summaryrefslogtreecommitdiff
path: root/src/InterpreterUtils.ml
diff options
context:
space:
mode:
authorJonathan Protzenko2022-01-06 10:12:44 -0800
committerJonathan Protzenko2022-01-06 10:12:44 -0800
commitc3c1d91a976fdac52830239adb6429f09ea888a8 (patch)
tree15205f3a6356ad80effdc8b48641fff23a89466c /src/InterpreterUtils.ml
parent9872966d3c7a97ce8cd9ef16ab934ffa09c23e13 (diff)
parenta310c6036568d8f62e09804c67064686d106afd4 (diff)
Merge remote-tracking branch 'refs/remotes/origin/main'
Diffstat (limited to '')
-rw-r--r--src/InterpreterUtils.ml274
1 files changed, 227 insertions, 47 deletions
diff --git a/src/InterpreterUtils.ml b/src/InterpreterUtils.ml
index 51297eb5..1f8e47e0 100644
--- a/src/InterpreterUtils.ml
+++ b/src/InterpreterUtils.ml
@@ -1,3 +1,5 @@
+(* TODO: most of the definitions in this file need to be moved elsewhere *)
+
module T = Types
module V = Values
module E = Expressions
@@ -6,6 +8,8 @@ module Subst = Substitute
module A = CfimAst
module L = Logging
open ValuesUtils
+open Utils
+open TypesUtils
(** Some utilities *)
@@ -13,8 +17,12 @@ let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string
let ety_to_string = Print.EvalCtxCfimAst.ety_to_string
+let rty_to_string = Print.EvalCtxCfimAst.rty_to_string
+
let typed_value_to_string = Print.EvalCtxCfimAst.typed_value_to_string
+let typed_avalue_to_string = Print.EvalCtxCfimAst.typed_avalue_to_string
+
let place_to_string = Print.EvalCtxCfimAst.place_to_string
let operand_to_string = Print.EvalCtxCfimAst.operand_to_string
@@ -22,62 +30,234 @@ let operand_to_string = Print.EvalCtxCfimAst.operand_to_string
let statement_to_string ctx =
Print.EvalCtxCfimAst.statement_to_string ctx "" " "
+let statement_to_string_with_tab ctx =
+ Print.EvalCtxCfimAst.statement_to_string ctx " " " "
+
let same_symbolic_id (sv0 : V.symbolic_value) (sv1 : V.symbolic_value) : bool =
sv0.V.sv_id = sv1.V.sv_id
-(* TODO: move *)
let mk_var (index : V.VarId.id) (name : string option) (var_ty : T.ety) : A.var
=
{ A.index; name; var_ty }
-(** Small helper *)
+(** Small helper - TODO: move *)
let mk_place_from_var_id (var_id : V.VarId.id) : E.place =
{ var_id; projection = [] }
-(** Deconstruct a type of the form `Box<T>` to retrieve the `T` inside *)
-let ty_get_box (box_ty : T.ety) : T.ety =
- match box_ty with
- | T.Adt (T.Assumed T.Box, [], [ boxed_ty ]) -> boxed_ty
- | _ -> failwith "Not a boxed type"
+(** Create a fresh symbolic value *)
+let mk_fresh_symbolic_value (ty : T.rty) : V.symbolic_value =
+ let sv_id = C.fresh_symbolic_value_id () in
+ let svalue = { V.sv_id; V.sv_ty = ty } in
+ svalue
+
+(** Create a typed value from a symbolic value. *)
+let mk_typed_value_from_symbolic_value (svalue : V.symbolic_value) :
+ V.typed_value =
+ let av = V.Symbolic svalue in
+ let av : V.typed_value =
+ { V.value = av; V.ty = Subst.erase_regions svalue.V.sv_ty }
+ in
+ av
+
+(** Create a loans projector from a symbolic value. *)
+let mk_aproj_loans_from_symbolic_value (svalue : V.symbolic_value) :
+ V.typed_avalue =
+ let av = V.ASymbolic (V.AProjLoans svalue) in
+ let av : V.typed_avalue = { V.value = av; V.ty = svalue.V.sv_ty } in
+ av
+
+(** TODO: move *)
+let borrow_is_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrow) : bool
+ =
+ match asb with
+ | V.AsbBorrow bid' -> bid' = bid
+ | V.AsbProjReborrows _ -> false
+
+(** TODO: move *)
+let borrow_in_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrows) : bool
+ =
+ List.exists (borrow_is_asb bid) asb
+
+(** TODO: move *)
+let remove_borrow_from_asb (bid : V.BorrowId.id)
+ (asb : V.abstract_shared_borrows) : V.abstract_shared_borrows =
+ let removed = ref 0 in
+ let asb =
+ List.filter
+ (fun asb ->
+ if not (borrow_is_asb bid asb) then true
+ else (
+ removed := !removed + 1;
+ false))
+ asb
+ in
+ assert (!removed = 1);
+ asb
+
+(** We sometimes need to return a value whose type may vary depending on
+ whether we find it in a "concrete" value or an abstraction (ex.: loan
+ contents when we perform environment lookups by using borrow ids) *)
+type ('a, 'b) concrete_or_abs = Concrete of 'a | Abstract of 'b
+
+type g_loan_content = (V.loan_content, V.aloan_content) concrete_or_abs
+(** Generic loan content: concrete or abstract *)
+
+type g_borrow_content = (V.borrow_content, V.aborrow_content) concrete_or_abs
+(** Generic borrow content: concrete or abstract *)
+
+type abs_or_var_id = AbsId of V.AbstractionId.id | VarId of V.VarId.id
+
+exception FoundBorrowContent of V.borrow_content
+(** Utility exception *)
+
+exception FoundLoanContent of V.loan_content
+(** Utility exception *)
+
+exception FoundABorrowContent of V.aborrow_content
+(** Utility exception *)
-(** Deconstruct a type of the form `&T` or `&mut T` to retrieve the `T` (and
- the borrow kind, etc.)
+exception FoundGBorrowContent of g_borrow_content
+(** Utility exception *)
+
+exception FoundGLoanContent of g_loan_content
+(** Utility exception *)
+
+let symbolic_value_id_in_ctx (sv_id : V.SymbolicValueId.id) (ctx : C.eval_ctx) :
+ bool =
+ let obj =
+ object
+ inherit [_] C.iter_eval_ctx
+
+ method! visit_Symbolic _ sv =
+ if sv.V.sv_id = sv_id then raise Found else ()
+
+ method! visit_ASymbolic _ aproj =
+ match aproj with
+ | AProjLoans sv | AProjBorrows (sv, _) ->
+ if sv.V.sv_id = sv_id then raise Found else ()
+
+ method! visit_abstract_shared_borrows _ asb =
+ let visit (asb : V.abstract_shared_borrow) : unit =
+ match asb with
+ | V.AsbBorrow _ -> ()
+ | V.AsbProjReborrows (sv, _) ->
+ if sv.V.sv_id = sv_id then raise Found else ()
+ in
+ List.iter visit asb
+ end
+ in
+ (* We use exceptions *)
+ try
+ obj#visit_eval_ctx () ctx;
+ false
+ with Found -> true
+
+(** Check if two different projections intersect. This is necessary when
+ giving a symbolic value to an abstraction: we need to check that
+ the regions which are already ended inside the abstraction don't
+ intersect the regions over which we project in the new abstraction.
+ Note that the two abstractions have different views (in terms of regions)
+ of the symbolic value (hence the two region types).
+*)
+let rec projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.set_t)
+ (ty2 : T.rty) (rset2 : T.RegionId.set_t) : bool =
+ match (ty1, ty2) with
+ | T.Bool, T.Bool | T.Char, T.Char | T.Str, T.Str -> false
+ | T.Integer int_ty1, T.Integer int_ty2 ->
+ assert (int_ty1 = int_ty2);
+ false
+ | T.Adt (id1, regions1, tys1), T.Adt (id2, regions2, tys2) ->
+ assert (id1 = id2);
+ (* The intersection check for the ADTs is very crude:
+ * we check if some arguments intersect. As all the type and region
+ * parameters should be used somewhere in the ADT (otherwise rustc
+ * generates an error), it means that it should be equivalent to checking
+ * whether two fields intersect (and anyway comparing the field types is
+ * difficult in case of enumerations...).
+ * If we didn't have the above property enforced by the rust compiler,
+ * this check would still be a reasonable conservative approximation. *)
+ let regions = List.combine regions1 regions2 in
+ let tys = List.combine tys1 tys2 in
+ List.exists
+ (fun (r1, r2) -> region_in_set r1 rset1 && region_in_set r2 rset2)
+ regions
+ || List.exists
+ (fun (ty1, ty2) -> projections_intersect ty1 rset1 ty2 rset2)
+ tys
+ | T.Array ty1, T.Array ty2 | T.Slice ty1, T.Slice ty2 ->
+ projections_intersect ty1 rset1 ty2 rset2
+ | T.Ref (r1, ty1, kind1), T.Ref (r2, ty2, kind2) ->
+ (* Sanity check *)
+ assert (kind1 = kind2);
+ (* The projections intersect if the borrows intersect or their contents
+ * intersect *)
+ (region_in_set r1 rset1 && region_in_set r2 rset2)
+ || projections_intersect ty1 rset1 ty2 rset2
+ | _ -> failwith "Unreachable"
+
+(** Check that a symbolic value doesn't contain ended regions.
+
+ Note that we don't check that the set of ended regions is empty: we
+ check that the set of ended regions doesn't intersect the set of
+ regions used in the type (this is more general).
+*)
+let symbolic_value_has_ended_regions (ended_regions : T.RegionId.set_t)
+ (s : V.symbolic_value) : bool =
+ let regions = rty_regions s.V.sv_ty in
+ not (T.RegionId.Set.disjoint regions ended_regions)
+
+(** Check if a [value] contains ⊥.
+
+ Note that this function is very general: it also checks wether
+ symbolic values contain already ended regions.
*)
-let ty_get_ref (ty : T.ety) : T.erased_region * T.ety * T.ref_kind =
- match ty with
- | T.Ref (r, ty, ref_kind) -> (r, ty, ref_kind)
- | _ -> failwith "Not a ref type"
-
-(** Box a value *)
-let mk_box_value (v : V.typed_value) : V.typed_value =
- let box_ty = T.Adt (T.Assumed T.Box, [], [ v.V.ty ]) in
- let box_v = V.Adt { variant_id = None; field_values = [ v ] } in
- mk_typed_value box_ty box_v
-
-(** Create a fresh symbolic proj comp *)
-let mk_fresh_symbolic_proj_comp (ended_regions : T.RegionId.set_t) (ty : T.rty)
- (ctx : C.eval_ctx) : C.eval_ctx * V.symbolic_proj_comp =
- let ctx, sv_id = C.fresh_symbolic_value_id ctx in
- let svalue = { V.sv_id; V.sv_ty = ty } in
- let sv = { V.svalue; rset_ended = ended_regions } in
- (ctx, sv)
-
-(** Create a fresh symbolic value (as a complementary projector) *)
-let mk_fresh_symbolic_proj_comp_value (ended_regions : T.RegionId.set_t)
- (ty : T.rty) (ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
- let ctx, sv = mk_fresh_symbolic_proj_comp ended_regions ty ctx in
- let value : V.value = V.Symbolic sv in
- let ty : T.ety = Subst.erase_regions ty in
- let sv : V.typed_value = { V.value; ty } in
- (ctx, sv)
-
-let mk_typed_value_from_proj_comp (sv : V.symbolic_proj_comp) : V.typed_value =
- let ty = Subst.erase_regions sv.V.svalue.V.sv_ty in
- let value = V.Symbolic sv in
- { V.value; ty }
-
-let mk_aproj_loans_from_proj_comp (sv : V.symbolic_proj_comp) : V.typed_avalue =
- let ty = sv.V.svalue.V.sv_ty in
- let proj = V.AProjLoans sv.V.svalue in
- let value = V.ASymbolic proj in
- { V.value; ty }
+let bottom_in_value (ended_regions : T.RegionId.set_t) (v : V.typed_value) :
+ bool =
+ let obj =
+ object
+ inherit [_] V.iter_typed_value
+
+ method! visit_Bottom _ = raise Found
+
+ method! visit_symbolic_value _ s =
+ if symbolic_value_has_ended_regions ended_regions s then raise Found
+ else ()
+ end
+ in
+ (* We use exceptions *)
+ try
+ obj#visit_typed_value () v;
+ false
+ with Found -> true
+
+(** Check if an [avalue] contains ⊥.
+
+ Note that this function is very general: it also checks wether
+ symbolic values contain already ended regions.
+
+ TODO: remove?
+*)
+let bottom_in_avalue (ended_regions : T.RegionId.set_t) (v : V.typed_avalue) :
+ bool =
+ let obj =
+ object
+ inherit [_] V.iter_typed_avalue
+
+ method! visit_Bottom _ = raise Found
+
+ method! visit_symbolic_value _ sv =
+ if symbolic_value_has_ended_regions ended_regions sv then raise Found
+ else ()
+
+ method! visit_aproj _ ap =
+ (* Nothing to do actually *)
+ match ap with
+ | V.AProjLoans _sv -> ()
+ | V.AProjBorrows (_sv, _rty) -> ()
+ end
+ in
+ (* We use exceptions *)
+ try
+ obj#visit_typed_avalue () v;
+ false
+ with Found -> true