summaryrefslogtreecommitdiff
path: root/backends
diff options
context:
space:
mode:
authorRyan Lahfa2024-05-15 15:42:18 +0200
committerRyan Lahfa2024-05-24 16:07:33 +0200
commit3ff6d93822fe5b2e233d4b12b88b38839c8533c5 (patch)
tree9ea5aa8be6ba2f0f2af035d10cc50f8f05d43047 /backends
parent3c8ea6df20f92be9c341bbfb748f65d6c598fead (diff)
feat: add small pieces of max theory
`0#ty` is neutral for `max` for unsigned integers. Without the `Fact` instances, those theorems are not as automatic as they could be. Signed-off-by: Ryan Lahfa <ryan.lahfa@inria.fr>
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Primitives/Scalar.lean39
1 files changed, 39 insertions, 0 deletions
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean
index f08b8dec..8fb067e1 100644
--- a/backends/lean/Base/Primitives/Scalar.lean
+++ b/backends/lean/Base/Primitives/Scalar.lean
@@ -146,6 +146,25 @@ def ScalarTy.isSigned (ty : ScalarTy) : Bool :=
| U64
| U128 => false
+-- FIXME(chore): bulk prove them via macro?
+instance : Fact (¬ ScalarTy.isSigned .Usize) where
+ out := by decide
+
+instance : Fact (¬ ScalarTy.isSigned .U8) where
+ out := by decide
+
+instance : Fact (¬ ScalarTy.isSigned .U16) where
+ out := by decide
+
+instance : Fact (¬ ScalarTy.isSigned .U32) where
+ out := by decide
+
+instance : Fact (¬ ScalarTy.isSigned .U64) where
+ out := by decide
+
+instance : Fact (¬ ScalarTy.isSigned .U128) where
+ out := by decide
+
def Scalar.smin (ty : ScalarTy) : Int :=
match ty with
@@ -386,6 +405,10 @@ theorem Scalar.tryMk_eq (ty : ScalarTy) (x : Int) :
simp [tryMk, ofOption, tryMkOpt]
split_ifs <;> simp
+instance (ty: ScalarTy) : InBounds ty 0 where
+ hInBounds := by
+ induction ty <;> simp [Scalar.cMax, Scalar.cMin, Scalar.max, Scalar.min] <;> decide
+
def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-- Our custom remainder operation, which satisfies the semantics of Rust
@@ -1431,6 +1454,22 @@ theorem coe_max {ty: ScalarTy} (a b: Scalar ty): ↑(Max.max a b) = (Max.max (â†
refine' absurd _ (lt_irrefl a)
exact lt_of_le_of_lt (by assumption) ((Scalar.lt_equiv _ _).2 (by assumption))
+-- Max theory
+-- TODO: do the min theory later on.
+
+theorem Scalar.zero_le_unsigned {ty} (s: ¬ ty.isSigned) (x: Scalar ty): Scalar.ofInt 0 ≤ x := by
+ apply (Scalar.le_equiv _ _).2
+ convert x.hmin
+ cases ty <;> simp [ScalarTy.isSigned] at s <;> simp [Scalar.min]
+
+@[simp]
+theorem Scalar.max_unsigned_left_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty):
+ Max.max (Scalar.ofInt 0) x = x := max_eq_right (Scalar.zero_le_unsigned s.out x)
+
+@[simp]
+theorem Scalar.max_unsigned_right_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty):
+ Max.max x (Scalar.ofInt 0) = x := max_eq_left (Scalar.zero_le_unsigned s.out x)
+
-- Leading zeros
def core.num.Usize.leading_zeros (x : Usize) : U32 := sorry
def core.num.U8.leading_zeros (x : U8) : U32 := sorry