summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
authorSon Ho2023-06-26 18:33:26 +0200
committerSon Ho2023-06-26 18:34:22 +0200
commit87fd14e74fe00752df7759372093543ae77a51ae (patch)
treed29610ee3c647723bf1a14cc62262587a4ac8f06 /backends
parentffdc2f47bc4b21df491e1a2efb6cd19637fb399b (diff)
Make the definitions in Diverge.Fix dependently typed
Diffstat (limited to 'backends')
-rw-r--r--backends/lean/Base/Diverge.lean95
1 files changed, 47 insertions, 48 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean
index a5cf3459..d65e77a1 100644
--- a/backends/lean/Base/Diverge.lean
+++ b/backends/lean/Base/Diverge.lean
@@ -88,7 +88,8 @@ namespace Fix
open Primitives
open Result
- variable {a b c d : Type}
+ variable {a : Type} {b : a → Type}
+ variable {c d : Type}
/-! # The least fixed point definition and its properties -/
@@ -132,19 +133,23 @@ namespace Fix
/-! # The fixed point definitions -/
- def fix_fuel (n : Nat) (f : (a → Result b) → a → Result b) (x : a) : Result b :=
+ def fix_fuel (n : Nat) (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
+ Result (b x) :=
match n with
| 0 => .div
| n + 1 =>
f (fix_fuel n f) x
- @[simp] def fix_fuel_pred (f : (a → Result b) → a → Result b) (x : a) (n : Nat) :=
+ @[simp] def fix_fuel_pred (f : ((x:a) → Result (b x)) → (x:a) → Result (b x))
+ (x : a) (n : Nat) :=
not (div? (fix_fuel n f x))
- def fix_fuel_P (f : (a → Result b) → a → Result b) (x : a) (n : Nat) : Prop :=
+ def fix_fuel_P (f : ((x:a) → Result (b x)) → (x:a) → Result (b x))
+ (x : a) (n : Nat) : Prop :=
fix_fuel_pred f x n
- noncomputable def fix (f : (a → Result b) → a → Result b) (x : a) : Result b :=
+ noncomputable
+ def fix (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) : Result (b x) :=
fix_fuel (least (fix_fuel_P f x)) f x
/-! # The validity property -/
@@ -158,11 +163,11 @@ namespace Fix
| ret _ => x2 = x1 -- TODO: generalize
-- Monotonicity relation over monadic arrows (i.e., Kleisli arrows)
- def karrow_rel (k1 k2 : a → Result b) : Prop :=
+ def karrow_rel (k1 k2 : (x:a) → Result (b x)) : Prop :=
∀ x, result_rel (k1 x) (k2 x)
-- Monotonicity property for function bodies
- def is_mono (f : (a → Result b) → a → Result b) : Prop :=
+ def is_mono (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop :=
∀ {{k1 k2}}, karrow_rel k1 k2 → karrow_rel (f k1) (f k2)
-- "Continuity" property.
@@ -170,11 +175,12 @@ namespace Fix
-- https://inria.hal.science/file/index/docid/216187/filename/tarski.pdf
-- We define our "continuity" criteria so that it gives us what we need to
-- prove the fixed-point equation, and we can also easily manipulate it.
- def is_cont (f : (a → Result b) → a → Result b) : Prop :=
+ def is_cont (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) : Prop :=
∀ x, (Hdiv : ∀ n, fix_fuel (.succ n) f x = div) → f (fix f) x = div
/-! # The proof of the fixed-point equation -/
- theorem fix_fuel_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ theorem fix_fuel_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}
+ (Hmono : is_mono f) :
∀ {{n m}}, n ≤ m → karrow_rel (fix_fuel n f) (fix_fuel m f) := by
intros n
induction n
@@ -195,12 +201,13 @@ namespace Fix
simp [result_rel] at Hmono
apply Hmono
- @[simp] theorem neg_fix_fuel_P {f : (a → Result b) → a → Result b} {x : a} {n : Nat} :
+ @[simp] theorem neg_fix_fuel_P
+ {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} {x : a} {n : Nat} :
¬ fix_fuel_P f x n ↔ (fix_fuel n f x = div) := by
simp [fix_fuel_P, div?]
cases fix_fuel n f x <;> simp
- theorem fix_fuel_fix_mono {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ theorem fix_fuel_fix_mono {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) :
∀ n, karrow_rel (fix_fuel n f) (fix f) := by
intros n x
simp [result_rel]
@@ -234,7 +241,7 @@ namespace Fix
cases Heq':fix_fuel n f x <;>
simp_all
- theorem fix_fuel_P_least {f : (a → Result b) → a → Result b} (Hmono : is_mono f) :
+ theorem fix_fuel_P_least {f : ((x:a) → Result (b x)) → (x:a) → Result (b x)} (Hmono : is_mono f) :
∀ {{x n}}, fix_fuel_P f x n → fix_fuel_P f x (least (fix_fuel_P f x)) := by
intros x n Hf
have Hfmono := fix_fuel_fix_mono Hmono n x
@@ -247,7 +254,7 @@ namespace Fix
-- Prove the fixed point equation in the case there exists some fuel for which
-- the execution terminates
- theorem fix_fixed_eq_terminates (f : (a → Result b) → a → Result b) (Hmono : is_mono f)
+ theorem fix_fixed_eq_terminates (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (Hmono : is_mono f)
(x : a) (n : Nat) (He : fix_fuel_P f x n) :
fix f x = f (fix f) x := by
have Hl := fix_fuel_P_least Hmono He
@@ -271,7 +278,7 @@ namespace Fix
revert Hvm
split <;> simp [*] <;> intros <;> simp [*]
- theorem fix_fixed_eq_forall {{f : (a → Result b) → a → Result b}}
+ theorem fix_fixed_eq_forall {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hmono : is_mono f) (Hcont : is_cont f) :
∀ x, fix f x = f (fix f) x := by
intros x
@@ -290,7 +297,7 @@ namespace Fix
| .inl ⟨ n, He ⟩ => apply fix_fixed_eq_terminates f Hmono x n He
-- The final fixed point equation
- theorem fix_fixed_eq {{f : (a → Result b) → a → Result b}}
+ theorem fix_fixed_eq {{f : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hmono : is_mono f) (Hcont : is_cont f) :
fix f = f (fix f) := by
have Heq := fix_fixed_eq_forall Hmono Hcont
@@ -301,7 +308,7 @@ namespace Fix
/-! # Making the proofs of validity manageable (and automatable) -/
-- Monotonicity property for expressions
- def is_mono_p (e : (a → Result b) → Result c) : Prop :=
+ def is_mono_p (e : ((x:a) → Result (b x)) → Result c) : Prop :=
∀ {{k1 k2}}, karrow_rel k1 k2 → result_rel (e k1) (e k2)
theorem is_mono_p_same (x : Result c) :
@@ -310,16 +317,17 @@ namespace Fix
split <;> simp
theorem is_mono_p_rec (x : a) :
- @is_mono_p a b b (λ f => f x) := by
+ @is_mono_p a b (b x) (λ f => f x) := by
simp_all [is_mono_p, karrow_rel, result_rel]
-- The important lemma about `is_mono_p`
+ -- TODO: generalize d?
theorem is_mono_p_bind
- (g : (a → Result b) → Result c)
- (h : c → (a → Result b) → Result d) :
+ (g : ((x:a) → Result (b x)) → Result c)
+ (h : c → ((x:a) → Result (b x)) → Result d) :
is_mono_p g →
(∀ y, is_mono_p (h y)) →
- is_mono_p (λ k => do let y ← g k; h y k) := by
+ @is_mono_p a b d (λ k => do let y ← g k; h y k) := by
intro hg hh
simp [is_mono_p]
intro fg fh Hrgh
@@ -332,25 +340,26 @@ namespace Fix
-- Continuity property for expressions - note that we take the continuation
-- as parameter
- def is_cont_p (k : (a → Result b) → a → Result b)
- (e : (a → Result b) → Result c) : Prop :=
+ def is_cont_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
+ (e : ((x:a) → Result (b x)) → Result c) : Prop :=
(Hc : ∀ n, e (fix_fuel n k) = .div) →
e (fix k) = .div
- theorem is_cont_p_same (k : (a → Result b) → a → Result b) (x : Result c) :
+ theorem is_cont_p_same (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
+ (x : Result c) :
is_cont_p k (λ _ => x) := by
simp [is_cont_p]
- theorem is_cont_p_rec (f : (a → Result b) → a → Result b) (x : a) :
+ theorem is_cont_p_rec (f : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
is_cont_p f (λ f => f x) := by
simp_all [is_cont_p, fix]
-- The important lemma about `is_cont_p`
theorem is_cont_p_bind
- (k : (a → Result b) → a → Result b)
+ (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
(Hkmono : is_mono k)
- (g : (a → Result b) → Result c)
- (h : c → (a → Result b) → Result d) :
+ (g : ((x:a) → Result (b x)) → Result c)
+ (h : c → ((x:a) → Result (b x)) → Result d) :
is_mono_p g →
is_cont_p k g →
(∀ y, is_mono_p (h y)) →
@@ -402,16 +411,18 @@ namespace Fix
apply Hhcont; assumption
-- The validity property for an expression
- def is_valid_p (k : (a → Result b) → a → Result b)
- (e : (a → Result b) → Result c) : Prop :=
+ def is_valid_p (k : ((x:a) → Result (b x)) → (x:a) → Result (b x))
+ (e : ((x:a) → Result (b x)) → Result c) : Prop :=
is_mono_p e ∧
(is_mono k → is_cont_p k e)
- @[simp] theorem is_valid_p_same (k : (a → Result b) → a → Result b) (x : Result c) :
+ @[simp] theorem is_valid_p_same
+ (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : Result c) :
is_valid_p k (λ _ => x) := by
simp [is_valid_p, is_mono_p_same, is_cont_p_same]
- @[simp] theorem is_valid_p_rec (k : (a → Result b) → a → Result b) (x : a) :
+ @[simp] theorem is_valid_p_rec
+ (k : ((x:a) → Result (b x)) → (x:a) → Result (b x)) (x : a) :
is_valid_p k (λ k => k x) := by
simp_all [is_valid_p, is_mono_p_rec, is_cont_p_rec]
@@ -419,9 +430,9 @@ namespace Fix
-- (in particular, it will manage to figure out `g` and `h` when we
-- apply the lemma)
theorem is_valid_p_bind
- {{k : (a → Result b) → a → Result b}}
- {{g : (a → Result b) → Result c}}
- {{h : c → (a → Result b) → Result d}}
+ {{k : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
+ {{g : ((x:a) → Result (b x)) → Result c}}
+ {{h : c → ((x:a) → Result (b x)) → Result d}}
(Hgvalid : is_valid_p k g)
(Hhvalid : ∀ y, is_valid_p k (h y)) :
is_valid_p k (λ k => do let y ← g k; h y k) := by
@@ -438,7 +449,7 @@ namespace Fix
have Hhcont := Hhcont Hkmono
apply is_cont_p_bind <;> assumption
- theorem is_valid_p_imp_is_valid {{e : (a → Result b) → a → Result b}}
+ theorem is_valid_p_imp_is_valid {{e : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hvalid : ∀ k x, is_valid_p k (λ k => e k x)) :
is_mono e ∧ is_cont e := by
have Hmono : is_mono e := by
@@ -457,7 +468,7 @@ namespace Fix
simp [*]
simp [*]
- theorem is_valid_p_fix_fixed_eq {{e : (a → Result b) → a → Result b}}
+ theorem is_valid_p_fix_fixed_eq {{e : ((x:a) → Result (b x)) → (x:a) → Result (b x)}}
(Hvalid : ∀ k x, is_valid_p k (λ k => e k x)) :
fix e = e (fix e) := by
have ⟨ Hmono, Hcont ⟩ := is_valid_p_imp_is_valid Hvalid
@@ -625,18 +636,6 @@ namespace Ex3
| .inl _ => .fail .panic
| .inr b => .ret b
- -- TODO: move
- -- TODO: this is not enough
- theorem swap_if_bind {a b : Type} (e : Prop) [Decidable e]
- (x y : Result a) (f : a → Result b) :
- (do
- let z ← (if e then x else y)
- f z)
- =
- (if e then do let z ← x; f z
- else do let z ← y; f z) := by
- split <;> simp
-
-- The unfolding equation for `is_even` - diverges if `i < 0`
theorem is_even_eq (i : Int) :
is_even i = (if i = 0 then .ret true else is_odd (i - 1))