diff options
author | Jonathan Protzenko | 2023-02-07 13:59:06 -0800 |
---|---|---|
committer | Son HO | 2023-06-04 21:44:33 +0200 |
commit | 6eee12d5f2c87237fb1276538aa9d1e8ef4addc8 (patch) | |
tree | f297a75d1e79e5da3e88f42863ddc6de911a2b7c /backends | |
parent | 6cc10dc67f74cb0abb3062b02c8a94bf34cc938d (diff) |
Idiomatic naming conventions
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Primitives.lean | 92 |
1 files changed, 46 insertions, 46 deletions
diff --git a/backends/lean/Primitives.lean b/backends/lean/Primitives.lean index 79958d94..a0892ca7 100644 --- a/backends/lean/Primitives.lean +++ b/backends/lean/Primitives.lean @@ -9,69 +9,69 @@ import Mathlib.Tactic.RunCmd -- Results & monadic combinators --- TODO: use syntactic conventions and capitalize error, result, etc. - -inductive error where - | assertionFailure: error - | integerOverflow: error - | arrayOutOfBounds: error - | maximumSizeExceeded: error - | panic: error +-- TODO: use syntactic conventions and capitalize Error, Result, etc. + +inductive Error where + | assertionFailure: Error + | integerOverflow: Error + | arrayOutOfBounds: Error + | maximumSizeExceeded: Error + | panic: Error deriving Repr, BEq -open error +open Error -inductive result (α : Type u) where - | ret (v: α): result α - | fail (e: error): result α +inductive Result (α : Type u) where + | ret (v: α): Result α + | fail (e: Error): Result α deriving Repr, BEq -open result +open Result /- HELPERS -/ -- TODO: is there automated syntax for these discriminators? -def is_ret {α: Type} (r: result α): Bool := +def is_ret {α: Type} (r: Result α): Bool := match r with - | result.ret _ => true - | result.fail _ => false + | Result.ret _ => true + | Result.fail _ => false -def massert (b:Bool) : result Unit := +def massert (b:Bool) : Result Unit := if b then .ret () else fail assertionFailure -def eval_global {α: Type} (x: result α) (_: is_ret x): α := +def eval_global {α: Type} (x: Result α) (_: is_ret x): α := match x with - | result.fail _ => by contradiction - | result.ret x => x + | Result.fail _ => by contradiction + | Result.ret x => x /- DO-DSL SUPPORT -/ -def bind (x: result α) (f: α -> result β) : result β := +def bind (x: Result α) (f: α -> Result β) : Result β := match x with | ret v => f v | fail v => fail v --- Allows using result in do-blocks -instance : Bind result where +-- Allows using Result in do-blocks +instance : Bind Result where bind := bind -- Allows using return x in do-blocks -instance : Pure result where +instance : Pure Result where pure := fun x => ret x /- CUSTOM-DSL SUPPORT -/ --- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- Let-binding the Result of a monadic operation is oftentimes not sufficient, -- because we may need a hypothesis for equational reasoning in the scope. We -- rely on subtype, and a custom let-binding operator, in effect recreating our -- own variant of the do-dsl -def result.attach : (o : result α) → result { x : α // o = ret x } +def Result.attach : (o : Result α) → Result { x : α // o = ret x } | .ret x => .ret ⟨x, rfl⟩ | .fail e => .fail e macro "let" h:ident " : " e:term " <-- " f:term : doElem => - `(doElem| let ⟨$e, $h⟩ ← result.attach $f) + `(doElem| let ⟨$e, $h⟩ ← Result.attach $f) -- Silly example of the kind of reasoning that this notation enables #eval do @@ -99,8 +99,8 @@ macro "let" h:ident " : " e:term " <-- " f:term : doElem => -- total function over nats...? the hypothesis in the if condition is not used -- in the then-branch which confuses me quite a bit --- TODO: add a refinement for the result (just like vec_push_back below) that --- explains that the toNat of the result (in the case of success) is the sub of +-- TODO: add a refinement for the Result (just like vec_push_back below) that +-- explains that the toNat of the Result (in the case of success) is the sub of -- the toNat of the arguments (i.e. intrinsic specification) -- ... do we want intrinsic specifications for the builtins? that might require -- some careful type annotations in the monadic notation for clients, but may @@ -134,7 +134,7 @@ macro_rules -- and -- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean -- which both contain a fair amount of reasoning already! -def USize.checked_sub (n: USize) (m: USize): result USize := +def USize.checked_sub (n: USize) (m: USize): Result USize := -- NOTE: the test USize.toNat n - m >= 0 seems to always succeed? if n >= m then let n' := USize.toNat n @@ -150,7 +150,7 @@ def USize.checked_sub (n: USize) (m: USize): result USize := else fail integerOverflow -def USize.checked_add (n: USize) (m: USize): result USize := +def USize.checked_add (n: USize) (m: USize): Result USize := if h: n.val.val + m.val.val <= 4294967295 then .ret ⟨ n.val.val + m.val.val, by have h': 4294967295 < USize.size := by intlit @@ -161,7 +161,7 @@ def USize.checked_add (n: USize) (m: USize): result USize := else .fail integerOverflow -def USize.checked_rem (n: USize) (m: USize): result USize := +def USize.checked_rem (n: USize) (m: USize): Result USize := if h: m > 0 then .ret ⟨ n.val % m.val, by have h1: ↑m.val < USize.size := m.val.isLt @@ -171,7 +171,7 @@ def USize.checked_rem (n: USize) (m: USize): result USize := else .fail integerOverflow -def USize.checked_mul (n: USize) (m: USize): result USize := +def USize.checked_mul (n: USize) (m: USize): Result USize := if h: n.val.val * m.val.val <= 4294967295 then .ret ⟨ n.val.val * m.val.val, by have h': 4294967295 < USize.size := by intlit @@ -182,7 +182,7 @@ def USize.checked_mul (n: USize) (m: USize): result USize := else .fail integerOverflow -def USize.checked_div (n: USize) (m: USize): result USize := +def USize.checked_div (n: USize) (m: USize): Result USize := if m > 0 then .ret ⟨ n.val / m.val, by have h1: ↑n.val < USize.size := n.val.isLt @@ -209,7 +209,7 @@ run_cmd end $typeName )) -def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): result dst := +def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst := if h: MachineInteger.val x < MachineInteger.size dst then .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h) else @@ -249,11 +249,11 @@ def vec_len (α : Type u) (v : vec α) : USize := def vec_push_fwd (α : Type u) (_ : vec α) (_ : α) : Unit := () -- NOTE: old version trying to use a subtype notation, but probably better to --- leave result elimination to auxiliary lemmas with suitable preconditions +-- leave Result elimination to auxiliary lemmas with suitable preconditions -- TODO: I originally wrote `List.length v.val < USize.size - 1`; how can one -- make the proof work in that case? Probably need to import tactics from -- mathlib to deal with inequalities... would love to see an example. -def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec α) // +def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: Result (vec α) // match res with | fail _ => True | ret v' => List.length v'.val = List.length v.val + 1} := if h : List.length v.val + 1 < USize.size then @@ -272,12 +272,12 @@ def vec_push_back_old (α : Type u) (v : vec α) (x : α) : { res: result (vec -- annotate `x`, which relieves us of having to write `.val` on the right-hand -- side of the monadic let. let v := vec_new Nat - let x: vec Nat ← (vec_push_back_old Nat v 1: result (vec Nat)) -- WHY do we need the type annotation here? + let x: vec Nat ← (vec_push_back_old Nat v 1: Result (vec Nat)) -- WHY do we need the type annotation here? -- TODO: strengthen post-condition above and do a demo to show that we can -- safely eliminate the `fail` case return (vec_len Nat x) -def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) +def vec_push_back (α : Type u) (v : vec α) (x : α) : Result (vec α) := if h : List.length v.val + 1 <= 4294967295 then return ⟨ List.concat v.val x, @@ -295,13 +295,13 @@ def vec_push_back (α : Type u) (v : vec α) (x : α) : result (vec α) else fail maximumSizeExceeded -def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_insert_fwd (α : Type u) (v: vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): Result (vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -311,25 +311,25 @@ def vec_insert_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α else .fail arrayOutOfBounds -def vec_index_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_fwd (α : Type u) (v: vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): result Unit := +def vec_index_back (α : Type u) (v: vec α) (i: USize) (_: α): Result Unit := if i.val < List.length v.val then .ret () else .fail arrayOutOfBounds -def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): result α := +def vec_index_mut_fwd (α : Type u) (v: vec α) (i: USize): Result α := if h: i.val < List.length v.val then .ret (List.get v.val ⟨i.val, h⟩) else .fail arrayOutOfBounds -def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): result (vec α) := +def vec_index_mut_back (α : Type u) (v: vec α) (i: USize) (x: α): Result (vec α) := if i.val < List.length v.val then .ret ⟨ List.set v.val i.val x, by have h: List.length v.val < USize.size := v.property @@ -364,7 +364,7 @@ def assertImpl : CommandElab := fun (_stx: Syntax) => do runTermElabM (fun _ => do let e ← Term.elabTerm _stx[1] none logInfo (Expr.dbgToString e) - -- How to evaluate the term and compare the result to true? + -- How to evaluate the term and compare the Result to true? pure ()) -- logInfo (Expr.dbgToString (``true)) -- throwError "TODO: assert" |