diff options
author | Son HO | 2024-03-08 12:09:09 +0100 |
---|---|---|
committer | GitHub | 2024-03-08 12:09:09 +0100 |
commit | b604bb9935007a1f0e9c7f556f8196f0e14c85ce (patch) | |
tree | 700439fbe96ea5980216e06b388e863ed8ac314b /backends | |
parent | 305f916c602457b0a1fa8ce5569c6c0bf26d6f8e (diff) | |
parent | a7452421be018e5d75065e2038f2f50042a80f3c (diff) |
Merge pull request #82 from AeneasVerif/son/switch
Improve tuple projections and matches over integers in Lean
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Primitives.lean | 1 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/ArraySlice.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Base.lean | 4 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 207 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 2 | ||||
-rw-r--r-- | backends/lean/Base/Tuples.lean | 82 |
8 files changed, 213 insertions, 89 deletions
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 43fd2766..9441be86 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -74,7 +74,7 @@ example : U32.ofInt 1 ≤ U32.max := by scalar_tac example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) : - U32.ofInt x (by constructor <;> scalar_tac) ≤ U32.max := by + U32.ofIntCore x (by constructor <;> scalar_tac) ≤ U32.max := by scalar_tac -- Not equal diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index 51457c20..ca5ee266 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -33,7 +33,7 @@ def indexOpt (ls : List α) (i : Int) : Option α := @[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] @[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] --- Remark: if i < 0, then the result is the defaul element +-- Remark: if i < 0, then the result is the default element def index [Inhabited α] (ls : List α) (i : Int) : α := match ls with | [] => Inhabited.default diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean index 613b6076..7196d2ec 100644 --- a/backends/lean/Base/Primitives.lean +++ b/backends/lean/Base/Primitives.lean @@ -1,4 +1,5 @@ import Base.Primitives.Base +import Base.Tuples import Base.Primitives.Scalar import Base.Primitives.ArraySlice import Base.Primitives.Vec diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index c90a85b8..e1a39d40 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -131,7 +131,7 @@ def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices . -- TODO: very annoying that the α is an explicit parameter def Slice.len (α : Type u) (v : Slice α) : Usize := - Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) + Usize.ofIntCore v.val.len (by constructor <;> scalar_tac) @[simp] theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length := diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean index 9dbaf133..0b9d9c39 100644 --- a/backends/lean/Base/Primitives/Base.lean +++ b/backends/lean/Base/Primitives/Base.lean @@ -69,7 +69,7 @@ def div? {α: Type u} (r: Result α): Bool := def massert (b:Bool) : Result Unit := if b then ret () else fail assertionFailure -def eval_global {α: Type u} (x: Result α) (_: ret? x): α := +def eval_global {α: Type u} (x: Result α) (_: ret? x := by decide): α := match x with | fail _ | div => by contradiction | ret x => x @@ -78,7 +78,7 @@ def eval_global {α: Type u} (x: Result α) (_: ret? x): α := def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β := match x with - | ret v => f v + | ret v => f v | fail v => fail v | div => div diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 285bc7fb..3d90f1a5 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -281,25 +281,38 @@ theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : λ h => by apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith -def Scalar.ofIntCore {ty : ScalarTy} (x : Int) - (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty := - { val := x, hmin := hmin, hmax := hmax } - --- Tactic to prove that integers are in bounds --- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam -syntax "intlit" : tactic -macro_rules - | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide) - -def Scalar.ofInt {ty : ScalarTy} (x : Int) - (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty := - -- Remark: we initially wrote: - -- let ⟨ hmin, hmax ⟩ := h - -- Scalar.ofIntCore x hmin hmax - -- We updated to the line below because a similar pattern in `Scalar.tryMk` - -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though. - -- TODO: investigate - Scalar.ofIntCore x h.left h.right +/- [match_pattern] attribute: allows to us `Scalar.ofIntCore` inside of patterns. + This is particularly useful once we introduce notations like `#u32` (which + desugards to `Scalar.ofIntCore`) as it allows to write expressions like this: + Example: + ``` + match x with + | 0#u32 => ... + | 1#u32 => ... + | ... + ``` + -/ +@[match_pattern] def Scalar.ofIntCore {ty : ScalarTy} (x : Int) + (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty := + { val := x, hmin := h.left, hmax := h.right } + +-- The definitions below are used later to introduce nice syntax for constants, +-- like `1#u32`. We are reusing the technique described here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Different.20elaboration.20inside.2Foutside.20of.20match.20patterns/near/425455284 + +class InBounds (ty : ScalarTy) (x : Int) := + hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty + +-- This trick to trigger reduction for decidable propositions comes from +-- here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam/near/343495807 +class Decide (p : Prop) [Decidable p] : Prop where + isTrue : p +instance : @Decide p (.isTrue h) := @Decide.mk p (_) h + +instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty v where + hInBounds := Decide.isTrue + +@[reducible, match_pattern] def Scalar.ofInt {ty : ScalarTy} (x : Int) [InBounds ty x] : Scalar ty := + Scalar.ofIntCore x (Scalar.bound_suffices ty x InBounds.hInBounds) @[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool := (Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty) @@ -326,7 +339,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) := -- ``` -- then normalization blocks (for instance, some proofs which use reflexivity fail). -- However, the version below doesn't block reduction (TODO: investigate): - return Scalar.ofInt x (Scalar.check_bounds_prop h) + return Scalar.ofIntCore x (Scalar.check_bounds_prop h) else fail integerOverflow def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) @@ -439,8 +452,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by constructor; cases ty <;> apply (Scalar.ofInt 0) -- TODO: reducible? -@[reducible] def core_isize_min : Isize := Scalar.ofInt Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) -@[reducible] def core_isize_max : Isize := Scalar.ofInt Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_isize_min : Isize := Scalar.ofIntCore Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) +@[reducible] def core_isize_max : Isize := Scalar.ofIntCore Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize)) @[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min @[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max @[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min @@ -453,8 +466,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by @[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max -- TODO: reducible? -@[reducible] def core_usize_min : Usize := Scalar.ofInt Usize.min -@[reducible] def core_usize_max : Usize := Scalar.ofInt Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) +@[reducible] def core_usize_min : Usize := Scalar.ofIntCore Usize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) +@[reducible] def core_usize_max : Usize := Scalar.ofIntCore Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize)) @[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min @[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max @[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min @@ -478,15 +491,35 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce one here. -The notation typeclass for heterogeneous addition. -This enables the notation `- a : β` where `a : α`. +The notation typeclass for heterogeneous negation. -/ class HNeg (α : Type u) (β : outParam (Type v)) where /-- `- a` computes the negation of `a`. The meaning of this notation is type-dependent. -/ hNeg : α → β -prefix:75 "-" => HNeg.hNeg +/- Notation for heterogeneous negation. + + We initially used the notation "-" but it conflicted with the homogeneous + negation too much. In particular, it made terms like `-10` ambiguous, + and seemingly caused to backtracking in elaboration, leading to definitions + like arrays of constants to take an unreasonable time to get elaborated + and type-checked. + + TODO: PR to replace Neg with HNeg in Lean? + -/ +prefix:75 "-." => HNeg.hNeg + +/- We need this, otherwise we break pattern matching like in: + + ``` + def is_minus_one (x : Int) : Bool := + match x with + | -1 => true + | _ => false + ``` +-/ +attribute [match_pattern] HNeg.hNeg instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x @@ -965,18 +998,18 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128 -- ofInt -- TODO: typeclass? -abbrev Isize.ofInt := @Scalar.ofInt .Isize -abbrev I8.ofInt := @Scalar.ofInt .I8 -abbrev I16.ofInt := @Scalar.ofInt .I16 -abbrev I32.ofInt := @Scalar.ofInt .I32 -abbrev I64.ofInt := @Scalar.ofInt .I64 -abbrev I128.ofInt := @Scalar.ofInt .I128 -abbrev Usize.ofInt := @Scalar.ofInt .Usize -abbrev U8.ofInt := @Scalar.ofInt .U8 -abbrev U16.ofInt := @Scalar.ofInt .U16 -abbrev U32.ofInt := @Scalar.ofInt .U32 -abbrev U64.ofInt := @Scalar.ofInt .U64 -abbrev U128.ofInt := @Scalar.ofInt .U128 +@[match_pattern] abbrev Isize.ofInt := @Scalar.ofInt .Isize +@[match_pattern] abbrev I8.ofInt := @Scalar.ofInt .I8 +@[match_pattern] abbrev I16.ofInt := @Scalar.ofInt .I16 +@[match_pattern] abbrev I32.ofInt := @Scalar.ofInt .I32 +@[match_pattern] abbrev I64.ofInt := @Scalar.ofInt .I64 +@[match_pattern] abbrev I128.ofInt := @Scalar.ofInt .I128 +@[match_pattern] abbrev Usize.ofInt := @Scalar.ofInt .Usize +@[match_pattern] abbrev U8.ofInt := @Scalar.ofInt .U8 +@[match_pattern] abbrev U16.ofInt := @Scalar.ofInt .U16 +@[match_pattern] abbrev U32.ofInt := @Scalar.ofInt .U32 +@[match_pattern] abbrev U64.ofInt := @Scalar.ofInt .U64 +@[match_pattern] abbrev U128.ofInt := @Scalar.ofInt .U128 postfix:max "#isize" => Isize.ofInt postfix:max "#i8" => I8.ofInt @@ -991,47 +1024,86 @@ postfix:max "#u32" => U32.ofInt postfix:max "#u64" => U64.ofInt postfix:max "#u128" => U128.ofInt +/- Testing the notations -/ +example := 0#u32 +example := 1#u32 +example := 1#i32 +example := 0#isize +example := (-1)#isize +example (x : U32) : Bool := + match x with + | 0#u32 => true + | _ => false + +example (x : U32) : Bool := + match x with + | 1#u32 => true + | _ => false + +example (x : I32) : Bool := + match x with + | (-1)#i32 => true + | _ => false + +-- Notation for pattern matching +-- We make the precedence looser than the negation. +notation:70 a:70 "#scalar" => Scalar.mk (a) _ _ + +example {ty} (x : Scalar ty) : ℤ := + match x with + | v#scalar => v + +example {ty} (x : Scalar ty) : Bool := + match x with + | 1#scalar => true + | _ => false + +example {ty} (x : Scalar ty) : Bool := + match x with + | -(1 : Int)#scalar => true + | _ => false + -- Testing the notations example : Result Usize := 0#usize + 1#usize -- TODO: factor those lemmas out -@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by +@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by simp [Scalar.ofInt, Scalar.ofIntCore] -@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by +@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by +@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by +@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by +@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by +@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by +@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by +@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by +@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by +@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by +@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by +@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by +@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofIntCore x h).val = x := by apply Scalar.ofInt_val_eq h -- Comparisons @@ -1082,35 +1154,4 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) := @[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by intro i j; cases i; cases j; simp --- -- We now define a type class that subsumes the various machine integer types, so --- -- as to write a concise definition for scalar_cast, rather than exhaustively --- -- enumerating all of the possible pairs. We remark that Rust has sane semantics --- -- and fails if a cast operation would involve a truncation or modulo. - --- class MachineInteger (t: Type) where --- size: Nat --- val: t -> Fin size --- ofNatCore: (n:Nat) -> LT.lt n size -> t - --- set_option hygiene false in --- run_cmd --- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do --- Lean.Elab.Command.elabCommand (← `( --- namespace $typeName --- instance: MachineInteger $typeName where --- size := size --- val := val --- ofNatCore := ofNatCore --- end $typeName --- )) - --- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on --- -- Lean to infer `src`. - --- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := --- if h: MachineInteger.val x < MachineInteger.size dst then --- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) --- else --- .fail integerOverflow - end Primitives diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index b03de15b..65249c12 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -43,7 +43,7 @@ instance (α : Type u) : Inhabited (Vec α) := by -- TODO: very annoying that the α is an explicit parameter def Vec.len (α : Type u) (v : Vec α) : Usize := - Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac) + Usize.ofIntCore v.val.len (by constructor <;> scalar_tac) @[simp] theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length := diff --git a/backends/lean/Base/Tuples.lean b/backends/lean/Base/Tuples.lean new file mode 100644 index 00000000..4c59dac9 --- /dev/null +++ b/backends/lean/Base/Tuples.lean @@ -0,0 +1,82 @@ +import Lean +import Base.Utils + +namespace Primitives + +------------------------------- +-- Tuple field access syntax -- +------------------------------- +-- Declare new syntax `a.#i` for accessing the `i`-th term in a tuple +-- The `noWs` parser is used to ensure there is no whitespace. +-- We use the maximum precedence to make the syntax work with function calls. +-- Ex.: `f (0, 1).#0` +syntax:max term noWs ".#" noWs num : term + +open Lean Meta Elab Term + +-- Auxliary function for computing the number of elements in a tuple (`Prod`) type. +def getArity (type : Expr) : Nat := + match type with + | .app (.app (.const ``Prod _) _) as => getArity as + 1 + | _ => 1 -- It is not product + +-- Given a `tuple` of size `n`, construct a term that for accessing the `i`-th element +def mkGetIdx (tuple : Expr) (n : Nat) (i : Nat) : MetaM Expr := do + match i with + | 0 => mkAppM ``Prod.fst #[tuple] + | i+1 => + if n = 2 then + -- If the tuple has only two elements and `i` is not `0`, + -- we just return the second element. + mkAppM ``Prod.snd #[tuple] + else + -- Otherwise, we continue with the rest of the tuple. + let tuple ← mkAppM ``Prod.snd #[tuple] + mkGetIdx tuple (n-1) i + +-- Now, we define the elaboration function for the new syntax `a#i` +elab_rules : term +| `($a:term.#$i:num) => do + -- Convert `i : Syntax` into a natural number + let i := i.getNat + -- Return error if it is 0. + unless i ≥ 0 do + throwError "tuple index must be greater or equal to 0" + -- Convert `a : Syntax` into an `tuple : Expr` without providing expected type + let tuple ← elabTerm a none + let type ← inferType tuple + -- Instantiate assigned metavariable occurring in `type` + let type ← instantiateMVars type + /- In case we are indexing into a type abbreviation, we need to unfold the type. + + TODO: we have to be careful about not unfolding too much, + for instance because of the following code: + ``` + def Pair T U := T × U + def Tuple T U V := T × Pair U V + ``` + We have to make sure that, given `x : Tuple T U V`, `x.1` evaluates + to the pair (an element of type `Pair T U`), not to the first field + of the pair (an element of type `T`). + + We have a similar issue below if we generate code from the following Rust definition: + ``` + struct Tuple(u32, (u32, u32)); + ``` + The issue is that in Rust, field 1 of `Tuple` is a pair `(u32, u32)`, but + in Lean there is no difference between `A × B × C` and `A × (B × C)`. + + In case such situations happen we probably need to resort to chaining + the pair projectors, like in: `x.snd.fst`. + -/ + let type ← whnf type + -- Ensure `tuple`'s type is a `Prod`uct. + unless type.isAppOf ``Prod do + throwError "tuple expected{indentExpr type}" + let n := getArity type + -- Ensure `i` is a valid index + unless i < n do + throwError "invalid tuple access at {i}, tuple has {n} elements" + mkGetIdx tuple n i + +end Primitives |