diff options
author | Son Ho | 2023-06-27 19:06:14 +0200 |
---|---|---|
committer | Son Ho | 2023-06-27 19:06:14 +0200 |
commit | 2554a0a64d761a82789b7eacbfa3ca2c88eec7df (patch) | |
tree | c30f98ef4a210988813c92af71da7d4f5b5d7486 /backends | |
parent | 8db1af5afcb414b502a58a87f6bdcc1c08cbe3d2 (diff) |
Reduce the time spent on some proofs
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Diverge.lean | 48 |
1 files changed, 20 insertions, 28 deletions
diff --git a/backends/lean/Base/Diverge.lean b/backends/lean/Base/Diverge.lean index c97674dd..c62e6dd5 100644 --- a/backends/lean/Base/Diverge.lean +++ b/backends/lean/Base/Diverge.lean @@ -25,6 +25,11 @@ TODO: - simplifier/rewriter have a strange behavior sometimes -/ + +/- TODO: this is very useful, but is there more? -/ +set_option profiler true +set_option profiler.threshold 100 + namespace Diverge namespace Primitives @@ -533,10 +538,10 @@ namespace FixI fix f = f (fix f) := by have Hvalid' : Fix.is_valid (k_to_gen f) := by intro k x - simp [is_valid, is_valid_p] at Hvalid + simp only [is_valid, is_valid_p] at Hvalid let ⟨ i, x ⟩ := x have Hvalid := Hvalid (k_of_gen k) i x - simp [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid + simp only [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid refine Hvalid have Heq := Fix.is_valid_fix_fixed_eq Hvalid' simp [fix] @@ -612,7 +617,7 @@ namespace FixI termination_by for_all_fin_aux n _ m h => n - m decreasing_by simp_wf - apply Nat.sub_add_lt_sub <;> simp_all + apply Nat.sub_add_lt_sub <;> simp simp_all [add_one_le_iff_le_ne] def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) @@ -665,6 +670,7 @@ namespace FixI simp_all . simp_all [add_one_le_iff_le_ne] + -- TODO: this is not necessary anymore theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) : for_all_fin f → ∀ i, f i := by @@ -702,7 +708,6 @@ namespace FixI | .Nil => True | .Cons f fl => (∀ x, FixI.is_valid_p k (λ k => f k x)) ∧ fl.is_valid_p k - #check Subtype def Funs.is_valid_p_is_valid_p_aux {k : k_ty id a b} {itys otys : List Type} @@ -724,11 +729,11 @@ namespace FixI simp_all case succ n Hn => intro itys otys Heq fl Hvalid Hlen i x; - cases fl <;> simp at * + cases fl <;> simp at Hlen i x Heq Hvalid rename_i ity oty itys otys f fl have ⟨ Hvf, Hvalid ⟩ := Hvalid have Hvf1: is_valid_p k fl := by - simp_all [Funs.is_valid_p] + simp [Hvalid, Funs.is_valid_p] have Hn := @Hn itys otys (by simp[*]) fl Hvf1 (by simp [*]) -- Case disjunction on i match i with @@ -989,29 +994,12 @@ namespace Ex4 theorem body_is_valid : is_valid body := by -- Split the proof into proofs of validity of the individual bodies rw [is_valid] - simp [body] - intro k - apply for_all_fin_imp_forall - simp [for_all_fin] - repeat (unfold for_all_fin_aux; simp) - simp [get_fun] - (repeat (apply And.intro)) <;> intro x <;> simp at x <;> - simp [is_even_body, is_odd_body] - -- Prove the validity of the individual bodies - . split <;> simp - apply is_valid_p_bind <;> simp - . split <;> simp - apply is_valid_p_bind <;> simp - - theorem body_is_valid' : is_valid body := by - -- Split the proof into proofs of validity of the individual bodies - rw [is_valid] - simp [body] + simp only [body] intro k apply (Funs.is_valid_p_is_valid_p [Int, Int] [Bool, Bool]) simp [Funs.is_valid_p] (repeat (apply And.intro)) <;> intro x <;> simp at x <;> - simp [is_even_body, is_odd_body] + simp only [is_even_body, is_odd_body] -- Prove the validity of the individual bodies . split <;> simp apply is_valid_p_bind <;> simp @@ -1088,11 +1076,15 @@ namespace Ex5 theorem id_body_is_valid : ∀ k x, is_valid_p k (λ k => @id_body a k x) := by intro k x - simp [id_body] + simp only [id_body] split <;> simp - apply is_valid_p_bind <;> simp_all + apply is_valid_p_bind <;> simp [*] -- We have to show that `map k tl` is valid - apply map_is_valid; simp + apply map_is_valid; + -- Remark: if we don't do the intro, then the last step is expensive: + -- "typeclass inference of Nonempty took 119ms" + intro k x + simp only [is_valid_p_same, is_valid_p_rec] noncomputable def id (t : Tree a) := fix id_body t |