diff options
author | Son Ho | 2023-06-22 16:02:09 +0200 |
---|---|---|
committer | Son Ho | 2023-06-22 16:02:09 +0200 |
commit | 9421b215a8911bc545eb524b8b07e7ca2eb717f3 (patch) | |
tree | 76e31c91b52cbe7f29b2a28507eb357dc66d1ba5 /backends | |
parent | 34f1f4d877b32002cd292cb1fe27969184efcf94 (diff) |
Make intro_has_prop_instances work
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Arith.lean | 171 |
1 files changed, 145 insertions, 26 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean index d4611deb..a792deb2 100644 --- a/backends/lean/Base/Arith.lean +++ b/backends/lean/Base/Arith.lean @@ -75,7 +75,28 @@ class IsScalar (a : Type) where instance (ty : ScalarTy) : IsScalar (Scalar ty) where ---example (ty : ScalarTy) : IsScalar (Scalar ty) := _ +example (ty : ScalarTy) : IsScalar (Scalar ty) := inferInstance + +-- TODO: lookup doesn't work +class HasProp {a : Type} (x : a) where + prop_ty : Prop + prop : prop_ty + +class HasProp' (a : Type) where + prop_ty : a → Prop + prop : ∀ x:a, prop_ty x + +instance {ty : ScalarTy} (x : Scalar x) : HasProp x where + -- prop_ty is inferred + prop := And.intro x.hmin x.hmax + +instance (ty : ScalarTy) : HasProp' (Scalar ty) where + -- prop_ty is inferred + prop := λ x => And.intro x.hmin x.hmax + +example {a : Type} (x : a) [HasProp x] : Prop := + let i : HasProp x := inferInstance + i.prop_ty open Lean Lean.Elab Command Term Lean.Meta @@ -96,6 +117,40 @@ def isScalarExpr (e : Expr) : MetaM Bool := do | .some _ => pure true | _ => pure false +#check @HasProp'.prop + +-- Return an instance of `HasProp` for `e` if it has some +def lookupHasProp (e : Expr) : MetaM (Option Expr) := do + logInfo f!"lookupHasProp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + logInfo f!"lookupHasProp: observing" + let ty ← Lean.Meta.inferType e + let hasProp ← mkAppM `Arith.HasProp' #[ty] + let hasPropInst ← trySynthInstance hasProp + match hasPropInst with + | LOption.some i => + logInfo m!"Found HasProp instance" + let i_prop ← mkProjection i `prop + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Auxiliary function for `collectHasPropInstances` +private partial def collectHasPropInstancesAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do + -- We do it in a very simpler manner: we deconstruct applications, + -- and recursively explore the sub-expressions. Note that we do + -- not go inside foralls and abstractions (should we?). + e.withApp fun f args => do + let hasPropInst ← lookupHasProp f + let hs := Option.getD (hasPropInst.map hs.insert) hs + let hs ← args.foldlM collectHasPropInstancesAux hs + pure hs + +-- Explore a term and return the instances of `HasProp` found for the sub-expressions +def collectHasPropInstances (e : Expr) : MetaM (HashSet Expr) := + collectHasPropInstancesAux HashSet.empty e + -- Explore a term and return the set of scalar expressions found inside partial def collectScalarExprsAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do -- We do it in a very simpler manner: we deconstruct applications, @@ -125,22 +180,43 @@ def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do -- Return pure hs - -#check TSyntax -#check mkIdent --- TODO: addDecl? --- Project the scalar expressions into the context, to retrieve the bound inequalities --- def projectScalarExpr (e: Expr) : Tactic.TacticM Unit := do --- let e ← `($e) --- let e ← Lean.Elab.Term.elabTerm `($e) none --- Lean.Elab.Tactic.evalCases `($e) +-- Collect the instances of `HasProp` for the subexpressions in the context +def getHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + Lean.Elab.Tactic.withMainContext do + -- Get the local context + let ctx ← Lean.MonadLCtx.getLCtx + -- Just a matter of precaution + let ctx ← instantiateLCtxMVars ctx + -- Initialize the hashset + let hs := HashSet.empty + -- Explore the declarations + let decls ← ctx.getDecls + let hs ← decls.foldlM (fun hs d => collectHasPropInstancesAux hs d.toExpr) hs + -- Return + pure hs elab "list_scalar_exprs" : tactic => do + logInfo m!"Listing scalar expressions" let hs ← getScalarExprsFromMainCtx hs.forM fun e => do - dbg_trace f!"+ Scalar expression: {e}" + logInfo m!"+ Scalar expression: {e}" + +example (x y : U32) (z : Usize) : True := by + list_scalar_exprs + simp + +elab "display_has_prop_instances" : tactic => do + logInfo m!"Displaying the HasProp instances" + let hs ← getHasPropInstancesFromMainCtx + hs.forM fun e => do + logInfo m!"+ HasProp instance: {e}" -#check LocalContext +example (x : U32) : True := by + let i : HasProp' U32 := inferInstance + have p := @HasProp'.prop _ i x + simp only [HasProp'.prop_ty] at p + display_has_prop_instances + simp elab "list_local_decls_1" : tactic => Lean.Elab.Tactic.withMainContext do @@ -169,18 +245,12 @@ elab "list_local_decls_1" : tactic => | _ => dbg_trace f!" Not a scalar"; pure .none pure () -def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit := +def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) : Tactic.TacticM Unit := -- I don't think we need that Lean.Elab.Tactic.withMainContext do - -- - let val ← elabTerm val .none - let type ← inferType val - -- In some situations, the type will be left as a metavariable (for instance, - -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will - -- not choose): we force the instantiation of the meta-variable - synthesizeSyntheticMVarsUsingDefault -- Insert the new declaration - withLetDecl name type val fun nval => do + let withDecl := if asLet then withLetDecl name type val else withLocalDeclD name type + withDecl fun nval => do -- For debugging let lctx ← Lean.MonadLCtx.getLCtx let fid := nval.fvarId! @@ -192,6 +262,11 @@ def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit := let mvarId ← Tactic.getMainGoal let newMVar ← mkFreshExprSyntheticOpaqueMVar (← mvarId.getType) let newVal ← mkLetFVars #[nval] newMVar + -- There are two cases: + -- - asLet is true: newVal is `let $name := $val in $newMVar` + -- - asLet is false: ewVal is `λ $name => $newMVar` + -- We need to apply it to `val` + let newVal := if asLet then newVal else mkAppN newVal #[val] -- Focus on the current goal Tactic.focus do -- Assign the main goal. @@ -202,18 +277,62 @@ def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit := -- we focused on the current goal Lean.Elab.Tactic.setGoals [newMVar.mvarId!] -elab "custom_let " n:ident " := " v:term : tactic => - evalCustomLet n.getId v +def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tactic.TacticM Unit := + -- I don't think we need that + Lean.Elab.Tactic.withMainContext do + -- + let val ← elabTerm val .none + let type ← inferType val + -- In some situations, the type will be left as a metavariable (for instance, + -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will + -- not choose): we force the instantiation of the meta-variable + synthesizeSyntheticMVarsUsingDefault + -- + evalAddDecl name val type asLet --- Insert x = 3 in the context elab "custom_let " n:ident " := " v:term : tactic => - evalCustomLet n.getId v + evalAddDeclSyntax n.getId v (asLet := true) + +elab "custom_have " n:ident " := " v:term : tactic => + evalAddDeclSyntax n.getId v (asLet := false) example : Nat := by custom_let x := 4 - apply x + custom_have y := 4 + apply y example (x : Bool) : Nat := by cases x <;> custom_let x := 3 <;> apply x +#check mkIdent +#check Syntax + +-- Lookup the instances of `HasProp' for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_has_prop_instances" : tactic => do + logInfo m!"Introducing the HasProp instances" + let hs ← getHasPropInstancesFromMainCtx + hs.forM fun e => do + let type ← inferType e + let name := `h + evalAddDecl name e type (asLet := false) + -- Simplify to unfold the `prop_ty` projector + --let simpTheorems := ++ [``HasProp'.prop_ty] + let simpTheorems ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems) + -- Add the equational theorem for `HashProp'.prop_ty` + let simpTheorems ← simpTheorems.addDeclToUnfold ``HasProp'.prop_ty + let congrTheorems ← getSimpCongrTheorems + let ctx : Simp.Context := { simpTheorems := #[simpTheorems], congrTheorems } + -- Where to apply the simplifier + let loc := Tactic.Location.targets #[mkIdent name] false + -- Apply the simplifier + let _ ← Tactic.simpLocation ctx (discharge? := .none) loc + pure () + -- simpLocation + +example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by + intro_has_prop_instances + simp [*] + + end Arith |