summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
authorSon HO2024-03-08 12:09:09 +0100
committerGitHub2024-03-08 12:09:09 +0100
commitb604bb9935007a1f0e9c7f556f8196f0e14c85ce (patch)
tree700439fbe96ea5980216e06b388e863ed8ac314b /backends
parent305f916c602457b0a1fa8ce5569c6c0bf26d6f8e (diff)
parenta7452421be018e5d75065e2038f2f50042a80f3c (diff)
Merge pull request #82 from AeneasVerif/son/switch
Improve tuple projections and matches over integers in Lean
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Arith/Scalar.lean2
-rw-r--r--backends/lean/Base/IList/IList.lean2
-rw-r--r--backends/lean/Base/Primitives.lean1
-rw-r--r--backends/lean/Base/Primitives/ArraySlice.lean2
-rw-r--r--backends/lean/Base/Primitives/Base.lean4
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean207
-rw-r--r--backends/lean/Base/Primitives/Vec.lean2
-rw-r--r--backends/lean/Base/Tuples.lean82
8 files changed, 213 insertions, 89 deletions
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 43fd2766..9441be86 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -74,7 +74,7 @@ example : U32.ofInt 1 ≤ U32.max := by
scalar_tac
example (x : Int) (h0 : 0 ≤ x) (h1 : x ≤ U32.max) :
- U32.ofInt x (by constructor <;> scalar_tac) ≤ U32.max := by
+ U32.ofIntCore x (by constructor <;> scalar_tac) ≤ U32.max := by
scalar_tac
-- Not equal
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
index 51457c20..ca5ee266 100644
--- a/backends/lean/Base/IList/IList.lean
+++ b/backends/lean/Base/IList/IList.lean
@@ -33,7 +33,7 @@ def indexOpt (ls : List α) (i : Int) : Option α :=
@[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt]
@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt]
--- Remark: if i < 0, then the result is the defaul element
+-- Remark: if i < 0, then the result is the default element
def index [Inhabited α] (ls : List α) (i : Int) : α :=
match ls with
| [] => Inhabited.default
diff --git a/backends/lean/Base/Primitives.lean b/backends/lean/Base/Primitives.lean
index 613b6076..7196d2ec 100644
--- a/backends/lean/Base/Primitives.lean
+++ b/backends/lean/Base/Primitives.lean
@@ -1,4 +1,5 @@
import Base.Primitives.Base
+import Base.Tuples
import Base.Primitives.Scalar
import Base.Primitives.ArraySlice
import Base.Primitives.Vec
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean
index c90a85b8..e1a39d40 100644
--- a/backends/lean/Base/Primitives/ArraySlice.lean
+++ b/backends/lean/Base/Primitives/ArraySlice.lean
@@ -131,7 +131,7 @@ def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .
-- TODO: very annoying that the α is an explicit parameter
def Slice.len (α : Type u) (v : Slice α) : Usize :=
- Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
+ Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
theorem Slice.len_val {α : Type u} (v : Slice α) : (Slice.len α v).val = v.length :=
diff --git a/backends/lean/Base/Primitives/Base.lean b/backends/lean/Base/Primitives/Base.lean
index 9dbaf133..0b9d9c39 100644
--- a/backends/lean/Base/Primitives/Base.lean
+++ b/backends/lean/Base/Primitives/Base.lean
@@ -69,7 +69,7 @@ def div? {α: Type u} (r: Result α): Bool :=
def massert (b:Bool) : Result Unit :=
if b then ret () else fail assertionFailure
-def eval_global {α: Type u} (x: Result α) (_: ret? x): α :=
+def eval_global {α: Type u} (x: Result α) (_: ret? x := by decide): α :=
match x with
| fail _ | div => by contradiction
| ret x => x
@@ -78,7 +78,7 @@ def eval_global {α: Type u} (x: Result α) (_: ret? x): α :=
def bind {α : Type u} {β : Type v} (x: Result α) (f: α → Result β) : Result β :=
match x with
- | ret v => f v
+ | ret v => f v
| fail v => fail v
| div => div
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index 285bc7fb..3d90f1a5 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -281,25 +281,38 @@ theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
λ h => by
apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty ≤ x) (hmax : x ≤ Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
--- Tactic to prove that integers are in bounds
--- TODO: use this: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam
-syntax "intlit" : tactic
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices; decide)
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := by intlit) : Scalar ty :=
- -- Remark: we initially wrote:
- -- let ⟨ hmin, hmax ⟩ := h
- -- Scalar.ofIntCore x hmin hmax
- -- We updated to the line below because a similar pattern in `Scalar.tryMk`
- -- made reduction block. Both versions seem to work for `Scalar.ofInt`, though.
- -- TODO: investigate
- Scalar.ofIntCore x h.left h.right
+/- [match_pattern] attribute: allows to us `Scalar.ofIntCore` inside of patterns.
+ This is particularly useful once we introduce notations like `#u32` (which
+ desugards to `Scalar.ofIntCore`) as it allows to write expressions like this:
+ Example:
+ ```
+ match x with
+ | 0#u32 => ...
+ | 1#u32 => ...
+ | ...
+ ```
+ -/
+@[match_pattern] def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
+ (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty :=
+ { val := x, hmin := h.left, hmax := h.right }
+
+-- The definitions below are used later to introduce nice syntax for constants,
+-- like `1#u32`. We are reusing the technique described here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Different.20elaboration.20inside.2Foutside.20of.20match.20patterns/near/425455284
+
+class InBounds (ty : ScalarTy) (x : Int) :=
+ hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty
+
+-- This trick to trigger reduction for decidable propositions comes from
+-- here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam/near/343495807
+class Decide (p : Prop) [Decidable p] : Prop where
+ isTrue : p
+instance : @Decide p (.isTrue h) := @Decide.mk p (_) h
+
+instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty v where
+ hInBounds := Decide.isTrue
+
+@[reducible, match_pattern] def Scalar.ofInt {ty : ScalarTy} (x : Int) [InBounds ty x] : Scalar ty :=
+ Scalar.ofIntCore x (Scalar.bound_suffices ty x InBounds.hInBounds)
@[simp] def Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool :=
(Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty)
@@ -326,7 +339,7 @@ def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
-- ```
-- then normalization blocks (for instance, some proofs which use reflexivity fail).
-- However, the version below doesn't block reduction (TODO: investigate):
- return Scalar.ofInt x (Scalar.check_bounds_prop h)
+ return Scalar.ofIntCore x (Scalar.check_bounds_prop h)
else fail integerOverflow
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
@@ -439,8 +452,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
constructor; cases ty <;> apply (Scalar.ofInt 0)
-- TODO: reducible?
-@[reducible] def core_isize_min : Isize := Scalar.ofInt Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
-@[reducible] def core_isize_max : Isize := Scalar.ofInt Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
+@[reducible] def core_isize_min : Isize := Scalar.ofIntCore Isize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
+@[reducible] def core_isize_max : Isize := Scalar.ofIntCore Isize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Isize))
@[reducible] def core_i8_min : I8 := Scalar.ofInt I8.min
@[reducible] def core_i8_max : I8 := Scalar.ofInt I8.max
@[reducible] def core_i16_min : I16 := Scalar.ofInt I16.min
@@ -453,8 +466,8 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
@[reducible] def core_i128_max : I128 := Scalar.ofInt I128.max
-- TODO: reducible?
-@[reducible] def core_usize_min : Usize := Scalar.ofInt Usize.min
-@[reducible] def core_usize_max : Usize := Scalar.ofInt Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
+@[reducible] def core_usize_min : Usize := Scalar.ofIntCore Usize.min (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
+@[reducible] def core_usize_max : Usize := Scalar.ofIntCore Usize.max (by simp [Scalar.min, Scalar.max]; apply (Scalar.min_le_max .Usize))
@[reducible] def core_u8_min : U8 := Scalar.ofInt U8.min
@[reducible] def core_u8_max : U8 := Scalar.ofInt U8.max
@[reducible] def core_u16_min : U16 := Scalar.ofInt U16.min
@@ -478,15 +491,35 @@ instance (ty : ScalarTy) : Inhabited (Scalar ty) := by
Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
one here.
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
+The notation typeclass for heterogeneous negation.
-/
class HNeg (α : Type u) (β : outParam (Type v)) where
/-- `- a` computes the negation of `a`.
The meaning of this notation is type-dependent. -/
hNeg : α → β
-prefix:75 "-" => HNeg.hNeg
+/- Notation for heterogeneous negation.
+
+ We initially used the notation "-" but it conflicted with the homogeneous
+ negation too much. In particular, it made terms like `-10` ambiguous,
+ and seemingly caused to backtracking in elaboration, leading to definitions
+ like arrays of constants to take an unreasonable time to get elaborated
+ and type-checked.
+
+ TODO: PR to replace Neg with HNeg in Lean?
+ -/
+prefix:75 "-." => HNeg.hNeg
+
+/- We need this, otherwise we break pattern matching like in:
+
+ ```
+ def is_minus_one (x : Int) : Bool :=
+ match x with
+ | -1 => true
+ | _ => false
+ ```
+-/
+attribute [match_pattern] HNeg.hNeg
instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
@@ -965,18 +998,18 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128
-- ofInt
-- TODO: typeclass?
-abbrev Isize.ofInt := @Scalar.ofInt .Isize
-abbrev I8.ofInt := @Scalar.ofInt .I8
-abbrev I16.ofInt := @Scalar.ofInt .I16
-abbrev I32.ofInt := @Scalar.ofInt .I32
-abbrev I64.ofInt := @Scalar.ofInt .I64
-abbrev I128.ofInt := @Scalar.ofInt .I128
-abbrev Usize.ofInt := @Scalar.ofInt .Usize
-abbrev U8.ofInt := @Scalar.ofInt .U8
-abbrev U16.ofInt := @Scalar.ofInt .U16
-abbrev U32.ofInt := @Scalar.ofInt .U32
-abbrev U64.ofInt := @Scalar.ofInt .U64
-abbrev U128.ofInt := @Scalar.ofInt .U128
+@[match_pattern] abbrev Isize.ofInt := @Scalar.ofInt .Isize
+@[match_pattern] abbrev I8.ofInt := @Scalar.ofInt .I8
+@[match_pattern] abbrev I16.ofInt := @Scalar.ofInt .I16
+@[match_pattern] abbrev I32.ofInt := @Scalar.ofInt .I32
+@[match_pattern] abbrev I64.ofInt := @Scalar.ofInt .I64
+@[match_pattern] abbrev I128.ofInt := @Scalar.ofInt .I128
+@[match_pattern] abbrev Usize.ofInt := @Scalar.ofInt .Usize
+@[match_pattern] abbrev U8.ofInt := @Scalar.ofInt .U8
+@[match_pattern] abbrev U16.ofInt := @Scalar.ofInt .U16
+@[match_pattern] abbrev U32.ofInt := @Scalar.ofInt .U32
+@[match_pattern] abbrev U64.ofInt := @Scalar.ofInt .U64
+@[match_pattern] abbrev U128.ofInt := @Scalar.ofInt .U128
postfix:max "#isize" => Isize.ofInt
postfix:max "#i8" => I8.ofInt
@@ -991,47 +1024,86 @@ postfix:max "#u32" => U32.ofInt
postfix:max "#u64" => U64.ofInt
postfix:max "#u128" => U128.ofInt
+/- Testing the notations -/
+example := 0#u32
+example := 1#u32
+example := 1#i32
+example := 0#isize
+example := (-1)#isize
+example (x : U32) : Bool :=
+ match x with
+ | 0#u32 => true
+ | _ => false
+
+example (x : U32) : Bool :=
+ match x with
+ | 1#u32 => true
+ | _ => false
+
+example (x : I32) : Bool :=
+ match x with
+ | (-1)#i32 => true
+ | _ => false
+
+-- Notation for pattern matching
+-- We make the precedence looser than the negation.
+notation:70 a:70 "#scalar" => Scalar.mk (a) _ _
+
+example {ty} (x : Scalar ty) : ℤ :=
+ match x with
+ | v#scalar => v
+
+example {ty} (x : Scalar ty) : Bool :=
+ match x with
+ | 1#scalar => true
+ | _ => false
+
+example {ty} (x : Scalar ty) : Bool :=
+ match x with
+ | -(1 : Int)#scalar => true
+ | _ => false
+
-- Testing the notations
example : Result Usize := 0#usize + 1#usize
-- TODO: factor those lemmas out
-@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofInt x h).val = x := by
+@[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by
simp [Scalar.ofInt, Scalar.ofIntCore]
-@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofInt x h).val = x := by
+@[simp] theorem Isize.ofInt_val_eq (h : Scalar.min ScalarTy.Isize ≤ x ∧ x ≤ Scalar.max ScalarTy.Isize) : (Isize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofInt x h).val = x := by
+@[simp] theorem I8.ofInt_val_eq (h : Scalar.min ScalarTy.I8 ≤ x ∧ x ≤ Scalar.max ScalarTy.I8) : (I8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofInt x h).val = x := by
+@[simp] theorem I16.ofInt_val_eq (h : Scalar.min ScalarTy.I16 ≤ x ∧ x ≤ Scalar.max ScalarTy.I16) : (I16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofInt x h).val = x := by
+@[simp] theorem I32.ofInt_val_eq (h : Scalar.min ScalarTy.I32 ≤ x ∧ x ≤ Scalar.max ScalarTy.I32) : (I32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofInt x h).val = x := by
+@[simp] theorem I64.ofInt_val_eq (h : Scalar.min ScalarTy.I64 ≤ x ∧ x ≤ Scalar.max ScalarTy.I64) : (I64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofInt x h).val = x := by
+@[simp] theorem I128.ofInt_val_eq (h : Scalar.min ScalarTy.I128 ≤ x ∧ x ≤ Scalar.max ScalarTy.I128) : (I128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofInt x h).val = x := by
+@[simp] theorem Usize.ofInt_val_eq (h : Scalar.min ScalarTy.Usize ≤ x ∧ x ≤ Scalar.max ScalarTy.Usize) : (Usize.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofInt x h).val = x := by
+@[simp] theorem U8.ofInt_val_eq (h : Scalar.min ScalarTy.U8 ≤ x ∧ x ≤ Scalar.max ScalarTy.U8) : (U8.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofInt x h).val = x := by
+@[simp] theorem U16.ofInt_val_eq (h : Scalar.min ScalarTy.U16 ≤ x ∧ x ≤ Scalar.max ScalarTy.U16) : (U16.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofInt x h).val = x := by
+@[simp] theorem U32.ofInt_val_eq (h : Scalar.min ScalarTy.U32 ≤ x ∧ x ≤ Scalar.max ScalarTy.U32) : (U32.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofInt x h).val = x := by
+@[simp] theorem U64.ofInt_val_eq (h : Scalar.min ScalarTy.U64 ≤ x ∧ x ≤ Scalar.max ScalarTy.U64) : (U64.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofInt x h).val = x := by
+@[simp] theorem U128.ofInt_val_eq (h : Scalar.min ScalarTy.U128 ≤ x ∧ x ≤ Scalar.max ScalarTy.U128) : (U128.ofIntCore x h).val = x := by
apply Scalar.ofInt_val_eq h
-- Comparisons
@@ -1082,35 +1154,4 @@ instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
@[simp] theorem Scalar.neq_to_neq_val {ty} : ∀ {i j : Scalar ty}, (¬ i = j) ↔ ¬ i.val = j.val := by
intro i j; cases i; cases j; simp
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
end Primitives
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean
index b03de15b..65249c12 100644
--- a/backends/lean/Base/Primitives/Vec.lean
+++ b/backends/lean/Base/Primitives/Vec.lean
@@ -43,7 +43,7 @@ instance (α : Type u) : Inhabited (Vec α) := by
-- TODO: very annoying that the α is an explicit parameter
def Vec.len (α : Type u) (v : Vec α) : Usize :=
- Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
+ Usize.ofIntCore v.val.len (by constructor <;> scalar_tac)
@[simp]
theorem Vec.len_val {α : Type u} (v : Vec α) : (Vec.len α v).val = v.length :=
diff --git a/backends/lean/Base/Tuples.lean b/backends/lean/Base/Tuples.lean
new file mode 100644
index 00000000..4c59dac9
--- /dev/null
+++ b/backends/lean/Base/Tuples.lean
@@ -0,0 +1,82 @@
+import Lean
+import Base.Utils
+
+namespace Primitives
+
+-------------------------------
+-- Tuple field access syntax --
+-------------------------------
+-- Declare new syntax `a.#i` for accessing the `i`-th term in a tuple
+-- The `noWs` parser is used to ensure there is no whitespace.
+-- We use the maximum precedence to make the syntax work with function calls.
+-- Ex.: `f (0, 1).#0`
+syntax:max term noWs ".#" noWs num : term
+
+open Lean Meta Elab Term
+
+-- Auxliary function for computing the number of elements in a tuple (`Prod`) type.
+def getArity (type : Expr) : Nat :=
+ match type with
+ | .app (.app (.const ``Prod _) _) as => getArity as + 1
+ | _ => 1 -- It is not product
+
+-- Given a `tuple` of size `n`, construct a term that for accessing the `i`-th element
+def mkGetIdx (tuple : Expr) (n : Nat) (i : Nat) : MetaM Expr := do
+ match i with
+ | 0 => mkAppM ``Prod.fst #[tuple]
+ | i+1 =>
+ if n = 2 then
+ -- If the tuple has only two elements and `i` is not `0`,
+ -- we just return the second element.
+ mkAppM ``Prod.snd #[tuple]
+ else
+ -- Otherwise, we continue with the rest of the tuple.
+ let tuple ← mkAppM ``Prod.snd #[tuple]
+ mkGetIdx tuple (n-1) i
+
+-- Now, we define the elaboration function for the new syntax `a#i`
+elab_rules : term
+| `($a:term.#$i:num) => do
+ -- Convert `i : Syntax` into a natural number
+ let i := i.getNat
+ -- Return error if it is 0.
+ unless i ≥ 0 do
+ throwError "tuple index must be greater or equal to 0"
+ -- Convert `a : Syntax` into an `tuple : Expr` without providing expected type
+ let tuple ← elabTerm a none
+ let type ← inferType tuple
+ -- Instantiate assigned metavariable occurring in `type`
+ let type ← instantiateMVars type
+ /- In case we are indexing into a type abbreviation, we need to unfold the type.
+
+ TODO: we have to be careful about not unfolding too much,
+ for instance because of the following code:
+ ```
+ def Pair T U := T × U
+ def Tuple T U V := T × Pair U V
+ ```
+ We have to make sure that, given `x : Tuple T U V`, `x.1` evaluates
+ to the pair (an element of type `Pair T U`), not to the first field
+ of the pair (an element of type `T`).
+
+ We have a similar issue below if we generate code from the following Rust definition:
+ ```
+ struct Tuple(u32, (u32, u32));
+ ```
+ The issue is that in Rust, field 1 of `Tuple` is a pair `(u32, u32)`, but
+ in Lean there is no difference between `A × B × C` and `A × (B × C)`.
+
+ In case such situations happen we probably need to resort to chaining
+ the pair projectors, like in: `x.snd.fst`.
+ -/
+ let type ← whnf type
+ -- Ensure `tuple`'s type is a `Prod`uct.
+ unless type.isAppOf ``Prod do
+ throwError "tuple expected{indentExpr type}"
+ let n := getArity type
+ -- Ensure `i` is a valid index
+ unless i < n do
+ throwError "invalid tuple access at {i}, tuple has {n} elements"
+ mkGetIdx tuple n i
+
+end Primitives