_t t) : hash_map_s t =
- map list_t_v hm.hash_map_slots
-
-/// Representation function for [hash_map_t] as an associative list
-let hash_map_t_al_v (#t : Type0) (hm : hash_map_t t) : assoc_list t =
- flatten (hash_map_t_v hm)
-
-// 'nes': "non-empty slots"
-type hash_map_t_nes (t : Type0) : Type0 =
- hm:hash_map_t t{is_pos_usize (length hm.hash_map_slots)}
-
-let hash_key (k : key) : hash =
- Return?.v (hash_key_fwd k)
-
-let hash_mod_key (k : key) (len : usize{len > 0}) : hash =
- (hash_key k) % len
-
-let not_same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b <> k
-let same_key (#t : Type0) (k : key) (b : binding t) : bool = fst b = k
-
-// We take a [nat] instead of a [hash] on purpose
-let same_hash_mod_key (#t : Type0) (len : usize{len > 0}) (h : nat) (b : binding t) : bool =
- hash_mod_key (fst b) len = h
-
-let binding_neq (#t : Type0) (b0 b1 : binding t) : bool = fst b0 <> fst b1
-
-let hash_map_t_len_s (#t : Type0) (hm : hash_map_t t) : nat =
- hm.hash_map_num_entries
-
-let assoc_list_find (#t : Type0) (k : key) (slot : assoc_list t) : option t =
- match find (same_key k) slot with
- | None -> None
- | Some (_, v) -> Some v
-
-let slot_s_find (#t : Type0) (k : key) (slot : list (binding t)) : option t =
- assoc_list_find k slot
-
-let slot_t_find_s (#t : Type0) (k : key) (slot : list_t t) : option t =
- slot_s_find k (slot_t_v slot)
-
-// This is a simpler version of the "find" function, which captures the essence
-// of what happens and operates on [hash_map_s].
-let hash_map_s_find
- (#t : Type0) (hm : hash_map_s_nes t)
- (k : key) : option t =
- let i = hash_mod_key k (length hm) in
- let slot = index hm i in
- slot_s_find k slot
-
-let hash_map_s_len
- (#t : Type0) (hm : hash_map_s t) :
- nat =
- length (flatten hm)
-
-// Same as above, but operates on [hash_map_t]
-// Note that we don't reuse the above function on purpose: converting to a
-// [hash_map_s] then looking up an element is not the same as what we
-// wrote below.
-let hash_map_t_find_s
- (#t : Type0) (hm : hash_map_t t{length hm.hash_map_slots > 0}) (k : key) : option t =
- let slots = hm.hash_map_slots in
- let i = hash_mod_key k (length slots) in
- let slot = index slots i in
- slot_t_find_s k slot
-
-/// Invariants for the slots
-
-let slot_s_inv
- (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list (binding t)) : bool =
- // All the bindings are in the proper slot
- for_all (same_hash_mod_key len i) slot &&
- // All the keys are pairwise distinct
- pairwise_rel binding_neq slot
-
-let slot_t_inv (#t : Type0) (len : usize{len > 0}) (i : usize) (slot : list_t t) : bool =
- slot_s_inv len i (slot_t_v slot)
-
-let slots_s_inv (#t : Type0) (slots : slots_s t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_s_inv (length slots) i (index slots i)
-
-// At some point we tried to rewrite this in terms of [slots_s_inv]. However it
-// made a lot of proofs fail because those proofs relied on the [index_map_lem]
-// pattern. We tried writing others lemmas with patterns (like [slots_s_inv]
-// implies [slots_t_inv]) but it didn't succeed, so we keep things as they are.
-let slots_t_inv (#t : Type0) (slots : slots_t t{length slots <= usize_max}) : Type0 =
- forall(i:nat{i < length slots}).
- {:pattern index slots i}
- slot_t_inv (length slots) i (index slots i)
-
-let hash_map_s_inv (#t : Type0) (hm : hash_map_s t) : Type0 =
- length hm <= usize_max /\
- length hm > 0 /\
- slots_s_inv hm
-
-/// Base invariant for the hashmap (the complete invariant can be temporarily
-/// broken between the moment we inserted an element and the moment we resize)
-let hash_map_t_base_inv (#t : Type0) (hm : hash_map_t t) : Type0 =
- let al = hash_map_t_al_v hm in
- // [num_entries] correctly tracks the number of entries in the table
- // Note that it gives us that the length of the slots array is <= usize_max:
- // [> length <= usize_max
- // (because hash_map_num_entries has type `usize`)
- hm.hash_map_num_entries = length al /\
- // Slots invariant
- slots_t_inv hm.hash_map_slots /\
- // The capacity must be > 0 (otherwise we can't resize, because we
- // multiply the capacity by two!)
- length hm.hash_map_slots > 0 /\
- // Load computation
- begin
- let capacity = length hm.hash_map_slots in
- let (dividend, divisor) = hm.hash_map_max_load_factor in
- 0 < dividend /\ dividend < divisor /\
- capacity * dividend >= divisor /\
- hm.hash_map_max_load = (capacity * dividend) / divisor
- end
-
-/// We often need to frame some values
-let hash_map_t_same_params (#t : Type0) (hm0 hm1 : hash_map_t t) : Type0 =
- length hm0.hash_map_slots = length hm1.hash_map_slots /\
- hm0.hash_map_max_load = hm1.hash_map_max_load /\
- hm0.hash_map_max_load_factor = hm1.hash_map_max_load_factor
-
-/// The following invariants, etc. are meant to be revealed to the user through
-/// the .fsti.
-
-/// Invariant for the hashmap
-let hash_map_t_inv (#t : Type0) (hm : hash_map_t t) : Type0 =
- // Base invariant
- hash_map_t_base_inv hm /\
- // The hash map is either: not overloaded, or we can't resize it
- begin
- let (dividend, divisor) = hm.hash_map_max_load_factor in
- hm.hash_map_num_entries <= hm.hash_map_max_load
- || length hm.hash_map_slots * 2 * dividend > usize_max
- end
-
-(*** .fsti *)
-/// We reveal slightly different version of the above functions to the user
-
-let len_s (#t : Type0) (hm : hash_map_t t) : nat = hash_map_t_len_s hm
-
-/// This version doesn't take any precondition (contrary to [hash_map_t_find_s])
-let find_s (#t : Type0) (hm : hash_map_t t) (k : key) : option t =
- if length hm.hash_map_slots = 0 then None
- else hash_map_t_find_s hm k
-
-(*** Overloading *)
-
-let hash_map_not_overloaded_lem #t hm = ()
-
-(*** allocate_slots *)
-
-/// Auxiliary lemma
-val slots_t_all_nil_inv_lem
- (#t : Type0) (slots : vec (list_t t){length slots <= usize_max}) :
- Lemma (requires (forall (i:nat{i < length slots}). index slots i == ListNil))
- (ensures (slots_t_inv slots))
-
-#push-options "--fuel 1"
-let slots_t_all_nil_inv_lem #t slots = ()
-#pop-options
-
-val slots_t_al_v_all_nil_is_empty_lem
- (#t : Type0) (slots : vec (list_t t)) :
- Lemma (requires (forall (i:nat{i < length slots}). index slots i == ListNil))
- (ensures (slots_t_al_v slots == []))
-
-#push-options "--fuel 1"
-let rec slots_t_al_v_all_nil_is_empty_lem #t slots =
- match slots with
- | [] -> ()
- | s :: slots' ->
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1));
- slots_t_al_v_all_nil_is_empty_lem #t slots';
- assert(slots_t_al_v slots == list_t_v s @ slots_t_al_v slots');
- assert(slots_t_al_v slots == list_t_v s);
- assert(index slots 0 == ListNil)
-#pop-options
-
-/// [allocate_slots]
-val hash_map_allocate_slots_fwd_lem
- (t : Type0) (slots : vec (list_t t)) (n : usize) :
- Lemma
- (requires (length slots + n <= usize_max))
- (ensures (
- match hash_map_allocate_slots_fwd t slots n with
- | Fail -> False
- | Return slots' ->
- length slots' = length slots + n /\
- // We leave the already allocated slots unchanged
- (forall (i:nat{i < length slots}). index slots' i == index slots i) /\
- // We allocate n additional empty slots
- (forall (i:nat{length slots <= i /\ i < length slots'}). index slots' i == ListNil)))
- (decreases (hash_map_allocate_slots_decreases t slots n))
-
-#push-options "--fuel 1"
-let rec hash_map_allocate_slots_fwd_lem t slots n =
- begin match n with
- | 0 -> ()
- | _ ->
- begin match vec_push_back (list_t t) slots ListNil with
- | Fail -> ()
- | Return slots1 ->
- begin match usize_sub n 1 with
- | Fail -> ()
- | Return i ->
- hash_map_allocate_slots_fwd_lem t slots1 i;
- begin match hash_map_allocate_slots_fwd t slots1 i with
- | Fail -> ()
- | Return slots2 ->
- assert(length slots1 = length slots + 1);
- assert(slots1 == slots @ [ListNil]); // Triggers patterns
- assert(index slots1 (length slots) == index [ListNil] 0); // Triggers patterns
- assert(index slots1 (length slots) == ListNil)
- end
- end
- end
- end
-#pop-options
-
-(*** new_with_capacity *)
-/// Under proper conditions, [new_with_capacity] doesn't fail and returns an empty hash map.
-val hash_map_new_with_capacity_fwd_lem
- (t : Type0) (capacity : usize)
- (max_load_dividend : usize) (max_load_divisor : usize) :
- Lemma
- (requires (
- 0 < max_load_dividend /\
- max_load_dividend < max_load_divisor /\
- 0 < capacity /\
- capacity * max_load_dividend >= max_load_divisor /\
- capacity * max_load_dividend <= usize_max))
- (ensures (
- match hash_map_new_with_capacity_fwd t capacity max_load_dividend max_load_divisor with
- | Fail -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hash_map_t_inv hm /\
- // The parameters are correct
- hm.hash_map_max_load_factor = (max_load_dividend, max_load_divisor) /\
- hm.hash_map_max_load = (capacity * max_load_dividend) / max_load_divisor /\
- // The hash map has the specified capacity - we need to reveal this
- // otherwise the pre of [hash_map_t_find_s] is not satisfied.
- length hm.hash_map_slots = capacity /\
- // The hash map has 0 values
- hash_map_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hash_map_t_find_s hm k == None) /\
- // We need this low-level property for the invariant
- (forall(i:nat{i < length hm.hash_map_slots}). index hm.hash_map_slots i == ListNil)))
-
-#push-options "--z3rlimit 50 --fuel 1"
-let hash_map_new_with_capacity_fwd_lem (t : Type0) (capacity : usize)
- (max_load_dividend : usize) (max_load_divisor : usize) =
- let v = vec_new (list_t t) in
- assert(length v = 0);
- hash_map_allocate_slots_fwd_lem t v capacity;
- begin match hash_map_allocate_slots_fwd t v capacity with
- | Fail -> assert(False)
- | Return v0 ->
- begin match usize_mul capacity max_load_dividend with
- | Fail -> assert(False)
- | Return i ->
- begin match usize_div i max_load_divisor with
- | Fail -> assert(False)
- | Return i0 ->
- let hm = Mkhash_map_t 0 (max_load_dividend, max_load_divisor) i0 v0 in
- slots_t_all_nil_inv_lem v0;
- slots_t_al_v_all_nil_is_empty_lem hm.hash_map_slots
- end
- end
- end
-#pop-options
-
-(*** new *)
-
-/// [new] doesn't fail and returns an empty hash map
-val hash_map_new_fwd_lem_aux (t : Type0) :
- Lemma
- (ensures (
- match hash_map_new_fwd t with
- | Fail -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hash_map_t_inv hm /\
- // The hash map has 0 values
- hash_map_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hash_map_t_find_s hm k == None)))
-
-#push-options "--fuel 1"
-let hash_map_new_fwd_lem_aux t =
- hash_map_new_with_capacity_fwd_lem t 32 4 5;
- match hash_map_new_with_capacity_fwd t 32 4 5 with
- | Fail -> ()
- | Return hm -> ()
-#pop-options
-
-/// The lemma we reveal in the .fsti
-let hash_map_new_fwd_lem t = hash_map_new_fwd_lem_aux t
-
-(*** clear_slots *)
-/// [clear_slots] doesn't fail and simply clears the slots starting at index i
-#push-options "--fuel 1"
-let rec hash_map_clear_slots_fwd_back_lem
- (t : Type0) (slots : vec (list_t t)) (i : usize) :
- Lemma
- (ensures (
- match hash_map_clear_slots_fwd_back t slots i with
- | Fail -> False
- | Return slots' ->
- // The length is preserved
- length slots' == length slots /\
- // The slots before i are left unchanged
- (forall (j:nat{j < i /\ j < length slots}). index slots' j == index slots j) /\
- // The slots after i are set to ListNil
- (forall (j:nat{i <= j /\ j < length slots}). index slots' j == ListNil)))
- (decreases (hash_map_clear_slots_decreases t slots i))
- =
- let i0 = vec_len (list_t t) slots in
- let b = i < i0 in
- if b
- then
- begin match vec_index_mut_back (list_t t) slots i ListNil with
- | Fail -> ()
- | Return v ->
- begin match usize_add i 1 with
- | Fail -> ()
- | Return i1 ->
- hash_map_clear_slots_fwd_back_lem t v i1;
- begin match hash_map_clear_slots_fwd_back t v i1 with
- | Fail -> ()
- | Return slots1 ->
- assert(length slots1 == length slots);
- assert(forall (j:nat{i+1 <= j /\ j < length slots}). index slots1 j == ListNil);
- assert(index slots1 i == ListNil)
- end
- end
- end
- else ()
-#pop-options
-
-(*** clear *)
-/// [clear] doesn't fail and turns the hash map into an empty map
-val hash_map_clear_fwd_back_lem_aux
- (#t : Type0) (self : hash_map_t t) :
- Lemma
- (requires (hash_map_t_base_inv self))
- (ensures (
- match hash_map_clear_fwd_back t self with
- | Fail -> False
- | Return hm ->
- // The hash map invariant is satisfied
- hash_map_t_base_inv hm /\
- // We preserved the parameters
- hash_map_t_same_params hm self /\
- // The hash map has 0 values
- hash_map_t_len_s hm = 0 /\
- // It contains no bindings
- (forall k. hash_map_t_find_s hm k == None)))
-
-// Being lazy: fuel 1 helps a lot...
-#push-options "--fuel 1"
-let hash_map_clear_fwd_back_lem_aux #t self =
- let p = self.hash_map_max_load_factor in
- let i = self.hash_map_max_load in
- let v = self.hash_map_slots in
- hash_map_clear_slots_fwd_back_lem t v 0;
- begin match hash_map_clear_slots_fwd_back t v 0 with
- | Fail -> ()
- | Return slots1 ->
- slots_t_al_v_all_nil_is_empty_lem slots1;
- let hm1 = Mkhash_map_t 0 p i slots1 in
- assert(hash_map_t_base_inv hm1);
- assert(hash_map_t_inv hm1)
- end
-#pop-options
-
-let hash_map_clear_fwd_back_lem #t self = hash_map_clear_fwd_back_lem_aux #t self
-
-(*** len *)
-
-/// [len]: we link it to a non-failing function.
-/// Rk.: we might want to make an analysis to not use an error monad to translate
-/// functions which statically can't fail.
-let hash_map_len_fwd_lem #t self = ()
-
-
-(*** insert_in_list *)
-
-(**** insert_in_list'fwd *)
-
-/// [insert_in_list_fwd]: returns true iff the key is not in the list (functional version)
-val hash_map_insert_in_list_fwd_lem
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_insert_in_list_fwd t key value ls with
- | Fail -> False
- | Return b ->
- b <==> (slot_t_find_s key ls == None)))
- (decreases (hash_map_insert_in_list_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hash_map_insert_in_list_fwd_lem t key value ls =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_insert_in_list_fwd_lem t key value ls0;
- match hash_map_insert_in_list_fwd t key value ls0 with
- | Fail -> ()
- | Return b0 -> ()
- end
- | ListNil ->
- assert(list_t_v ls == []);
- assert_norm(find (same_key #t key) [] == None)
- end
-#pop-options
-
-(**** insert_in_list'back *)
-
-/// The proofs about [insert_in_list] backward are easier to do in several steps:
-/// extrinsic proofs to the rescue!
-/// We first prove that [insert_in_list] refines the function we wrote above, then
-/// use this function to prove the invariants, etc.
-
-/// We write a helper which "captures" what [insert_in_list] does.
-/// We then reason about this helper to prove the high-level properties we want
-/// (functional properties, preservation of invariants, etc.).
-let hash_map_insert_in_list_s
- (#t : Type0) (key : usize) (value : t) (ls : list (binding t)) :
- list (binding t) =
- // Check if there is already a binding for the key
- match find (same_key key) ls with
- | None ->
- // No binding: append the binding to the end
- ls @ [(key,value)]
- | Some _ ->
- // There is already a binding: update it
- find_update (same_key key) ls (key,value)
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings (functional version)
-val hash_map_insert_in_list_back_lem_append_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_find_s key ls == None))
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- list_t_v ls' == list_t_v ls @ [(key,value)]))
- (decreases (hash_map_insert_in_list_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hash_map_insert_in_list_back_lem_append_s t key value ls =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_insert_in_list_back_lem_append_s t key value ls0;
- match hash_map_insert_in_list_back t key value ls0 with
- | Fail -> ()
- | Return l -> ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-/// [insert_in_list]: if the key is in the map, we update the binding (functional version)
-val hash_map_insert_in_list_back_lem_update_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- Some? (find (same_key key) (list_t_v ls))))
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value)))
- (decreases (hash_map_insert_in_list_decreases t key value ls))
-
-#push-options "--fuel 1"
-let rec hash_map_insert_in_list_back_lem_update_s t key value ls =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_insert_in_list_back_lem_update_s t key value ls0;
- match hash_map_insert_in_list_back t key value ls0 with
- | Fail -> ()
- | Return l -> ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-/// Put everything together
-val hash_map_insert_in_list_back_lem_s
- (t : Type0) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- list_t_v ls' == hash_map_insert_in_list_s key value (list_t_v ls)))
-
-let hash_map_insert_in_list_back_lem_s t key value ls =
- match find (same_key key) (list_t_v ls) with
- | None -> hash_map_insert_in_list_back_lem_append_s t key value ls
- | Some _ -> hash_map_insert_in_list_back_lem_update_s t key value ls
-
-(**** Invariants of insert_in_list_s *)
-
-/// Auxiliary lemmas
-/// We work on [hash_map_insert_in_list_s], the "high-level" version of [insert_in_list'back].
-///
-/// Note that in F* we can't have recursive proofs inside of other proofs, contrary
-/// to Coq, which makes it a bit cumbersome to prove auxiliary results like the
-/// following ones...
-
-(** Auxiliary lemmas: append case *)
-
-val slot_t_v_for_all_binding_neq_append_lem
- (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) :
- Lemma
- (requires (
- fst b <> key /\
- for_all (binding_neq b) ls /\
- slot_s_find key ls == None))
- (ensures (
- for_all (binding_neq b) (ls @ [(key,value)])))
-
-#push-options "--fuel 1"
-let rec slot_t_v_for_all_binding_neq_append_lem t key value ls b =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_t_v_for_all_binding_neq_append_lem t key value cls b
-#pop-options
-
-val slot_s_inv_not_find_append_end_inv_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- slot_s_find key ls == None))
- (ensures (
- let ls' = ls @ [(key,value)] in
- slot_s_inv len (hash_mod_key key len) ls' /\
- (slot_s_find key ls' == Some value) /\
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-#push-options "--fuel 1"
-let rec slot_s_inv_not_find_append_end_inv_lem t len key value ls =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_s_inv_not_find_append_end_inv_lem t len key value cls;
- let h = hash_mod_key key len in
- let ls' = ls @ [(key,value)] in
- assert(for_all (same_hash_mod_key len h) ls');
- slot_t_v_for_all_binding_neq_append_lem t key value cls (ck, cv);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len h ls')
-#pop-options
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings
-val hash_map_insert_in_list_s_lem_append
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- slot_s_find key ls == None))
- (ensures (
- let ls' = hash_map_insert_in_list_s key value ls in
- ls' == ls @ [(key,value)] /\
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-let hash_map_insert_in_list_s_lem_append t len key value ls =
- slot_s_inv_not_find_append_end_inv_lem t len key value ls
-
-/// [insert_in_list]: if the key is not in the map, appends a new bindings (quantifiers)
-/// Rk.: we don't use this lemma.
-/// TODO: remove?
-val hash_map_insert_in_list_back_lem_append
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_inv len (hash_mod_key key len) ls /\
- slot_t_find_s key ls == None))
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- list_t_v ls' == list_t_v ls @ [(key,value)] /\
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls)))
-
-let hash_map_insert_in_list_back_lem_append t len key value ls =
- hash_map_insert_in_list_back_lem_s t key value ls;
- hash_map_insert_in_list_s_lem_append t len key value (list_t_v ls)
-
-(** Auxiliary lemmas: update case *)
-
-val slot_s_find_update_for_all_binding_neq_append_lem
- (t : Type0) (key : usize) (value : t) (ls : list (binding t)) (b : binding t) :
- Lemma
- (requires (
- fst b <> key /\
- for_all (binding_neq b) ls))
- (ensures (
- let ls' = find_update (same_key key) ls (key, value) in
- for_all (binding_neq b) ls'))
-
-#push-options "--fuel 1"
-let rec slot_s_find_update_for_all_binding_neq_append_lem t key value ls b =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- slot_s_find_update_for_all_binding_neq_append_lem t key value cls b
-#pop-options
-
-/// Annoying auxiliary lemma we have to prove because there is no way to reason
-/// properly about closures.
-/// I'm really enjoying my time.
-val for_all_binding_neq_value_indep
- (#t : Type0) (key : key) (v0 v1 : t) (ls : list (binding t)) :
- Lemma (for_all (binding_neq (key,v0)) ls = for_all (binding_neq (key,v1)) ls)
-
-#push-options "--fuel 1"
-let rec for_all_binding_neq_value_indep #t key v0 v1 ls =
- match ls with
- | [] -> ()
- | _ :: ls' -> for_all_binding_neq_value_indep #t key v0 v1 ls'
-#pop-options
-
-val slot_s_inv_find_append_end_inv_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- Some? (slot_s_find key ls)))
- (ensures (
- let ls' = find_update (same_key key) ls (key, value) in
- slot_s_inv len (hash_mod_key key len) ls' /\
- (slot_s_find key ls' == Some value) /\
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-#push-options "--z3rlimit 50 --fuel 1"
-let rec slot_s_inv_find_append_end_inv_lem t len key value ls =
- match ls with
- | [] -> ()
- | (ck, cv) :: cls ->
- let h = hash_mod_key key len in
- let ls' = find_update (same_key key) ls (key, value) in
- if ck = key then
- begin
- assert(ls' == (ck,value) :: cls);
- assert(for_all (same_hash_mod_key len h) ls');
- // For pairwise_rel: binding_neq (ck, value) is actually independent
- // of `value`. Slightly annoying to prove in F*...
- assert(for_all (binding_neq (ck,cv)) cls);
- for_all_binding_neq_value_indep key cv value cls;
- assert(for_all (binding_neq (ck,value)) cls);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len (hash_mod_key key len) ls')
- end
- else
- begin
- slot_s_inv_find_append_end_inv_lem t len key value cls;
- assert(for_all (same_hash_mod_key len h) ls');
- slot_s_find_update_for_all_binding_neq_append_lem t key value cls (ck, cv);
- assert(pairwise_rel binding_neq ls');
- assert(slot_s_inv len h ls')
- end
-#pop-options
-
-/// [insert_in_list]: if the key is in the map, update the bindings
-val hash_map_insert_in_list_s_lem_update
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls /\
- Some? (slot_s_find key ls)))
- (ensures (
- let ls' = hash_map_insert_in_list_s key value ls in
- ls' == find_update (same_key key) ls (key,value) /\
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls)))
-
-let hash_map_insert_in_list_s_lem_update t len key value ls =
- slot_s_inv_find_append_end_inv_lem t len key value ls
-
-
-/// [insert_in_list]: if the key is in the map, update the bindings
-/// TODO: not used: remove?
-val hash_map_insert_in_list_back_lem_update
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (
- slot_t_inv len (hash_mod_key key len) ls /\
- Some? (slot_t_find_s key ls)))
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- let als = list_t_v ls in
- list_t_v ls' == find_update (same_key key) als (key,value) /\
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls)))
-
-let hash_map_insert_in_list_back_lem_update t len key value ls =
- hash_map_insert_in_list_back_lem_s t key value ls;
- hash_map_insert_in_list_s_lem_update t len key value (list_t_v ls)
-
-(** Final lemmas about [insert_in_list] *)
-
-/// High-level version
-val hash_map_insert_in_list_s_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list (binding t)) :
- Lemma
- (requires (
- slot_s_inv len (hash_mod_key key len) ls))
- (ensures (
- let ls' = hash_map_insert_in_list_s key value ls in
- // The invariant is preserved
- slot_s_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_s_find key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_s_find k' ls' == slot_s_find k' ls) /\
- // The length is incremented, iff we inserted a new key
- (match slot_s_find key ls with
- | None -> length ls' = length ls + 1
- | Some _ -> length ls' = length ls)))
-
-let hash_map_insert_in_list_s_lem t len key value ls =
- match slot_s_find key ls with
- | None ->
- assert_norm(length [(key,value)] = 1);
- hash_map_insert_in_list_s_lem_append t len key value ls
- | Some _ ->
- hash_map_insert_in_list_s_lem_update t len key value ls
-
-/// [insert_in_list]
-/// TODO: not used: remove?
-val hash_map_insert_in_list_back_lem
- (t : Type0) (len : usize{len > 0}) (key : usize) (value : t) (ls : list_t t) :
- Lemma
- (requires (slot_t_inv len (hash_mod_key key len) ls))
- (ensures (
- match hash_map_insert_in_list_back t key value ls with
- | Fail -> False
- | Return ls' ->
- // The invariant is preserved
- slot_t_inv len (hash_mod_key key len) ls' /\
- // [key] maps to [value]
- slot_t_find_s key ls' == Some value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> slot_t_find_s k' ls' == slot_t_find_s k' ls) /\
- // The length is incremented, iff we inserted a new key
- (match slot_t_find_s key ls with
- | None ->
- list_t_v ls' == list_t_v ls @ [(key,value)] /\
- list_t_len ls' = list_t_len ls + 1
- | Some _ ->
- list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,value) /\
- list_t_len ls' = list_t_len ls)))
- (decreases (hash_map_insert_in_list_decreases t key value ls))
-
-let hash_map_insert_in_list_back_lem t len key value ls =
- hash_map_insert_in_list_back_lem_s t key value ls;
- hash_map_insert_in_list_s_lem t len key value (list_t_v ls)
-
-(*** insert_no_resize *)
-
-(**** Refinement proof *)
-/// Same strategy as for [insert_in_list]: we introduce a high-level version of
-/// the function, and reason about it.
-/// We work on [hash_map_s] (we use a higher-level view of the hash-map, but
-/// not too high).
-
-/// A high-level version of insert, which doesn't check if the table is saturated
-let hash_map_insert_no_fail_s
- (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (value : t) :
- hash_map_s t =
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- let slot' = hash_map_insert_in_list_s key value slot in
- let hm' = list_update hm i slot' in
- hm'
-
-// TODO: at some point I used hash_map_s_nes and it broke proofs...x
-let hash_map_insert_no_resize_s
- (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (value : t) :
- result (hash_map_s t) =
- // Check if the table is saturated (too many entries, and we need to insert one)
- let num_entries = length (flatten hm) in
- if None? (hash_map_s_find hm key) && num_entries = usize_max then Fail
- else Return (hash_map_insert_no_fail_s hm key value)
-
-/// Prove that [hash_map_insert_no_resize_s] is refined by
-/// [hash_map_insert_no_resize'fwd_back]
-val hash_map_insert_no_resize_fwd_back_lem_s
- (t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
- Lemma
- (requires (
- hash_map_t_base_inv self /\
- hash_map_s_len (hash_map_t_v self) = hash_map_t_len_s self))
- (ensures (
- begin
- match hash_map_insert_no_resize_fwd_back t self key value,
- hash_map_insert_no_resize_s (hash_map_t_v self) key value
- with
- | Fail, Fail -> True
- | Return hm, Return hm_v ->
- hash_map_t_base_inv hm /\
- hash_map_t_same_params hm self /\
- hash_map_t_v hm == hm_v /\
- hash_map_s_len hm_v == hash_map_t_len_s hm
- | _ -> False
- end))
-
-let hash_map_insert_no_resize_fwd_back_lem_s t self key value =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let i0 = self.hash_map_num_entries in
- let p = self.hash_map_max_load_factor in
- let i1 = self.hash_map_max_load in
- let v = self.hash_map_slots in
- let i2 = vec_len (list_t t) v in
- let len = length v in
- begin match usize_rem i i2 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_mut_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- // Checking that: list_t_v (index ...) == index (hash_map_t_v ...) ...
- assert(list_t_v l == index (hash_map_t_v self) hash_mod);
- hash_map_insert_in_list_fwd_lem t key value l;
- match hash_map_insert_in_list_fwd t key value l with
- | Fail -> ()
- | Return b ->
- assert(b = None? (slot_s_find key (list_t_v l)));
- hash_map_insert_in_list_back_lem t len key value l;
- if b
- then
- begin match usize_add i0 1 with
- | Fail -> ()
- | Return i3 ->
- begin
- match hash_map_insert_in_list_back t key value l with
- | Fail -> ()
- | Return l0 ->
- begin match vec_index_mut_back (list_t t) v hash_mod l0 with
- | Fail -> ()
- | Return v0 ->
- let self_v = hash_map_t_v self in
- let hm = Mkhash_map_t i3 p i1 v0 in
- let hm_v = hash_map_t_v hm in
- assert(hm_v == list_update self_v hash_mod (list_t_v l0));
- assert_norm(length [(key,value)] = 1);
- assert(length (list_t_v l0) = length (list_t_v l) + 1);
- length_flatten_update self_v hash_mod (list_t_v l0);
- assert(hash_map_s_len hm_v = hash_map_t_len_s hm)
- end
- end
- end
- else
- begin
- match hash_map_insert_in_list_back t key value l with
- | Fail -> ()
- | Return l0 ->
- begin match vec_index_mut_back (list_t t) v hash_mod l0 with
- | Fail -> ()
- | Return v0 ->
- let self_v = hash_map_t_v self in
- let hm = Mkhash_map_t i0 p i1 v0 in
- let hm_v = hash_map_t_v hm in
- assert(hm_v == list_update self_v hash_mod (list_t_v l0));
- assert(length (list_t_v l0) = length (list_t_v l));
- length_flatten_update self_v hash_mod (list_t_v l0);
- assert(hash_map_s_len hm_v = hash_map_t_len_s hm)
- end
- end
- end
- end
- end
- end
-
-(**** insert_{no_fail,no_resize}: invariants *)
-
-let hash_map_s_updated_binding
- (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (opt_value : option t) (hm' : hash_map_s_nes t) : Type0 =
- // [key] maps to [value]
- hash_map_s_find hm' key == opt_value /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> hash_map_s_find hm' k' == hash_map_s_find hm k')
-
-let insert_post (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (value : t) (hm' : hash_map_s_nes t) : Type0 =
- // The invariant is preserved
- hash_map_s_inv hm' /\
- // [key] maps to [value] and the other bindings are preserved
- hash_map_s_updated_binding hm key (Some value) hm' /\
- // The length is incremented, iff we inserted a new key
- (match hash_map_s_find hm key with
- | None -> hash_map_s_len hm' = hash_map_s_len hm + 1
- | Some _ -> hash_map_s_len hm' = hash_map_s_len hm)
-
-val hash_map_insert_no_fail_s_lem
- (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (value : t) :
- Lemma
- (requires (hash_map_s_inv hm))
- (ensures (
- let hm' = hash_map_insert_no_fail_s hm key value in
- insert_post hm key value hm'))
-
-let hash_map_insert_no_fail_s_lem #t hm key value =
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hash_map_insert_in_list_s_lem t len key value slot;
- let slot' = hash_map_insert_in_list_s key value slot in
- length_flatten_update hm i slot'
-
-val hash_map_insert_no_resize_s_lem
- (#t : Type0) (hm : hash_map_s_nes t)
- (key : usize) (value : t) :
- Lemma
- (requires (hash_map_s_inv hm))
- (ensures (
- match hash_map_insert_no_resize_s hm key value with
- | Fail ->
- // Can fail only if we need to create a new binding in
- // an already saturated map
- hash_map_s_len hm = usize_max /\
- None? (hash_map_s_find hm key)
- | Return hm' ->
- insert_post hm key value hm'))
-
-let hash_map_insert_no_resize_s_lem #t hm key value =
- let num_entries = length (flatten hm) in
- if None? (hash_map_s_find hm key) && num_entries = usize_max then ()
- else hash_map_insert_no_fail_s_lem hm key value
-
-
-(**** find after insert *)
-/// Lemmas about what happens if we call [find] after an insertion
-
-val hash_map_insert_no_resize_s_get_same_lem
- (#t : Type0) (hm : hash_map_s t)
- (key : usize) (value : t) :
- Lemma (requires (hash_map_s_inv hm))
- (ensures (
- match hash_map_insert_no_resize_s hm key value with
- | Fail -> True
- | Return hm' ->
- hash_map_s_find hm' key == Some value))
-
-let hash_map_insert_no_resize_s_get_same_lem #t hm key value =
- let num_entries = length (flatten hm) in
- if None? (hash_map_s_find hm key) && num_entries = usize_max then ()
- else
- begin
- let hm' = Return?.v (hash_map_insert_no_resize_s hm key value) in
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hash_map_insert_in_list_s_lem t len key value slot
- end
-
-val hash_map_insert_no_resize_s_get_diff_lem
- (#t : Type0) (hm : hash_map_s t)
- (key : usize) (value : t) (key' : usize{key' <> key}) :
- Lemma (requires (hash_map_s_inv hm))
- (ensures (
- match hash_map_insert_no_resize_s hm key value with
- | Fail -> True
- | Return hm' ->
- hash_map_s_find hm' key' == hash_map_s_find hm key'))
-
-let hash_map_insert_no_resize_s_get_diff_lem #t hm key value key' =
- let num_entries = length (flatten hm) in
- if None? (hash_map_s_find hm key) && num_entries = usize_max then ()
- else
- begin
- let hm' = Return?.v (hash_map_insert_no_resize_s hm key value) in
- let len = length hm in
- let i = hash_mod_key key len in
- let slot = index hm i in
- hash_map_insert_in_list_s_lem t len key value slot;
- let i' = hash_mod_key key' len in
- if i <> i' then ()
- else
- begin
- ()
- end
- end
-
-
-(*** move_elements_from_list *)
-
-/// Having a great time here: if we use `result (hash_map_s_res t)` as the
-/// return type for [hash_map_move_elements_from_list_s] instead of having this
-/// awkward match, the proof of [hash_map_move_elements_fwd_back_lem_refin] fails.
-/// I guess it comes from F*'s poor subtyping.
-/// Followingly, I'm not taking any chance and using [result_hash_map_s]
-/// everywhere.
-type result_hash_map_s_nes (t : Type0) : Type0 =
- res:result (hash_map_s t) {
- match res with
- | Fail -> True
- | Return hm -> is_pos_usize (length hm)
- }
-
-let rec hash_map_move_elements_from_list_s
- (#t : Type0) (hm : hash_map_s_nes t)
- (ls : slot_s t) :
- // Do *NOT* use `result (hash_map_s t)`
- Tot (result_hash_map_s_nes t)
- (decreases ls) =
- match ls with
- | [] -> Return hm
- | (key, value) :: ls' ->
- match hash_map_insert_no_resize_s hm key value with
- | Fail -> Fail
- | Return hm' ->
- hash_map_move_elements_from_list_s hm' ls'
-
-/// Refinement lemma
-val hash_map_move_elements_from_list_fwd_back_lem
- (t : Type0) (ntable : hash_map_t_nes t) (ls : list_t t) :
- Lemma (requires (hash_map_t_base_inv ntable))
- (ensures (
- match hash_map_move_elements_from_list_fwd_back t ntable ls,
- hash_map_move_elements_from_list_s (hash_map_t_v ntable) (slot_t_v ls)
- with
- | Fail, Fail -> True
- | Return hm', Return hm_v ->
- hash_map_t_base_inv hm' /\
- hash_map_t_v hm' == hm_v /\
- hash_map_t_same_params hm' ntable
- | _ -> False))
- (decreases (hash_map_move_elements_from_list_decreases t ntable ls))
-
-#push-options "--fuel 1"
-let rec hash_map_move_elements_from_list_fwd_back_lem t ntable ls =
- begin match ls with
- | ListCons k v tl ->
- assert(list_t_v ls == (k, v) :: list_t_v tl);
- let ls_v = list_t_v ls in
- let (_,_) :: tl_v = ls_v in
- hash_map_insert_no_resize_fwd_back_lem_s t ntable k v;
- begin match hash_map_insert_no_resize_fwd_back t ntable k v with
- | Fail -> ()
- | Return h ->
- let h_v = Return?.v (hash_map_insert_no_resize_s (hash_map_t_v ntable) k v) in
- assert(hash_map_t_v h == h_v);
- hash_map_move_elements_from_list_fwd_back_lem t h tl;
- begin match hash_map_move_elements_from_list_fwd_back t h tl with
- | Fail -> ()
- | Return h0 -> ()
- end
- end
- | ListNil -> ()
- end
-#pop-options
-
-(*** move_elements *)
-
-(**** move_elements: refinement 0 *)
-/// The proof for [hash_map_move_elements_fwd_back_lem_refin] broke so many times
-/// (while it is supposed to be super simple!) that we decided to add one refinement
-/// level, to really do things step by step...
-/// Doing this refinement layer made me notice that maybe the problem came from
-/// the fact that at some point we have to prove `list_t_v ListNil == []`: I
-/// added the corresponding assert to help Z3 and everything became stable.
-/// I finally didn't use this "simple" refinement lemma, but I still keep it here
-/// because it allows for easy comparisons with [hash_map_move_elements_s].
-
-/// [hash_map_move_elements_fwd] refines this function, which is actually almost
-/// the same (just a little bit shorter and cleaner, and has a pre).
-///
-/// The way I wrote the high-level model is the following:
-/// - I copy-pasted the definition of [hash_map_move_elements_fwd], wrote the
-/// signature which links this new definition to [hash_map_move_elements_fwd] and
-/// checked that the proof passed
-/// - I gradually simplified it, while making sure the proof still passes
-#push-options "--fuel 1"
-let rec hash_map_move_elements_s_simpl
- (t : Type0) (ntable : hash_map_t t)
- (slots : vec (list_t t))
- (i : usize{i <= length slots /\ length slots <= usize_max}) :
- Pure (result ((hash_map_t t) & (vec (list_t t))))
- (requires (True))
- (ensures (fun res ->
- match res, hash_map_move_elements_fwd_back t ntable slots i with
- | Fail, Fail -> True
- | Return (ntable1, slots1), Return (ntable2, slots2) ->
- ntable1 == ntable2 /\
- slots1 == slots2
- | _ -> False))
- (decreases (hash_map_move_elements_decreases t ntable slots i))
- =
- if i < length slots
- then
- let slot = index slots i in
- begin match hash_map_move_elements_from_list_fwd_back t ntable slot with
- | Fail -> Fail
- | Return hm' ->
- let slots' = list_update slots i ListNil in
- hash_map_move_elements_s_simpl t hm' slots' (i+1)
- end
- else Return (ntable, slots)
-#pop-options
-
-(**** move_elements: refinement 1 *)
-/// We prove a second refinement lemma: calling [move_elements] refines a function
-/// which, for every slot, moves the element out of the slot. This first model is
-/// almost exactly the translated function, it just uses `list` instead of `list_t`.
-
-// Note that we ignore the returned slots (we thus don't return a pair:
-// only the new hash map in which we moved the elements from the slots):
-// this returned value is not used.
-let rec hash_map_move_elements_s
- (#t : Type0) (hm : hash_map_s_nes t)
- (slots : slots_s t) (i : usize{i <= length slots /\ length slots <= usize_max}) :
- Tot (result_hash_map_s_nes t)
- (decreases (length slots - i)) =
- let len = length slots in
- if i < len then
- begin
- let slot = index slots i in
- match hash_map_move_elements_from_list_s hm slot with
- | Fail -> Fail
- | Return hm' ->
- let slots' = list_update slots i [] in
- hash_map_move_elements_s hm' slots' (i+1)
- end
- else Return hm
-
-val hash_map_move_elements_fwd_back_lem_refin
- (t : Type0) (ntable : hash_map_t t)
- (slots : vec (list_t t)) (i : usize{i <= length slots}) :
- Lemma
- (requires (
- hash_map_t_base_inv ntable))
- (ensures (
- match hash_map_move_elements_fwd_back t ntable slots i,
- hash_map_move_elements_s (hash_map_t_v ntable) (slots_t_v slots) i
- with
- | Fail, Fail -> True // We will prove later that this is not possible
- | Return (ntable', _), Return ntable'_v ->
- hash_map_t_base_inv ntable' /\
- hash_map_t_v ntable' == ntable'_v /\
- hash_map_t_same_params ntable' ntable
- | _ -> False))
- (decreases (length slots - i))
-
-// This proof was super unstable for some reasons.
-//
-// For instance, using the [hash_map_s_nes] type abbreviation
-// in some of the above definitions led to a failure (while it was just a type
-// abbreviation: the signatures were the same if we unfolded this type). This
-// behaviour led me to the hypothesis that maybe it made F*'s type inference
-// end up with a different result, which combined with its poor support for
-// subtyping made the proof failed.
-//
-// However, later, unwrapping a definition led to another failure.
-//
-// I thus tried to manually unfold some postconditions because it
-// seemed to work for [hash_map_move_elements_fwd_back_lem] but it didn't
-// succeed.
-//
-// I tried to increase the ifuel to 2, 3: it didn't work, and I fell back to
-// other methods. Finally out of angriness I swiched the ifuel to 4 for no
-// specific reason: everything worked fine.
-//
-// I have *no clue* why 4 is the magic number. Also: it fails if I remove
-// the unfolded postconditions (meaning I would probably need to increase
-// the ifuel to unreasonable amounts).
-//
-// Finally, as I had succeeded in fixing the proof, I thought that maybe the
-// initial problem with the type abbreviations was fixed: I thus tried to use
-// them. Of course, it made the proof fail again, and this time no ifuel setting
-// seemed to work.
-//
-// At this point I was just fed up and leave things as they were, without trying
-// to cleanup the previous definitions.
-//
-// Finally, even later it broke, again, at which point I had no choice but to
-// introduce an even simpler refinement proof (with [hash_map_move_elements_s_simpl]).
-// Doing this allowed me to see that maybe the problem came from the fact that
-// Z3 had to prove that `list_t_v ListNil == []` at some point, so I added the
-// corresponding assertion and miraculously everything becamse stable... I then
-// removed all the postconditions I had manually instanciated and inserted in
-// the proof, and which took a lot of place.
-// I still have no clue why `ifuel 4` made it work earlier.
-//
-// The terrible thing is that this refinement proof is conceptually super simple:
-// - there are maybe two arithmetic proofs, which are directly solved by the
-// precondition
-// - we need to prove the call to [hash_map_move_elements_from_list_fwd_back]
-// refines its model: this is proven by another refinement lemma we proved above
-// - there is the recursive call (trivial)
-#restart-solver
-#push-options "--fuel 1"
-let rec hash_map_move_elements_fwd_back_lem_refin t ntable slots i =
- assert(hash_map_t_base_inv ntable);
- let i0 = vec_len (list_t t) slots in
- let b = i < i0 in
- if b
- then
- begin match vec_index_mut_fwd (list_t t) slots i with
- | Fail -> ()
- | Return l ->
- let l0 = mem_replace_fwd (list_t t) l ListNil in
- assert(l0 == l);
- hash_map_move_elements_from_list_fwd_back_lem t ntable l0;
- begin match hash_map_move_elements_from_list_fwd_back t ntable l0 with
- | Fail -> ()
- | Return h ->
- let l1 = mem_replace_back (list_t t) l ListNil in
- assert(l1 == ListNil);
- assert(slot_t_v #t ListNil == []); // THIS IS IMPORTANT
- begin match vec_index_mut_back (list_t t) slots i l1 with
- | Fail -> ()
- | Return v ->
- begin match usize_add i 1 with
- | Fail -> ()
- | Return i1 ->
- hash_map_move_elements_fwd_back_lem_refin t h v i1;
- begin match hash_map_move_elements_fwd_back t h v i1 with
- | Fail ->
- assert(hash_map_move_elements_fwd_back t ntable slots i == Fail);
- ()
- | Return (ntable', v0) -> ()
- end
- end
- end
- end
- end
- else ()
-#pop-options
-
-
-(**** move_elements: refinement 2 *)
-/// We prove a second refinement lemma: calling [move_elements] refines a function
-/// which moves every binding of the hash map seen as *one* associative list
-/// (and not a list of lists).
-
-/// [ntable] is the hash map to which we move the elements
-/// [slots] is the current hash map, from which we remove the elements, and seen
-/// as a "flat" associative list (and not a list of lists)
-/// This is actually exactly [hash_map_move_elements_from_list_s]...
-let rec hash_map_move_elements_s_flat
- (#t : Type0) (ntable : hash_map_s_nes t)
- (slots : assoc_list t) :
- Tot (result_hash_map_s_nes t)
- (decreases slots) =
- match slots with
- | [] -> Return ntable
- | (k,v) :: slots' ->
- match hash_map_insert_no_resize_s ntable k v with
- | Fail -> Fail
- | Return ntable' ->
- hash_map_move_elements_s_flat ntable' slots'
-
-/// The refinment lemmas
-/// First, auxiliary helpers.
-
-/// Flatten a list of lists, starting at index i
-val flatten_i :
- #a:Type
- -> l:list (list a)
- -> i:nat{i <= length l}
- -> Tot (list a) (decreases (length l - i))
-
-let rec flatten_i l i =
- if i < length l then
- index l i @ flatten_i l (i+1)
- else []
-
-let _ = assert(let l = [1;2] in l == hd l :: tl l)
-
-val flatten_i_incr :
- #a:Type
- -> l:list (list a)
- -> i:nat{Cons? l /\ i+1 <= length l} ->
- Lemma
- (ensures (
- (**) assert_norm(length (hd l :: tl l) == 1 + length (tl l));
- flatten_i l (i+1) == flatten_i (tl l) i))
- (decreases (length l - (i+1)))
-
-#push-options "--fuel 1"
-let rec flatten_i_incr l i =
- let x :: tl = l in
- if i + 1 < length l then
- begin
- assert(flatten_i l (i+1) == index l (i+1) @ flatten_i l (i+2));
- flatten_i_incr l (i+1);
- assert(flatten_i l (i+2) == flatten_i tl (i+1));
- assert(index l (i+1) == index tl i)
- end
- else ()
-#pop-options
-
-val flatten_0_is_flatten :
- #a:Type
- -> l:list (list a) ->
- Lemma
- (ensures (flatten_i l 0 == flatten l))
-
-#push-options "--fuel 1"
-let rec flatten_0_is_flatten #a l =
- match l with
- | [] -> ()
- | x :: l' ->
- flatten_i_incr l 0;
- flatten_0_is_flatten l'
-#pop-options
-
-/// Auxiliary lemma
-val flatten_nil_prefix_as_flatten_i :
- #a:Type
- -> l:list (list a)
- -> i:nat{i <= length l} ->
- Lemma (requires (forall (j:nat{j < i}). index l j == []))
- (ensures (flatten l == flatten_i l i))
-
-#push-options "--fuel 1"
-let rec flatten_nil_prefix_as_flatten_i #a l i =
- if i = 0 then flatten_0_is_flatten l
- else
- begin
- let x :: l' = l in
- assert(index l 0 == []);
- assert(x == []);
- assert(flatten l == flatten l');
- flatten_i_incr l (i-1);
- assert(flatten_i l i == flatten_i l' (i-1));
- assert(forall (j:nat{j < length l'}). index l' j == index l (j+1));
- flatten_nil_prefix_as_flatten_i l' (i-1);
- assert(flatten l' == flatten_i l' (i-1))
- end
-#pop-options
-
-/// The proof is trivial, the functions are the same.
-/// Just keeping two definitions to allow changes...
-val hash_map_move_elements_from_list_s_as_flat_lem
- (#t : Type0) (hm : hash_map_s_nes t)
- (ls : slot_s t) :
- Lemma
- (ensures (
- hash_map_move_elements_from_list_s hm ls ==
- hash_map_move_elements_s_flat hm ls))
- (decreases ls)
-
-#push-options "--fuel 1"
-let rec hash_map_move_elements_from_list_s_as_flat_lem #t hm ls =
- match ls with
- | [] -> ()
- | (key, value) :: ls' ->
- match hash_map_insert_no_resize_s hm key value with
- | Fail -> ()
- | Return hm' ->
- hash_map_move_elements_from_list_s_as_flat_lem hm' ls'
-#pop-options
-
-/// Composition of two calls to [hash_map_move_elements_s_flat]
-let hash_map_move_elements_s_flat_comp
- (#t : Type0) (hm : hash_map_s_nes t) (slot0 slot1 : slot_s t) :
- Tot (result_hash_map_s_nes t) =
- match hash_map_move_elements_s_flat hm slot0 with
- | Fail -> Fail
- | Return hm1 -> hash_map_move_elements_s_flat hm1 slot1
-
-/// High-level desc:
-/// move_elements (move_elements hm slot0) slo1 == move_elements hm (slot0 @ slot1)
-val hash_map_move_elements_s_flat_append_lem
- (#t : Type0) (hm : hash_map_s_nes t) (slot0 slot1 : slot_s t) :
- Lemma
- (ensures (
- match hash_map_move_elements_s_flat_comp hm slot0 slot1,
- hash_map_move_elements_s_flat hm (slot0 @ slot1)
- with
- | Fail, Fail -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
- (decreases (slot0))
-
-#push-options "--fuel 1"
-let rec hash_map_move_elements_s_flat_append_lem #t hm slot0 slot1 =
- match slot0 with
- | [] -> ()
- | (k,v) :: slot0' ->
- match hash_map_insert_no_resize_s hm k v with
- | Fail -> ()
- | Return hm' ->
- hash_map_move_elements_s_flat_append_lem hm' slot0' slot1
-#pop-options
-
-val flatten_i_same_suffix (#a : Type) (l0 l1 : list (list a)) (i : nat) :
- Lemma
- (requires (
- i <= length l0 /\
- length l0 = length l1 /\
- (forall (j:nat{i <= j /\ j < length l0}). index l0 j == index l1 j)))
- (ensures (flatten_i l0 i == flatten_i l1 i))
- (decreases (length l0 - i))
-
-#push-options "--fuel 1"
-let rec flatten_i_same_suffix #a l0 l1 i =
- if i < length l0 then
- flatten_i_same_suffix l0 l1 (i+1)
- else ()
-#pop-options
-
-/// Refinement lemma:
-/// [hash_map_move_elements_s] refines [hash_map_move_elements_s_flat]
-/// (actually the functions are equal on all inputs).
-val hash_map_move_elements_s_lem_refin_flat
- (#t : Type0) (hm : hash_map_s_nes t)
- (slots : slots_s t)
- (i : nat{i <= length slots /\ length slots <= usize_max}) :
- Lemma
- (ensures (
- match hash_map_move_elements_s hm slots i,
- hash_map_move_elements_s_flat hm (flatten_i slots i)
- with
- | Fail, Fail -> True
- | Return hm, Return hm' -> hm == hm'
- | _ -> False))
- (decreases (length slots - i))
-
-#push-options "--fuel 1"
-let rec hash_map_move_elements_s_lem_refin_flat #t hm slots i =
- let len = length slots in
- if i < len then
- begin
- let slot = index slots i in
- hash_map_move_elements_from_list_s_as_flat_lem hm slot;
- match hash_map_move_elements_from_list_s hm slot with
- | Fail ->
- assert(flatten_i slots i == slot @ flatten_i slots (i+1));
- hash_map_move_elements_s_flat_append_lem hm slot (flatten_i slots (i+1));
- assert(hash_map_move_elements_s_flat hm (flatten_i slots i) == Fail)
- | Return hm' ->
- let slots' = list_update slots i [] in
- flatten_i_same_suffix slots slots' (i+1);
- hash_map_move_elements_s_lem_refin_flat hm' slots' (i+1);
- hash_map_move_elements_s_flat_append_lem hm slot (flatten_i slots' (i+1));
- ()
- end
- else ()
-#pop-options
-
-let assoc_list_inv (#t : Type0) (al : assoc_list t) : Type0 =
- // All the keys are pairwise distinct
- pairwise_rel binding_neq al
-
-let disjoint_hm_al_on_key
- (#t : Type0) (hm : hash_map_s_nes t) (al : assoc_list t) (k : key) : Type0 =
- match hash_map_s_find hm k, assoc_list_find k al with
- | Some _, None
- | None, Some _
- | None, None -> True
- | Some _, Some _ -> False
-
-/// Playing a dangerous game here: using forall quantifiers
-let disjoint_hm_al (#t : Type0) (hm : hash_map_s_nes t) (al : assoc_list t) : Type0 =
- forall (k:key). disjoint_hm_al_on_key hm al k
-
-let find_in_union_hm_al
- (#t : Type0) (hm : hash_map_s_nes t) (al : assoc_list t) (k : key) :
- option t =
- match hash_map_s_find hm k with
- | Some b -> Some b
- | None -> assoc_list_find k al
-
-/// Auxiliary lemma
-val for_all_binding_neq_find_lem (#t : Type0) (k : key) (v : t) (al : assoc_list t) :
- Lemma (requires (for_all (binding_neq (k,v)) al))
- (ensures (assoc_list_find k al == None))
-
-#push-options "--fuel 1"
-let rec for_all_binding_neq_find_lem #t k v al =
- match al with
- | [] -> ()
- | b :: al' -> for_all_binding_neq_find_lem k v al'
-#pop-options
-
-val hash_map_move_elements_s_flat_lem
- (#t : Type0) (hm : hash_map_s_nes t) (al : assoc_list t) :
- Lemma
- (requires (
- // Invariants
- hash_map_s_inv hm /\
- assoc_list_inv al /\
- // The two are disjoint
- disjoint_hm_al hm al /\
- // We can add all the elements to the hashmap
- hash_map_s_len hm + length al <= usize_max))
- (ensures (
- match hash_map_move_elements_s_flat hm al with
- | Fail -> False // We can't fail
- | Return hm' ->
- // The invariant is preserved
- hash_map_s_inv hm' /\
- // The new hash map is the union of the two maps
- (forall (k:key). hash_map_s_find hm' k == find_in_union_hm_al hm al k) /\
- hash_map_s_len hm' = hash_map_s_len hm + length al))
- (decreases al)
-
-#restart-solver
-#push-options "--z3rlimit 200 --fuel 1"
-let rec hash_map_move_elements_s_flat_lem #t hm al =
- match al with
- | [] -> ()
- | (k,v) :: al' ->
- hash_map_insert_no_resize_s_lem hm k v;
- match hash_map_insert_no_resize_s hm k v with
- | Fail -> ()
- | Return hm' ->
- assert(hash_map_s_inv hm');
- assert(assoc_list_inv al');
- let disjoint_lem (k' : key) :
- Lemma (disjoint_hm_al_on_key hm' al' k')
- [SMTPat (disjoint_hm_al_on_key hm' al' k')] =
- if k' = k then
- begin
- assert(hash_map_s_find hm' k' == Some v);
- for_all_binding_neq_find_lem k v al';
- assert(assoc_list_find k' al' == None)
- end
- else
- begin
- assert(hash_map_s_find hm' k' == hash_map_s_find hm k');
- assert(assoc_list_find k' al' == assoc_list_find k' al)
- end
- in
- assert(disjoint_hm_al hm' al');
- assert(hash_map_s_len hm' + length al' <= usize_max);
- hash_map_move_elements_s_flat_lem hm' al'
-#pop-options
-
-/// We need to prove that the invariants on the "low-level" representations of
-/// the hash map imply the invariants on the "high-level" representations.
-
-val slots_t_inv_implies_slots_s_inv
- (#t : Type0) (slots : slots_t t{length slots <= usize_max}) :
- Lemma (requires (slots_t_inv slots))
- (ensures (slots_s_inv (slots_t_v slots)))
-
-let slots_t_inv_implies_slots_s_inv #t slots =
- // Ok, works fine: this lemma was useless.
- // Problem is: I can never really predict for sure with F*...
- ()
-
-val hash_map_t_base_inv_implies_hash_map_s_inv
- (#t : Type0) (hm : hash_map_t t) :
- Lemma (requires (hash_map_t_base_inv hm))
- (ensures (hash_map_s_inv (hash_map_t_v hm)))
-
-let hash_map_t_base_inv_implies_hash_map_s_inv #t hm = () // same as previous
-
-/// Introducing a "partial" version of the hash map invariant, which operates on
-/// a suffix of the hash map.
-let partial_hash_map_s_inv
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hash_map_s t{offset + length hm <= usize_max}) : Type0 =
- forall(i:nat{i < length hm}). {:pattern index hm i} slot_s_inv len (offset + i) (index hm i)
-
-/// Auxiliary lemma.
-/// If a binding comes from a slot i, then its key is different from the keys
-/// of the bindings in the other slots (because the hashes of the keys are distinct).
-val binding_in_previous_slot_implies_neq
- (#t : Type0) (len : usize{len > 0})
- (i : usize) (b : binding t)
- (offset : usize{i < offset})
- (slots : hash_map_s t{offset + length slots <= usize_max}) :
- Lemma
- (requires (
- // The binding comes from a slot not in [slots]
- hash_mod_key (fst b) len = i /\
- // The slots are the well-formed suffix of a hash map
- partial_hash_map_s_inv len offset slots))
- (ensures (
- for_all (binding_neq b) (flatten slots)))
- (decreases slots)
-
-#push-options "--z3rlimit 100 --fuel 1"
-let rec binding_in_previous_slot_implies_neq #t len i b offset slots =
- match slots with
- | [] -> ()
- | s :: slots' ->
- assert(slot_s_inv len offset (index slots 0)); // Triggers patterns
- assert(slot_s_inv len offset s);
- // Proving TARGET. We use quantifiers.
- assert(for_all (same_hash_mod_key len offset) s);
- forall_index_equiv_list_for_all (same_hash_mod_key len offset) s;
- assert(forall (i:nat{i < length s}). same_hash_mod_key len offset (index s i));
- let aux (i:nat{i < length s}) :
- Lemma
- (requires (same_hash_mod_key len offset (index s i)))
- (ensures (binding_neq b (index s i)))
- [SMTPat (index s i)] = ()
- in
- assert(forall (i:nat{i < length s}). binding_neq b (index s i));
- forall_index_equiv_list_for_all (binding_neq b) s;
- assert(for_all (binding_neq b) s); // TARGET
- //
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations
- binding_in_previous_slot_implies_neq len i b (offset+1) slots';
- for_all_append (binding_neq b) s (flatten slots')
-#pop-options
-
-val partial_hash_map_s_inv_implies_assoc_list_lem
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hash_map_s t{offset + length hm <= usize_max}) :
- Lemma
- (requires (
- partial_hash_map_s_inv len offset hm))
- (ensures (assoc_list_inv (flatten hm)))
- (decreases (length hm + length (flatten hm)))
-
-#push-options "--fuel 1"
-let rec partial_hash_map_s_inv_implies_assoc_list_lem #t len offset hm =
- match hm with
- | [] -> ()
- | slot :: hm' ->
- assert(flatten hm == slot @ flatten hm');
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- match slot with
- | [] ->
- assert(flatten hm == flatten hm');
- assert(partial_hash_map_s_inv len (offset+1) hm'); // Triggers instantiations
- partial_hash_map_s_inv_implies_assoc_list_lem len (offset+1) hm'
- | x :: slot' ->
- assert(flatten (slot' :: hm') == slot' @ flatten hm');
- let hm'' = slot' :: hm' in
- assert(forall (i:nat{0 < i /\ i < length hm''}). index hm'' i == index hm i); // Triggers instantiations
- assert(forall (i:nat{0 < i /\ i < length hm''}). slot_s_inv len (offset + i) (index hm'' i));
- assert(index hm 0 == slot); // Triggers instantiations
- assert(slot_s_inv len offset slot);
- assert(slot_s_inv len offset slot');
- assert(partial_hash_map_s_inv len offset hm'');
- partial_hash_map_s_inv_implies_assoc_list_lem len offset (slot' :: hm');
- // Proving that the key in `x` is different from all the other keys in
- // the flattened map
- assert(for_all (binding_neq x) slot');
- for_all_append (binding_neq x) slot' (flatten hm');
- assert(partial_hash_map_s_inv len (offset+1) hm');
- binding_in_previous_slot_implies_neq #t len offset x (offset+1) hm';
- assert(for_all (binding_neq x) (flatten hm'));
- assert(for_all (binding_neq x) (flatten (slot' :: hm')))
-#pop-options
-
-val hash_map_s_inv_implies_assoc_list_lem
- (#t : Type0) (hm : hash_map_s t) :
- Lemma (requires (hash_map_s_inv hm))
- (ensures (assoc_list_inv (flatten hm)))
-
-let hash_map_s_inv_implies_assoc_list_lem #t hm =
- partial_hash_map_s_inv_implies_assoc_list_lem (length hm) 0 hm
-
-val hash_map_t_base_inv_implies_assoc_list_lem
- (#t : Type0) (hm : hash_map_t t):
- Lemma (requires (hash_map_t_base_inv hm))
- (ensures (assoc_list_inv (hash_map_t_al_v hm)))
-
-let hash_map_t_base_inv_implies_assoc_list_lem #t hm =
- hash_map_s_inv_implies_assoc_list_lem (hash_map_t_v hm)
-
-/// For some reason, we can't write the below [forall] directly in the [ensures]
-/// clause of the next lemma: it makes Z3 fails even with a huge rlimit.
-/// I have no idea what's going on.
-let hash_map_is_assoc_list
- (#t : Type0) (ntable : hash_map_t t{length ntable.hash_map_slots > 0})
- (al : assoc_list t) : Type0 =
- (forall (k:key). hash_map_t_find_s ntable k == assoc_list_find k al)
-
-let partial_hash_map_s_find
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hash_map_s_nes t{offset + length hm = len})
- (k : key{hash_mod_key k len >= offset}) : option t =
- let i = hash_mod_key k len in
- let slot = index hm (i - offset) in
- slot_s_find k slot
-
-val not_same_hash_key_not_found_in_slot
- (#t : Type0) (len : usize{len > 0})
- (k : key)
- (i : usize)
- (slot : slot_s t) :
- Lemma
- (requires (
- hash_mod_key k len <> i /\
- slot_s_inv len i slot))
- (ensures (slot_s_find k slot == None))
-
-#push-options "--fuel 1"
-let rec not_same_hash_key_not_found_in_slot #t len k i slot =
- match slot with
- | [] -> ()
- | (k',v) :: slot' -> not_same_hash_key_not_found_in_slot len k i slot'
-#pop-options
-
-/// Small variation of [binding_in_previous_slot_implies_neq]: if the hash of
-/// a key links it to a previous slot, it can't be found in the slots after.
-val key_in_previous_slot_implies_not_found
- (#t : Type0) (len : usize{len > 0})
- (k : key)
- (offset : usize)
- (slots : hash_map_s t{offset + length slots = len}) :
- Lemma
- (requires (
- // The binding comes from a slot not in [slots]
- hash_mod_key k len < offset /\
- // The slots are the well-formed suffix of a hash map
- partial_hash_map_s_inv len offset slots))
- (ensures (
- assoc_list_find k (flatten slots) == None))
- (decreases slots)
-
-#push-options "--fuel 1"
-let rec key_in_previous_slot_implies_not_found #t len k offset slots =
- match slots with
- | [] -> ()
- | slot :: slots' ->
- find_append (same_key k) slot (flatten slots');
- assert(index slots 0 == slot); // Triggers instantiations
- not_same_hash_key_not_found_in_slot #t len k offset slot;
- assert(assoc_list_find k slot == None);
- assert(forall (i:nat{i < length slots'}). index slots' i == index slots (i+1)); // Triggers instantiations
- key_in_previous_slot_implies_not_found len k (offset+1) slots'
-#pop-options
-
-val partial_hash_map_s_is_assoc_list_lem
- (#t : Type0) (len : usize{len > 0}) (offset : usize)
- (hm : hash_map_s_nes t{offset + length hm = len})
- (k : key{hash_mod_key k len >= offset}) :
- Lemma
- (requires (
- partial_hash_map_s_inv len offset hm))
- (ensures (
- partial_hash_map_s_find len offset hm k == assoc_list_find k (flatten hm)))
- (decreases hm)
-// (decreases (length hm + length (flatten hm)))
-
-#push-options "--fuel 1"
-let rec partial_hash_map_s_is_assoc_list_lem #t len offset hm k =
- match hm with
- | [] -> ()
- | slot :: hm' ->
- let h = hash_mod_key k len in
- let i = h - offset in
- if i = 0 then
- begin
- // We must look in the current slot
- assert(partial_hash_map_s_find len offset hm k == slot_s_find k slot);
- find_append (same_key k) slot (flatten hm');
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- key_in_previous_slot_implies_not_found #t len k (offset+1) hm';
- assert( // Of course, writing `== None` doesn't work...
- match find (same_key k) (flatten hm') with
- | None -> True
- | Some _ -> False);
- assert(
- find (same_key k) (flatten hm) ==
- begin match find (same_key k) slot with
- | Some x -> Some x
- | None -> find (same_key k) (flatten hm')
- end);
- ()
- end
- else
- begin
- // We must ignore the current slot
- assert(partial_hash_map_s_find len offset hm k ==
- partial_hash_map_s_find len (offset+1) hm' k);
- find_append (same_key k) slot (flatten hm');
- assert(index hm 0 == slot); // Triggers instantiations
- not_same_hash_key_not_found_in_slot #t len k offset slot;
- assert(forall (i:nat{i < length hm'}). index hm' i == index hm (i+1)); // Triggers instantiations
- partial_hash_map_s_is_assoc_list_lem #t len (offset+1) hm' k
- end
-#pop-options
-
-val hash_map_is_assoc_list_lem (#t : Type0) (hm : hash_map_t t) :
- Lemma (requires (hash_map_t_base_inv hm))
- (ensures (hash_map_is_assoc_list hm (hash_map_t_al_v hm)))
-
-let hash_map_is_assoc_list_lem #t hm =
- let aux (k:key) :
- Lemma (hash_map_t_find_s hm k == assoc_list_find k (hash_map_t_al_v hm))
- [SMTPat (hash_map_t_find_s hm k)] =
- let hm_v = hash_map_t_v hm in
- let len = length hm_v in
- partial_hash_map_s_is_assoc_list_lem #t len 0 hm_v k
- in
- ()
-
-/// The final lemma about [move_elements]: calling it on an empty hash table moves
-/// all the elements to this empty table.
-val hash_map_move_elements_fwd_back_lem
- (t : Type0) (ntable : hash_map_t t) (slots : vec (list_t t)) :
- Lemma
- (requires (
- let al = flatten (slots_t_v slots) in
- hash_map_t_base_inv ntable /\
- length al <= usize_max /\
- assoc_list_inv al /\
- // The table is empty
- hash_map_t_len_s ntable = 0 /\
- (forall (k:key). hash_map_t_find_s ntable k == None)))
- (ensures (
- let al = flatten (slots_t_v slots) in
- match hash_map_move_elements_fwd_back t ntable slots 0,
- hash_map_move_elements_s_flat (hash_map_t_v ntable) al
- with
- | Return (ntable', _), Return ntable'_v ->
- // The invariant is preserved
- hash_map_t_base_inv ntable' /\
- // We preserved the parameters
- hash_map_t_same_params ntable' ntable /\
- // The table has the same number of slots
- length ntable'.hash_map_slots = length ntable.hash_map_slots /\
- // The count is good
- hash_map_t_len_s ntable' = length al /\
- // The table can be linked to its model (we need this only to reveal
- // "pretty" functional lemmas to the user in the fsti - so that we
- // can write lemmas with SMT patterns - this is very F* specific)
- hash_map_t_v ntable' == ntable'_v /\
- // The new table contains exactly all the bindings from the slots
- // Rk.: see the comment for [hash_map_is_assoc_list]
- hash_map_is_assoc_list ntable' al
- | _ -> False // We can only succeed
- ))
-
-// Weird, dirty things happen below.
-// Manually unfolding some postconditions allowed to make the proof pass,
-// and also revealed the reason why some proofs failed with "Unknown assertion
-// failed" (resulting in the call to [flatten_0_is_flatten] for instance).
-// I think manually unfolding the postconditions allowed to account for the
-// lack of ifuel (this kind of proofs is annoying, really).
-#restart-solver
-#push-options "--z3rlimit 100"
-let hash_map_move_elements_fwd_back_lem t ntable slots =
- let ntable_v = hash_map_t_v ntable in
- let slots_v = slots_t_v slots in
- let al = flatten slots_v in
- hash_map_move_elements_fwd_back_lem_refin t ntable slots 0;
- begin
- match hash_map_move_elements_fwd_back t ntable slots 0,
- hash_map_move_elements_s ntable_v slots_v 0
- with
- | Fail, Fail -> ()
- | Return (ntable', _), Return ntable'_v ->
- assert(hash_map_t_base_inv ntable');
- assert(hash_map_t_v ntable' == ntable'_v)
- | _ -> assert(False)
- end;
- hash_map_move_elements_s_lem_refin_flat ntable_v slots_v 0;
- begin
- match hash_map_move_elements_s ntable_v slots_v 0,
- hash_map_move_elements_s_flat ntable_v (flatten_i slots_v 0)
- with
- | Fail, Fail -> ()
- | Return hm, Return hm' -> assert(hm == hm')
- | _ -> assert(False)
- end;
- flatten_0_is_flatten slots_v; // flatten_i slots_v 0 == flatten slots_v
- hash_map_move_elements_s_flat_lem ntable_v al;
- match hash_map_move_elements_fwd_back t ntable slots 0,
- hash_map_move_elements_s_flat ntable_v al
- with
- | Return (ntable', _), Return ntable'_v ->
- assert(hash_map_t_base_inv ntable');
- assert(length ntable'.hash_map_slots = length ntable.hash_map_slots);
- assert(hash_map_t_len_s ntable' = length al);
- assert(hash_map_t_v ntable' == ntable'_v);
- assert(hash_map_is_assoc_list ntable' al)
- | _ -> assert(False)
-#pop-options
-
-(*** try_resize *)
-
-/// High-level model 1.
-/// This is one is slightly "crude": we just simplify a bit the function.
-
-let hash_map_try_resize_s_simpl
- (#t : Type0)
- (hm : hash_map_t t) :
- Pure (result (hash_map_t t))
- (requires (
- let (divid, divis) = hm.hash_map_max_load_factor in
- divid > 0 /\ divis > 0))
- (ensures (fun _ -> True)) =
- let capacity = length hm.hash_map_slots in
- let (divid, divis) = hm.hash_map_max_load_factor in
- if capacity <= (usize_max / 2) / divid then
- let ncapacity : usize = capacity * 2 in
- begin match hash_map_new_with_capacity_fwd t ncapacity divid divis with
- | Fail -> Fail
- | Return ntable ->
- match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with
- | Fail -> Fail
- | Return (ntable', _) ->
- let hm =
- { hm with hash_map_slots = ntable'.hash_map_slots;
- hash_map_max_load = ntable'.hash_map_max_load }
- in
- Return hm
- end
- else Return hm
-
-// I had made a mistake when writing the above definition: I had used `ntable`
-// instead of `ntable'` in the last assignments. Of course, Z3 failed to prove
-// the equality `hm1 == hm2`, and as I couldn't spot immediately the mistake,
-// I had to resort to the good old "test every field" trick, by replacing
-// `hm1 == hm2` with:
-// ```
-// hm1.hash_map_num_entries == hm2.hash_map_num_entries /\
-// hm1.hash_map_max_load_factor == hm2.hash_map_max_load_factor /\
-// hm1.hash_map_max_load == hm2.hash_map_max_load /\
-// hm1.hash_map_slots == hm2.hash_map_slots
-// ```
-// Once again, if I had had access to a context, I would have seen the error
-// immediately.
-val hash_map_try_resize_fwd_back_lem_refin
- (t : Type0) (self : hash_map_t t) :
- Lemma
- (requires (
- let (divid, divis) = self.hash_map_max_load_factor in
- divid > 0 /\ divis > 0))
- (ensures (
- match hash_map_try_resize_fwd_back t self,
- hash_map_try_resize_s_simpl self
- with
- | Fail, Fail -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
-
-let hash_map_try_resize_fwd_back_lem_refin t self = ()
-
-/// Isolating arithmetic proofs
-
-let gt_lem0 (n m q : nat) :
- Lemma (requires (m > 0 /\ n > q))
- (ensures (n * m > q * m)) = ()
-
-let ge_lem0 (n m q : nat) :
- Lemma (requires (m > 0 /\ n >= q))
- (ensures (n * m >= q * m)) = ()
-
-let gt_ge_trans (n m p : nat) :
- Lemma (requires (n > m /\ m >= p)) (ensures (n > p)) = ()
-
-let ge_trans (n m p : nat) :
- Lemma (requires (n >= m /\ m >= p)) (ensures (n >= p)) = ()
-
-#push-options "--z3rlimit 200"
-let gt_lem1 (n m q : nat) :
- Lemma (requires (m > 0 /\ n > q / m)) (ensures (n * m > q)) =
- assert(n >= q / m + 1);
- ge_lem0 n m (q / m + 1);
- assert(n * m >= (q / m) * m + m)
-#pop-options
-
-let gt_lem2 (n m p q : nat) :
- Lemma (requires (m > 0 /\ p > 0 /\ n > (q / m) / p)) (ensures (n * m * p > q)) =
- gt_lem1 n p (q / m);
- assert(n * p > q / m);
- gt_lem1 (n * p) m q
-
-let ge_lem1 (n m q : nat) :
- Lemma (requires (n >= m /\ q > 0))
- (ensures (n / q >= m / q)) =
- FStar.Math.Lemmas.lemma_div_le m n q
-
-#restart-solver
-#push-options "--z3rlimit 200"
-let times_divid_lem (n m p : pos) : Lemma ((n * m) / p >= n * (m / p))
- =
- FStar.Math.Lemmas.multiply_fractions m p;
- assert(m >= (m / p) * p);
- assert(n * m >= n * (m / p) * p); //
- ge_lem1 (n * m) (n * (m / p) * p) p;
- assert((n * m) / p >= (n * (m / p) * p) / p);
- assert(n * (m / p) * p = (n * (m / p)) * p);
- FStar.Math.Lemmas.cancel_mul_div (n * (m / p)) p;
- assert(((n * (m / p)) * p) / p = n * (m / p))
-#pop-options
-
-/// The good old arithmetic proofs and their unstability...
-/// At some point I thought it was stable because it worked with `--quake 100`.
-/// Of course, it broke the next time I checked the file...
-/// It seems things are ok when we check this proof on its own, but not when
-/// it is sent at the same time as the one above (though we put #restart-solver!).
-/// I also tried `--quake 1/100` to no avail: it seems that when Z3 decides to
-/// fail the first one, it fails them all. I inserted #restart-solver before
-/// the previous lemma to see if it had an effect (of course not).
-val new_max_load_lem
- (len : usize) (capacity : usize{capacity > 0})
- (divid : usize{divid > 0}) (divis : usize{divis > 0}) :
- Lemma
- (requires (
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- capacity > 0 /\ 0 < divid /\ divid < divis /\
- capacity * divid >= divis /\
- len = max_load + 1))
- (ensures (
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- len <= nmax_load))
-
-let mul_assoc (a b c : nat) : Lemma (a * b * c == a * (b * c)) = ()
-
-let ge_lem2 (a b c d : nat) : Lemma (requires (a >= b + c /\ c >= d)) (ensures (a >= b + d)) = ()
-let ge_div_lem1 (a b : nat) : Lemma (requires (a >= b /\ b > 0)) (ensures (a / b >= 1)) = ()
-
-#restart-solver
-#push-options "--z3rlimit 100 --z3cliopt smt.arith.nl=false"
-let new_max_load_lem len capacity divid divis =
- FStar.Math.Lemmas.paren_mul_left 2 capacity divid;
- mul_assoc 2 capacity divid;
- // The following assertion often breaks though it is given by the above
- // lemma. I really don't know what to do (I deactivated non-linear
- // arithmetic and added the previous lemma call, moved the assertion up,
- // boosted the rlimit...).
- assert(2 * capacity * divid == 2 * (capacity * divid));
- let max_load = (capacity * divid) / divis in
- let ncapacity = 2 * capacity in
- let nmax_load = (ncapacity * divid) / divis in
- assert(nmax_load = (2 * capacity * divid) / divis);
- times_divid_lem 2 (capacity * divid) divis;
- assert((2 * (capacity * divid)) / divis >= 2 * ((capacity * divid) / divis));
- assert(nmax_load >= 2 * ((capacity * divid) / divis));
- assert(nmax_load >= 2 * max_load);
- assert(nmax_load >= max_load + max_load);
- ge_div_lem1 (capacity * divid) divis;
- ge_lem2 nmax_load max_load max_load 1;
- assert(nmax_load >= max_load + 1)
-#pop-options
-
-val hash_map_try_resize_s_simpl_lem (#t : Type0) (hm : hash_map_t t) :
- Lemma
- (requires (
- // The base invariant is satisfied
- hash_map_t_base_inv hm /\
- // However, the "full" invariant is broken, as we call [try_resize]
- // only if the current number of entries is > the max load.
- //
- // There are two situations:
- // - either we just reached the max load
- // - or we were already saturated and can't resize
- (let (dividend, divisor) = hm.hash_map_max_load_factor in
- hm.hash_map_num_entries == hm.hash_map_max_load + 1 \/
- length hm.hash_map_slots * 2 * dividend > usize_max)
- ))
- (ensures (
- match hash_map_try_resize_s_simpl hm with
- | Fail -> False
- | Return hm' ->
- // The full invariant is now satisfied (the full invariant is "base
- // invariant" + the map is not overloaded (or can't be resized because
- // already too big)
- hash_map_t_inv hm' /\
- // It contains the same bindings as the initial map
- (forall (k:key). hash_map_t_find_s hm' k == hash_map_t_find_s hm k)))
-
-#restart-solver
-#push-options "--z3rlimit 400"
-let hash_map_try_resize_s_simpl_lem #t hm =
- let capacity = length hm.hash_map_slots in
- let (divid, divis) = hm.hash_map_max_load_factor in
- if capacity <= (usize_max / 2) / divid then
- begin
- let ncapacity : usize = capacity * 2 in
- assert(ncapacity * divid <= usize_max);
- assert(hash_map_t_len_s hm = hm.hash_map_max_load + 1);
- new_max_load_lem (hash_map_t_len_s hm) capacity divid divis;
- hash_map_new_with_capacity_fwd_lem t ncapacity divid divis;
- match hash_map_new_with_capacity_fwd t ncapacity divid divis with
- | Fail -> ()
- | Return ntable ->
- let slots = hm.hash_map_slots in
- let al = flatten (slots_t_v slots) in
- // Proving that: length al = hm.hash_map_num_entries
- assert(al == flatten (map slot_t_v slots));
- assert(al == flatten (map list_t_v slots));
- assert(hash_map_t_al_v hm == flatten (hash_map_t_v hm));
- assert(hash_map_t_al_v hm == flatten (map list_t_v hm.hash_map_slots));
- assert(al == hash_map_t_al_v hm);
- assert(hash_map_t_base_inv ntable);
- assert(length al = hm.hash_map_num_entries);
- assert(length al <= usize_max);
- hash_map_t_base_inv_implies_assoc_list_lem hm;
- assert(assoc_list_inv al);
- assert(hash_map_t_len_s ntable = 0);
- assert(forall (k:key). hash_map_t_find_s ntable k == None);
- hash_map_move_elements_fwd_back_lem t ntable hm.hash_map_slots;
- match hash_map_move_elements_fwd_back t ntable hm.hash_map_slots 0 with
- | Fail -> ()
- | Return (ntable', _) ->
- hash_map_is_assoc_list_lem hm;
- assert(hash_map_is_assoc_list hm (hash_map_t_al_v hm));
- let hm' =
- { hm with hash_map_slots = ntable'.hash_map_slots;
- hash_map_max_load = ntable'.hash_map_max_load }
- in
- assert(hash_map_t_base_inv ntable');
- assert(hash_map_t_base_inv hm');
- assert(hash_map_t_len_s hm' = hash_map_t_len_s hm);
- new_max_load_lem (hash_map_t_len_s hm') capacity divid divis;
- assert(hash_map_t_len_s hm' <= hm'.hash_map_max_load); // Requires a lemma
- assert(hash_map_t_inv hm')
- end
- else
- begin
- gt_lem2 capacity 2 divid usize_max;
- assert(capacity * 2 * divid > usize_max)
- end
-#pop-options
-
-let hash_map_t_same_bindings (#t : Type0) (hm hm' : hash_map_t_nes t) : Type0 =
- forall (k:key). hash_map_t_find_s hm k == hash_map_t_find_s hm' k
-
-/// The final lemma about [try_resize]
-val hash_map_try_resize_fwd_back_lem (#t : Type0) (hm : hash_map_t t) :
- Lemma
- (requires (
- hash_map_t_base_inv hm /\
- // However, the "full" invariant is broken, as we call [try_resize]
- // only if the current number of entries is > the max load.
- //
- // There are two situations:
- // - either we just reached the max load
- // - or we were already saturated and can't resize
- (let (dividend, divisor) = hm.hash_map_max_load_factor in
- hm.hash_map_num_entries == hm.hash_map_max_load + 1 \/
- length hm.hash_map_slots * 2 * dividend > usize_max)))
- (ensures (
- match hash_map_try_resize_fwd_back t hm with
- | Fail -> False
- | Return hm' ->
- // The full invariant is now satisfied (the full invariant is "base
- // invariant" + the map is not overloaded (or can't be resized because
- // already too big)
- hash_map_t_inv hm' /\
- // The length is the same
- hash_map_t_len_s hm' = hash_map_t_len_s hm /\
- // It contains the same bindings as the initial map
- hash_map_t_same_bindings hm' hm))
-
-let hash_map_try_resize_fwd_back_lem #t hm =
- hash_map_try_resize_fwd_back_lem_refin t hm;
- hash_map_try_resize_s_simpl_lem hm
-
-(*** insert *)
-
-/// The high-level model (very close to the original function: we don't need something
-/// very high level, just to clean it a bit)
-let hash_map_insert_s
- (#t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
- result (hash_map_t t) =
- match hash_map_insert_no_resize_fwd_back t self key value with
- | Fail -> Fail
- | Return hm' ->
- if hash_map_t_len_s hm' > hm'.hash_map_max_load then
- hash_map_try_resize_fwd_back t hm'
- else Return hm'
-
-val hash_map_insert_fwd_back_lem_refin
- (t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
- Lemma (requires True)
- (ensures (
- match hash_map_insert_fwd_back t self key value,
- hash_map_insert_s self key value
- with
- | Fail, Fail -> True
- | Return hm1, Return hm2 -> hm1 == hm2
- | _ -> False))
-
-let hash_map_insert_fwd_back_lem_refin t self key value = ()
-
-/// Helper
-let hash_map_insert_fwd_back_bindings_lem
- (t : Type0) (self : hash_map_t_nes t) (key : usize) (value : t)
- (hm' hm'' : hash_map_t_nes t) :
- Lemma
- (requires (
- hash_map_s_updated_binding (hash_map_t_v self) key
- (Some value) (hash_map_t_v hm') /\
- hash_map_t_same_bindings hm' hm''))
- (ensures (
- hash_map_s_updated_binding (hash_map_t_v self) key
- (Some value) (hash_map_t_v hm'')))
- = ()
-
-val hash_map_insert_fwd_back_lem_aux
- (#t : Type0) (self : hash_map_t t) (key : usize) (value : t) :
- Lemma (requires (hash_map_t_inv self))
- (ensures (
- match hash_map_insert_fwd_back t self key value with
- | Fail ->
- // We can fail only if:
- // - the key is not in the map and we need to add it
- // - we are already saturated
- hash_map_t_len_s self = usize_max /\
- None? (hash_map_t_find_s self key)
- | Return hm' ->
- // The invariant is preserved
- hash_map_t_inv hm' /\
- // [key] maps to [value] and the other bindings are preserved
- hash_map_s_updated_binding (hash_map_t_v self) key (Some value) (hash_map_t_v hm') /\
- // The length is incremented, iff we inserted a new key
- (match hash_map_t_find_s self key with
- | None -> hash_map_t_len_s hm' = hash_map_t_len_s self + 1
- | Some _ -> hash_map_t_len_s hm' = hash_map_t_len_s self)))
-
-#restart-solver
-#push-options "--z3rlimit 200"
-let hash_map_insert_fwd_back_lem_aux #t self key value =
- hash_map_insert_no_resize_fwd_back_lem_s t self key value;
- hash_map_insert_no_resize_s_lem (hash_map_t_v self) key value;
- match hash_map_insert_no_resize_fwd_back t self key value with
- | Fail -> ()
- | Return hm' ->
- // Expanding the post of [hash_map_insert_no_resize_fwd_back_lem_s]
- let self_v = hash_map_t_v self in
- let hm'_v = Return?.v (hash_map_insert_no_resize_s self_v key value) in
- assert(hash_map_t_base_inv hm');
- assert(hash_map_t_same_params hm' self);
- assert(hash_map_t_v hm' == hm'_v);
- assert(hash_map_s_len hm'_v == hash_map_t_len_s hm');
- // Expanding the post of [hash_map_insert_no_resize_s_lem]
- assert(insert_post self_v key value hm'_v);
- // Expanding [insert_post]
- assert(hash_map_s_inv hm'_v);
- assert(
- match hash_map_s_find self_v key with
- | None -> hash_map_s_len hm'_v = hash_map_s_len self_v + 1
- | Some _ -> hash_map_s_len hm'_v = hash_map_s_len self_v);
- if hash_map_t_len_s hm' > hm'.hash_map_max_load then
- begin
- hash_map_try_resize_fwd_back_lem hm';
- // Expanding the post of [hash_map_try_resize_fwd_back_lem]
- let hm'' = Return?.v (hash_map_try_resize_fwd_back t hm') in
- assert(hash_map_t_inv hm'');
- let hm''_v = hash_map_t_v hm'' in
- assert(forall k. hash_map_t_find_s hm'' k == hash_map_t_find_s hm' k);
- assert(hash_map_t_len_s hm'' = hash_map_t_len_s hm'); // TODO
- // Proving the post
- assert(hash_map_t_inv hm'');
- hash_map_insert_fwd_back_bindings_lem t self key value hm' hm'';
- assert(
- match hash_map_t_find_s self key with
- | None -> hash_map_t_len_s hm'' = hash_map_t_len_s self + 1
- | Some _ -> hash_map_t_len_s hm'' = hash_map_t_len_s self)
- end
- else ()
-#pop-options
-
-let hash_map_insert_fwd_back_lem #t self key value =
- hash_map_insert_fwd_back_lem_aux #t self key value
-
-(*** contains_key *)
-
-(**** contains_key_in_list *)
-
-val hash_map_contains_key_in_list_fwd_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_contains_key_in_list_fwd t key ls with
- | Fail -> False
- | Return b ->
- b = Some? (slot_t_find_s key ls)))
-
-
-#push-options "--fuel 1"
-let rec hash_map_contains_key_in_list_fwd_lem #t key ls =
- match ls with
- | ListCons ckey x ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_contains_key_in_list_fwd_lem key ls0;
- match hash_map_contains_key_in_list_fwd t key ls0 with
- | Fail -> ()
- | Return b0 -> ()
- end
- | ListNil -> ()
-#pop-options
-
-(**** contains_key *)
-
-val hash_map_contains_key_fwd_lem_aux
- (#t : Type0) (self : hash_map_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hash_map_contains_key_fwd t self key with
- | Fail -> False
- | Return b -> b = Some? (hash_map_t_find_s self key)))
-
-let hash_map_contains_key_fwd_lem_aux #t self key =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let v = self.hash_map_slots in
- let i0 = vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- hash_map_contains_key_in_list_fwd_lem key l;
- begin match hash_map_contains_key_in_list_fwd t key l with
- | Fail -> ()
- | Return b -> ()
- end
- end
- end
- end
-
-/// The lemma in the .fsti
-let hash_map_contains_key_fwd_lem #t self key =
- hash_map_contains_key_fwd_lem_aux #t self key
-
-(*** get *)
-
-(**** get_in_list *)
-
-val hash_map_get_in_list_fwd_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_get_in_list_fwd t key ls, slot_t_find_s key ls with
- | Fail, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hash_map_get_in_list_fwd_lem #t key ls =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_get_in_list_fwd_lem key ls0;
- match hash_map_get_in_list_fwd t key ls0 with
- | Fail -> ()
- | Return x -> ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-(**** get *)
-
-val hash_map_get_fwd_lem_aux
- (#t : Type0) (self : hash_map_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hash_map_get_fwd t self key, hash_map_t_find_s self key with
- | Fail, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-let hash_map_get_fwd_lem_aux #t self key =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let v = self.hash_map_slots in
- let i0 = vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- hash_map_get_in_list_fwd_lem key l;
- match hash_map_get_in_list_fwd t key l with
- | Fail -> ()
- | Return x -> ()
- end
- end
- end
- end
-
-/// .fsti
-let hash_map_get_fwd_lem #t self key = hash_map_get_fwd_lem_aux #t self key
-
-(*** get_mut'fwd *)
-
-
-(**** get_mut_in_list'fwd *)
-
-val hash_map_get_mut_in_list_fwd_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_get_mut_in_list_fwd t key ls, slot_t_find_s key ls with
- | Fail, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hash_map_get_mut_in_list_fwd_lem #t key ls =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then ()
- else
- begin
- hash_map_get_mut_in_list_fwd_lem key ls0;
- match hash_map_get_mut_in_list_fwd t key ls0 with
- | Fail -> ()
- | Return x -> ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-(**** get_mut'fwd *)
-
-val hash_map_get_mut_fwd_lem_aux
- (#t : Type0) (self : hash_map_t_nes t) (key : usize) :
- Lemma
- (ensures (
- match hash_map_get_mut_fwd t self key, hash_map_t_find_s self key with
- | Fail, None -> True
- | Return x, Some x' -> x == x'
- | _ -> False))
-
-let hash_map_get_mut_fwd_lem_aux #t self key =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let v = self.hash_map_slots in
- let i0 = vec_len (list_t t) v in
- begin match usize_rem i i0 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- hash_map_get_mut_in_list_fwd_lem key l;
- match hash_map_get_mut_in_list_fwd t key l with
- | Fail -> ()
- | Return x -> ()
- end
- end
- end
- end
-
-let hash_map_get_mut_fwd_lem #t self key =
- hash_map_get_mut_fwd_lem_aux #t self key
-
-(*** get_mut'back *)
-
-(**** get_mut_in_list'back *)
-
-val hash_map_get_mut_in_list_back_lem
- (#t : Type0) (key : usize) (ls : list_t t) (ret : t) :
- Lemma
- (requires (Some? (slot_t_find_s key ls)))
- (ensures (
- match hash_map_get_mut_in_list_back t key ls ret with
- | Fail -> False
- | Return ls' -> list_t_v ls' == find_update (same_key key) (list_t_v ls) (key,ret)
- | _ -> False))
-
-#push-options "--fuel 1"
-let rec hash_map_get_mut_in_list_back_lem #t key ls ret =
- begin match ls with
- | ListCons ckey cvalue ls0 ->
- let b = ckey = key in
- if b
- then let ls1 = ListCons ckey ret ls0 in ()
- else
- begin
- hash_map_get_mut_in_list_back_lem key ls0 ret;
- match hash_map_get_mut_in_list_back t key ls0 ret with
- | Fail -> ()
- | Return l -> let ls1 = ListCons ckey cvalue l in ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-(**** get_mut'back *)
-
-/// Refinement lemma
-val hash_map_get_mut_back_lem_refin
- (#t : Type0) (self : hash_map_t t{length self.hash_map_slots > 0})
- (key : usize) (ret : t) :
- Lemma
- (requires (Some? (hash_map_t_find_s self key)))
- (ensures (
- match hash_map_get_mut_back t self key ret with
- | Fail -> False
- | Return hm' ->
- hash_map_t_v hm' == hash_map_insert_no_fail_s (hash_map_t_v self) key ret))
-
-let hash_map_get_mut_back_lem_refin #t self key ret =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let i0 = self.hash_map_num_entries in
- let p = self.hash_map_max_load_factor in
- let i1 = self.hash_map_max_load in
- let v = self.hash_map_slots in
- let i2 = vec_len (list_t t) v in
- begin match usize_rem i i2 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_mut_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- hash_map_get_mut_in_list_back_lem key l ret;
- match hash_map_get_mut_in_list_back t key l ret with
- | Fail -> ()
- | Return l0 ->
- begin match vec_index_mut_back (list_t t) v hash_mod l0 with
- | Fail -> ()
- | Return v0 -> let self0 = Mkhash_map_t i0 p i1 v0 in ()
- end
- end
- end
- end
- end
-
-/// Final lemma
-val hash_map_get_mut_back_lem_aux
- (#t : Type0) (hm : hash_map_t t)
- (key : usize) (ret : t) :
- Lemma
- (requires (
- hash_map_t_inv hm /\
- Some? (hash_map_t_find_s hm key)))
- (ensures (
- match hash_map_get_mut_back t hm key ret with
- | Fail -> False
- | Return hm' ->
- // Functional spec
- hash_map_t_v hm' == hash_map_insert_no_fail_s (hash_map_t_v hm) key ret /\
- // The invariant is preserved
- hash_map_t_inv hm' /\
- // The length is preserved
- hash_map_t_len_s hm' = hash_map_t_len_s hm /\
- // [key] maps to [value]
- hash_map_t_find_s hm' key == Some ret /\
- // The other bindings are preserved
- (forall k'. k' <> key ==> hash_map_t_find_s hm' k' == hash_map_t_find_s hm k')))
-
-let hash_map_get_mut_back_lem_aux #t hm key ret =
- let hm_v = hash_map_t_v hm in
- hash_map_get_mut_back_lem_refin hm key ret;
- match hash_map_get_mut_back t hm key ret with
- | Fail -> assert(False)
- | Return hm' ->
- hash_map_insert_no_fail_s_lem hm_v key ret
-
-/// .fsti
-let hash_map_get_mut_back_lem #t hm key ret = hash_map_get_mut_back_lem_aux hm key ret
-
-(*** remove'fwd *)
-
-val hash_map_remove_from_list_fwd_lem
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_remove_from_list_fwd t key ls with
- | Fail -> False
- | Return opt_x ->
- opt_x == slot_t_find_s key ls /\
- (Some? opt_x ==> length (slot_t_v ls) > 0)))
-
-#push-options "--fuel 1"
-let rec hash_map_remove_from_list_fwd_lem #t key ls =
- begin match ls with
- | ListCons ckey x tl ->
- let b = ckey = key in
- if b
- then
- let mv_ls = mem_replace_fwd (list_t t) (ListCons ckey x tl) ListNil in
- begin match mv_ls with
- | ListCons i cvalue tl0 -> ()
- | ListNil -> ()
- end
- else
- begin
- hash_map_remove_from_list_fwd_lem key tl;
- match hash_map_remove_from_list_fwd t key tl with
- | Fail -> ()
- | Return opt -> ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-val hash_map_remove_fwd_lem_aux
- (#t : Type0) (self : hash_map_t t) (key : usize) :
- Lemma
- (requires (
- // We need the invariant to prove that upon decrementing the entries counter,
- // the counter doesn't become negative
- hash_map_t_inv self))
- (ensures (
- match hash_map_remove_fwd t self key with
- | Fail -> False
- | Return opt_x -> opt_x == hash_map_t_find_s self key))
-
-let hash_map_remove_fwd_lem_aux #t self key =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let i0 = self.hash_map_num_entries in
- let v = self.hash_map_slots in
- let i1 = vec_len (list_t t) v in
- begin match usize_rem i i1 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_mut_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- hash_map_remove_from_list_fwd_lem key l;
- match hash_map_remove_from_list_fwd t key l with
- | Fail -> ()
- | Return x ->
- begin match x with
- | None -> ()
- | Some x0 ->
- begin
- assert(l == index v hash_mod);
- assert(length (list_t_v #t l) > 0);
- length_flatten_index (hash_map_t_v self) hash_mod;
- match usize_sub i0 1 with
- | Fail -> ()
- | Return _ -> ()
- end
- end
- end
- end
- end
- end
-
-/// .fsti
-let hash_map_remove_fwd_lem #t self key = hash_map_remove_fwd_lem_aux #t self key
-
-(*** remove'back *)
-
-(**** Refinement proofs *)
-
-/// High-level model for [remove_from_list'back]
-let hash_map_remove_from_list_s
- (#t : Type0) (key : usize) (ls : slot_s t) :
- slot_s t =
- filter_one (not_same_key key) ls
-
-/// Refinement lemma
-val hash_map_remove_from_list_back_lem_refin
- (#t : Type0) (key : usize) (ls : list_t t) :
- Lemma
- (ensures (
- match hash_map_remove_from_list_back t key ls with
- | Fail -> False
- | Return ls' ->
- list_t_v ls' == hash_map_remove_from_list_s key (list_t_v ls) /\
- // The length is decremented, iff the key was in the slot
- (let len = length (list_t_v ls) in
- let len' = length (list_t_v ls') in
- match slot_s_find key (list_t_v ls) with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-#push-options "--fuel 1"
-let rec hash_map_remove_from_list_back_lem_refin #t key ls =
- begin match ls with
- | ListCons ckey x tl ->
- let b = ckey = key in
- if b
- then
- let mv_ls = mem_replace_fwd (list_t t) (ListCons ckey x tl) ListNil in
- begin match mv_ls with
- | ListCons i cvalue tl0 -> ()
- | ListNil -> ()
- end
- else
- begin
- hash_map_remove_from_list_back_lem_refin key tl;
- match hash_map_remove_from_list_back t key tl with
- | Fail -> ()
- | Return l -> let ls0 = ListCons ckey x l in ()
- end
- | ListNil -> ()
- end
-#pop-options
-
-/// High-level model for [remove_from_list'back]
-let hash_map_remove_s
- (#t : Type0) (self : hash_map_s_nes t) (key : usize) :
- hash_map_s t =
- let len = length self in
- let hash = hash_mod_key key len in
- let slot = index self hash in
- let slot' = hash_map_remove_from_list_s key slot in
- list_update self hash slot'
-
-/// Refinement lemma
-val hash_map_remove_back_lem_refin
- (#t : Type0) (self : hash_map_t_nes t) (key : usize) :
- Lemma
- (requires (
- // We need the invariant to prove that upon decrementing the entries counter,
- // the counter doesn't become negative
- hash_map_t_inv self))
- (ensures (
- match hash_map_remove_back t self key with
- | Fail -> False
- | Return hm' ->
- hash_map_t_same_params hm' self /\
- hash_map_t_v hm' == hash_map_remove_s (hash_map_t_v self) key /\
- // The length is decremented iff the key was in the map
- (let len = hash_map_t_len_s self in
- let len' = hash_map_t_len_s hm' in
- match hash_map_t_find_s self key with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-let hash_map_remove_back_lem_refin #t self key =
- begin match hash_key_fwd key with
- | Fail -> ()
- | Return i ->
- let i0 = self.hash_map_num_entries in
- let p = self.hash_map_max_load_factor in
- let i1 = self.hash_map_max_load in
- let v = self.hash_map_slots in
- let i2 = vec_len (list_t t) v in
- begin match usize_rem i i2 with
- | Fail -> ()
- | Return hash_mod ->
- begin match vec_index_mut_fwd (list_t t) v hash_mod with
- | Fail -> ()
- | Return l ->
- begin
- hash_map_remove_from_list_fwd_lem key l;
- match hash_map_remove_from_list_fwd t key l with
- | Fail -> ()
- | Return x ->
- begin match x with
- | None ->
- begin
- hash_map_remove_from_list_back_lem_refin key l;
- match hash_map_remove_from_list_back t key l with
- | Fail -> ()
- | Return l0 ->
- begin
- length_flatten_update (slots_t_v v) hash_mod (list_t_v l0);
- match vec_index_mut_back (list_t t) v hash_mod l0 with
- | Fail -> ()
- | Return v0 -> ()
- end
- end
- | Some x0 ->
- begin
- assert(l == index v hash_mod);
- assert(length (list_t_v #t l) > 0);
- length_flatten_index (hash_map_t_v self) hash_mod;
- match usize_sub i0 1 with
- | Fail -> ()
- | Return i3 ->
- begin
- hash_map_remove_from_list_back_lem_refin key l;
- match hash_map_remove_from_list_back t key l with
- | Fail -> ()
- | Return l0 ->
- begin
- length_flatten_update (slots_t_v v) hash_mod (list_t_v l0);
- match vec_index_mut_back (list_t t) v hash_mod l0 with
- | Fail -> ()
- | Return v0 -> ()
- end
- end
- end
- end
- end
- end
- end
- end
-
-(**** Invariants, high-level properties *)
-
-val hash_map_remove_from_list_s_lem
- (#t : Type0) (k : usize) (slot : slot_s t) (len : usize{len > 0}) (i : usize) :
- Lemma
- (requires (slot_s_inv len i slot))
- (ensures (
- let slot' = hash_map_remove_from_list_s k slot in
- slot_s_inv len i slot' /\
- slot_s_find k slot' == None /\
- (forall (k':key{k' <> k}). slot_s_find k' slot' == slot_s_find k' slot) /\
- // This postcondition is necessary to prove that the invariant is preserved
- // in the recursive calls. This allows us to do the proof in one go.
- (forall (b:binding t). for_all (binding_neq b) slot ==> for_all (binding_neq b) slot')
- ))
-
-#push-options "--fuel 1"
-let rec hash_map_remove_from_list_s_lem #t key slot len i =
- match slot with
- | [] -> ()
- | (k',v) :: slot' ->
- if k' <> key then
- begin
- hash_map_remove_from_list_s_lem key slot' len i;
- let slot'' = hash_map_remove_from_list_s key slot' in
- assert(for_all (same_hash_mod_key len i) ((k',v)::slot''));
- assert(for_all (binding_neq (k',v)) slot'); // Triggers instanciation
- assert(for_all (binding_neq (k',v)) slot'')
- end
- else
- begin
- assert(for_all (binding_neq (k',v)) slot');
- for_all_binding_neq_find_lem key v slot'
- end
-#pop-options
-
-val hash_map_remove_s_lem
- (#t : Type0) (self : hash_map_s_nes t) (key : usize) :
- Lemma
- (requires (hash_map_s_inv self))
- (ensures (
- let hm' = hash_map_remove_s self key in
- // The invariant is preserved
- hash_map_s_inv hm' /\
- // We updated the binding
- hash_map_s_updated_binding self key None hm'))
-
-let hash_map_remove_s_lem #t self key =
- let len = length self in
- let hash = hash_mod_key key len in
- let slot = index self hash in
- hash_map_remove_from_list_s_lem key slot len hash;
- let slot' = hash_map_remove_from_list_s key slot in
- let hm' = list_update self hash slot' in
- assert(hash_map_s_inv self)
-
-/// Final lemma about [remove'back]
-val hash_map_remove_back_lem_aux
- (#t : Type0) (self : hash_map_t t) (key : usize) :
- Lemma
- (requires (hash_map_t_inv self))
- (ensures (
- match hash_map_remove_back t self key with
- | Fail -> False
- | Return hm' ->
- hash_map_t_inv self /\
- hash_map_t_same_params hm' self /\
- // We updated the binding
- hash_map_s_updated_binding (hash_map_t_v self) key None (hash_map_t_v hm') /\
- hash_map_t_v hm' == hash_map_remove_s (hash_map_t_v self) key /\
- // The length is decremented iff the key was in the map
- (let len = hash_map_t_len_s self in
- let len' = hash_map_t_len_s hm' in
- match hash_map_t_find_s self key with
- | None -> len = len'
- | Some _ -> len = len' + 1)))
-
-let hash_map_remove_back_lem_aux #t self key =
- hash_map_remove_back_lem_refin self key;
- hash_map_remove_s_lem (hash_map_t_v self) key
-
-/// .fsti
-let hash_map_remove_back_lem #t self key =
- hash_map_remove_back_lem_aux #t self key