diff options
author | Son Ho | 2023-07-09 10:11:13 +0200 |
---|---|---|
committer | Son Ho | 2023-07-09 10:11:13 +0200 |
commit | 0d1ac53f88f947ae94f6afb57b2a7e18a77460a7 (patch) | |
tree | 07870dd80b1d04d25c3f304f5bb7b4421ecc90ac /backends | |
parent | 9515bbad5b58ed1c51ac6d9fc9d7a4e5884b6273 (diff) |
Make progress on the int tactic
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Arith.lean | 413 | ||||
-rw-r--r-- | backends/lean/Base/ArithBase.lean | 10 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/ElabBase.lean | 112 |
3 files changed, 267 insertions, 268 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean index bb776b55..df48a6a2 100644 --- a/backends/lean/Base/Arith.lean +++ b/backends/lean/Base/Arith.lean @@ -8,6 +8,7 @@ import Mathlib.Tactic.Linarith -- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet --import Mathlib.Tactic.Omega import Base.Primitives +import Base.ArithBase /- Mathlib tactics: @@ -53,9 +54,24 @@ namespace Arith open Primitives ---set_option pp.explicit true ---set_option pp.notation false ---set_option pp.coercions false +-- TODO: move? +theorem ne_zero_is_lt_or_gt {x : Int} (hne : x ≠ 0) : x < 0 ∨ x > 0 := by + cases h: x <;> simp_all + . rename_i n; + cases n <;> simp_all + . apply Int.negSucc_lt_zero + +-- TODO: move? +theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by + have hne : x - y ≠ 0 := by + simp + intro h + have: x = y := by linarith + simp_all + have h := ne_zero_is_lt_or_gt hne + match h with + | .inl _ => left; linarith + | .inr _ => right; linarith -- TODO: move instance Vec.cast (a : Type): Coe (Vec a) (List a) where coe := λ v => v.val @@ -71,17 +87,9 @@ instance Vec.cast (a : Type): Coe (Vec a) (List a) where coe := λ v => v.val -/ def Scalar.toInt {ty : ScalarTy} (x : Scalar ty) : Int := x.val --- We use this type-class to test if an expression is a scalar (if we manage --- to lookup an instance of this type-class, then it is) -class IsScalar (a : Type) where - -instance (ty : ScalarTy) : IsScalar (Scalar ty) where - -example (ty : ScalarTy) : IsScalar (Scalar ty) := inferInstance - -- Remark: I tried a version of the shape `HasProp {a : Type} (x : a)` -- but the lookup didn't work -class HasProp (a : Type) where +class HasProp (a : Sort u) where prop_ty : a → Prop prop : ∀ x:a, prop_ty x @@ -93,73 +101,50 @@ instance (a : Type) : HasProp (Vec a) where prop_ty := λ v => v.val.length ≤ Scalar.max ScalarTy.Usize prop := λ ⟨ _, l ⟩ => l -open Lean Lean.Elab Command Term Lean.Meta - --- Return true if the expression is a scalar expression -def isScalarExpr (e : Expr) : MetaM Bool := do - -- Try to convert the expression to a scalar - -- TODO: I tried to do it with Lean.Meta.mkAppM but it didn't work: how - -- do we allow Lean to perform (controlled) unfoldings for instantiation - -- purposes? - let r ← Lean.observing? do - let ty ← Lean.Meta.inferType e - let isScalar ← mkAppM `Arith.IsScalar #[ty] - let isScalar ← trySynthInstance isScalar - match isScalar with - | LOption.some x => some x - | _ => none - match r with - | .some _ => pure true - | _ => pure false +class PropHasImp (x : Prop) where + concl : Prop + prop : x → concl --- Return an instance of `HasProp` for `e` if it has some -def lookupHasProp (e : Expr) : MetaM (Option Expr) := do - logInfo f!"lookupHasProp" - -- TODO: do we need Lean.observing? - -- This actually eliminates the error messages - Lean.observing? do - logInfo f!"lookupHasProp: observing" - let ty ← Lean.Meta.inferType e - let hasProp ← mkAppM ``Arith.HasProp #[ty] - let hasPropInst ← trySynthInstance hasProp - match hasPropInst with - | LOption.some i => - logInfo m!"Found HasProp instance" - let i_prop ← mkProjection i `prop - some (← mkAppM' i_prop #[e]) - | _ => none +-- This also works for `x ≠ y` because this expression reduces to `¬ x = y` +-- and `Ne` is marked as `reducible` +instance (x y : Int) : PropHasImp (¬ x = y) where + concl := x < y ∨ x > y + prop := λ (h:x ≠ y) => ne_is_lt_or_gt h --- Auxiliary function for `collectHasPropInstances` -private partial def collectHasPropInstancesAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do - -- We do it in a very simpler manner: we deconstruct applications, - -- and recursively explore the sub-expressions. Note that we do - -- not go inside foralls and abstractions (should we?). - e.withApp fun f args => do - let hasPropInst ← lookupHasProp f - let hs := Option.getD (hasPropInst.map hs.insert) hs - let hs ← args.foldlM collectHasPropInstancesAux hs - pure hs +open Lean Lean.Elab Command Term Lean.Meta --- Explore a term and return the instances of `HasProp` found for the sub-expressions -def collectHasPropInstances (e : Expr) : MetaM (HashSet Expr) := - collectHasPropInstancesAux HashSet.empty e +-- Small utility: print all the declarations in the context +elab "print_all_decls" : tactic => do + let ctx ← Lean.MonadLCtx.getLCtx + for decl in ← ctx.getDecls do + let ty ← Lean.Meta.inferType decl.toExpr + logInfo m!"{decl.toExpr} : {ty}" + pure () --- Explore a term and return the set of scalar expressions found inside -partial def collectScalarExprsAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do +-- Explore a term by decomposing the applications (we explore the applied +-- functions and their arguments, but ignore lambdas, forall, etc. - +-- should we go inside?). +partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do -- We do it in a very simpler manner: we deconstruct applications, -- and recursively explore the sub-expressions. Note that we do -- not go inside foralls and abstractions (should we?). e.withApp fun f args => do - let hs ← if ← isScalarExpr f then pure (hs.insert f) else pure hs - let hs ← args.foldlM collectScalarExprsAux hs - pure hs - --- Explore a term and return the list of scalar expressions found inside -def collectScalarExprs (e : Expr) : MetaM (HashSet Expr) := - collectScalarExprsAux HashSet.empty e - --- Collect the scalar expressions in the context -def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do + let s ← k s f + args.foldlM (foldTermApps k) s + +-- Provided a function `k` which lookups type class instances on an expression, +-- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. +def collectInstances + (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do + let k s e := do + match ← k e with + | none => pure s + | some i => pure (s.insert i) + foldTermApps k s e + +-- Similar to `collectInstances`, but explores all the local declarations in the +-- main context. +def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do Lean.Elab.Tactic.withMainContext do -- Get the local context let ctx ← Lean.MonadLCtx.getLCtx @@ -169,40 +154,37 @@ def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do let hs := HashSet.empty -- Explore the declarations let decls ← ctx.getDecls - let hs ← decls.foldlM (fun hs d => collectScalarExprsAux hs d.toExpr) hs - -- Return - pure hs + decls.foldlM (fun hs d => collectInstances k hs d.toExpr) hs + +-- Return an instance of `HasProp` for `e` if it has some +def lookupHasProp (e : Expr) : MetaM (Option Expr) := do + trace[Arith] "lookupHasProp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] "lookupHasProp: observing" + let ty ← Lean.Meta.inferType e + let hasProp ← mkAppM ``HasProp #[ty] + let hasPropInst ← trySynthInstance hasProp + match hasPropInst with + | LOption.some i => + trace[Arith] "Found HasProp instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none -- Collect the instances of `HasProp` for the subexpressions in the context -def getHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do - Lean.Elab.Tactic.withMainContext do - -- Get the local context - let ctx ← Lean.MonadLCtx.getLCtx - -- Just a matter of precaution - let ctx ← instantiateLCtxMVars ctx - -- Initialize the hashset - let hs := HashSet.empty - -- Explore the declarations - let decls ← ctx.getDecls - let hs ← decls.foldlM (fun hs d => collectHasPropInstancesAux hs d.toExpr) hs - -- Return - pure hs +def collectHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupHasProp -elab "list_scalar_exprs" : tactic => do - logInfo m!"Listing scalar expressions" - let hs ← getScalarExprsFromMainCtx +elab "display_has_prop_instances" : tactic => do + trace[Arith] "Displaying the HasProp instances" + let hs ← collectHasPropInstancesFromMainCtx hs.forM fun e => do - logInfo m!"+ Scalar expression: {e}" + trace[Arith] "+ HasProp instance: {e}" -example (x y : U32) (z : Usize) : True := by - list_scalar_exprs - simp -elab "display_has_prop_instances" : tactic => do - logInfo m!"Displaying the HasProp instances" - let hs ← getHasPropInstancesFromMainCtx - hs.forM fun e => do - logInfo m!"+ HasProp instance: {e}" +set_option trace.Arith true example (x : U32) : True := by let i : HasProp U32 := inferInstance @@ -211,34 +193,45 @@ example (x : U32) : True := by display_has_prop_instances simp -elab "list_local_decls_1" : tactic => - Lean.Elab.Tactic.withMainContext do - -- Get the local context - let ctx ← Lean.MonadLCtx.getLCtx - let ctx ← instantiateLCtxMVars ctx - let decls ← ctx.getDecls - -- Filter the scalar expressions - let decls ← decls.filterMapM fun decl: Lean.LocalDecl => do - let declExpr := decl.toExpr - let declName := decl.userName - let declType ← Lean.Meta.inferType declExpr - dbg_trace f!"+ local decl: name: {declName} | expr: {declExpr} | ty: {declType}" - -- Try to convert the expression to a scalar - -- TODO: I tried to do it with Lean.Meta.mkAppM but it didn't work: how - -- do we allow Lean to perform (controlled) unfoldings for instantiation - -- purposes? - let r ← Lean.observing? do - let isScalar ← mkAppM `Arith.IsScalar #[declType] - let isScalar ← trySynthInstance isScalar - match isScalar with - | LOption.some x => some x - | _ => none - match r with - | .some _ => dbg_trace f!" Scalar expression"; pure r - | _ => dbg_trace f!" Not a scalar"; pure .none - pure () +set_option trace.Arith false -def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) : Tactic.TacticM Unit := +-- Return an instance of `PropHasImp` for `e` if it has some +def lookupPropHasImp (e : Expr) : MetaM (Option Expr) := do + trace[Arith] "lookupPropHasImp" + -- TODO: do we need Lean.observing? + -- This actually eliminates the error messages + Lean.observing? do + trace[Arith] "lookupPropHasImp: observing" + let ty ← Lean.Meta.inferType e + trace[Arith] "lookupPropHasImp: ty: {ty}" + let cl ← mkAppM ``PropHasImp #[ty] + let inst ← trySynthInstance cl + match inst with + | LOption.some i => + trace[Arith] "Found PropHasImp instance" + let i_prop ← mkProjection i (Name.mkSimple "prop") + some (← mkAppM' i_prop #[e]) + | _ => none + +-- Collect the instances of `PropHasImp` for the subexpressions in the context +def collectPropHasImpInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do + collectInstancesFromMainCtx lookupPropHasImp + +elab "display_prop_has_imp_instances" : tactic => do + trace[Arith] "Displaying the PropHasImp instances" + let hs ← collectPropHasImpInstancesFromMainCtx + hs.forM fun e => do + trace[Arith] "+ PropHasImp instance: {e}" + +set_option trace.Arith true + +example (x y : Int) (h0 : x ≠ y) (h1 : ¬ x = y) : True := by + display_prop_has_imp_instances + simp + +set_option trace.Arith false + +def addDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := -- I don't think we need that Lean.Elab.Tactic.withMainContext do -- Insert the new declaration @@ -248,8 +241,7 @@ def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) let lctx ← Lean.MonadLCtx.getLCtx let fid := nval.fvarId! let decl := lctx.get! fid - -- Remark: logInfo instantiates the mvars (contrary to dbg_trace): - logInfo m!" new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}" + trace[Arith] " new decl: \"{decl.userName}\" ({nval}) : {decl.type} := {decl.value}" -- -- Tranform the main goal `?m0` to `let x = nval in ?m1` let mvarId ← Tactic.getMainGoal @@ -260,17 +252,14 @@ def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) -- - asLet is false: ewVal is `λ $name => $newMVar` -- We need to apply it to `val` let newVal := if asLet then newVal else mkAppN newVal #[val] - -- Focus on the current goal - Tactic.focus do - -- Assign the main goal. - -- We must do this *after* we focused on the current goal, because - -- after we assigned the meta variable the goal is considered as solved + -- Assign the main goal and update the current goal mvarId.assign newVal - -- Replace the list of goals with the new goal - we can do this because - -- we focused on the current goal - Lean.Elab.Tactic.setGoals [newMVar.mvarId!] + let goals ← Tactic.getUnsolvedGoals + Lean.Elab.Tactic.setGoals (newMVar.mvarId! :: goals) + -- Call the continuation + k nval -def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tactic.TacticM Unit := +def addDeclSyntax (name : Name) (val : Syntax) (asLet : Bool) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := -- I don't think we need that Lean.Elab.Tactic.withMainContext do -- @@ -281,13 +270,13 @@ def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tac -- not choose): we force the instantiation of the meta-variable synthesizeSyntheticMVarsUsingDefault -- - evalAddDecl name val type asLet + addDecl name val type asLet k elab "custom_let " n:ident " := " v:term : tactic => - evalAddDeclSyntax n.getId v (asLet := true) + addDeclSyntax n.getId v (asLet := true) (λ _ => pure ()) elab "custom_have " n:ident " := " v:term : tactic => - evalAddDeclSyntax n.getId v (asLet := false) + addDeclSyntax n.getId v (asLet := false) (λ _ => pure ()) example : Nat := by custom_let x := 4 @@ -297,26 +286,32 @@ example : Nat := by example (x : Bool) : Nat := by cases x <;> custom_let x := 3 <;> apply x --- Lookup the instances of `HasProp for all the sub-expressions in the context, --- and introduce the corresponding assumptions -elab "intro_has_prop_instances" : tactic => do - logInfo m!"Introducing the HasProp instances" - let hs ← getHasPropInstancesFromMainCtx +-- Lookup instances in a context and introduce them with additional declarations. +def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) (k : Expr → Tactic.TacticM Unit) : Tactic.TacticM Unit := do + let hs ← collectInstancesFromMainCtx lookup hs.forM fun e => do let type ← inferType e - let name := `h - evalAddDecl name e type (asLet := false) - -- Simplify to unfold the `prop_ty` projector + let name ← mkFreshUserName `h + -- Add a declaration + addDecl name e type (asLet := false) λ nval => do + -- Simplify to unfold the declaration to unfold (i.e., the projector) let simpTheorems ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems) - -- Add the equational theorem for `HashProp'.prop_ty` - let simpTheorems ← simpTheorems.addDeclToUnfold ``HasProp.prop_ty + -- Add the equational theorem for the decl to unfold + let simpTheorems ← simpTheorems.addDeclToUnfold declToUnfold let congrTheorems ← getSimpCongrTheorems let ctx : Simp.Context := { simpTheorems := #[simpTheorems], congrTheorems } -- Where to apply the simplifier let loc := Tactic.Location.targets #[mkIdent name] false -- Apply the simplifier let _ ← Tactic.simpLocation ctx (discharge? := .none) loc - pure () + -- Call the continuation + k nval + +-- Lookup the instances of `HasProp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_has_prop_instances" : tactic => do + trace[Arith] "Introducing the HasProp instances" + introInstances ``HasProp.prop_ty lookupHasProp (fun _ => pure ()) example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by intro_has_prop_instances @@ -326,23 +321,129 @@ example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by intro_has_prop_instances simp_all [Scalar.max, Scalar.min] --- A tactic to solve linear arithmetic goals -syntax "int_tac" : tactic +-- Tactic to split on a disjunction +def splitDisj (h : Expr) : Tactic.TacticM Unit := do + trace[Arith] "assumption on which to split: {h}" + -- Retrieve the main goal + Lean.Elab.Tactic.withMainContext do + let goalType ← Lean.Elab.Tactic.getMainTarget + -- Case disjunction + let hTy ← inferType h + hTy.withApp fun f xs => do + trace[Arith] "as app: {f} {xs}" + -- Sanity check + if ¬ (f.isConstOf ``Or ∧ xs.size = 2) then throwError "Invalid argument to splitDisj" + let a := xs.get! 0 + let b := xs.get! 1 + -- Introduce the new goals + -- Returns: + -- - the match branch + -- - a fresh new mvar id + let mkGoal (hTy : Expr) (nGoalName : String) : MetaM (Expr × MVarId) := do + -- Introduce a variable for the assumption (`a` or `b`) + let asmName ← mkFreshUserName `h + withLocalDeclD asmName hTy fun var => do + -- The new goal + let mgoal ← mkFreshExprSyntheticOpaqueMVar goalType (tag := Name.mkSimple nGoalName) + -- The branch expression + let branch ← mkLambdaFVars #[var] mgoal + pure (branch, mgoal.mvarId!) + let (inl, mleft) ← mkGoal a "left" + let (inr, mright) ← mkGoal b "right" + trace[Arith] "left: {inl}: {mleft}" + trace[Arith] "right: {inr}: {mright}" + -- Create the match expression + withLocalDeclD (← mkFreshUserName `h) hTy fun hVar => do + let motive ← mkLambdaFVars #[hVar] goalType + let casesExpr ← mkAppOptM ``Or.casesOn #[a, b, motive, h, inl, inr] + let mgoal ← Tactic.getMainGoal + trace[Arith] "goals: {← Tactic.getUnsolvedGoals}" + trace[Arith] "main goal: {mgoal}" + mgoal.assign casesExpr + let goals ← Tactic.getUnsolvedGoals + Tactic.setGoals (mleft :: mright :: goals) + trace[Arith] "new goals: {← Tactic.getUnsolvedGoals}" + +elab "split_disj " n:ident : tactic => do + Lean.Elab.Tactic.withMainContext do + let decl ← Lean.Meta.getLocalDeclFromUserName n.getId + let fvar := mkFVar decl.fvarId + splitDisj fvar + +example (x y : Int) (h0 : x ≤ y ∨ x ≥ y) : x ≤ y ∨ x ≥ y := by + split_disj h0 + . left; assumption + . right; assumption + +-- Lookup the instances of `PropHasImp for all the sub-expressions in the context, +-- and introduce the corresponding assumptions +elab "intro_prop_has_imp_instances" : tactic => do + trace[Arith] "Introducing the PropHasImp instances" + introInstances ``PropHasImp.concl lookupPropHasImp (fun _ => pure ()) + +example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by + intro_prop_has_imp_instances + rename_i h + split_disj h + . linarith + . linarith + +syntax "int_tac_preprocess" : tactic + +/- Boosting a bit the linarith tac. + + We do the following: + - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we + introduce two goals with the assumptions `x < y` and `x > y` + TODO: we could create a PR for mathlib. + -/ +def intTacPreprocess : Tactic.TacticM Unit := do + Lean.Elab.Tactic.withMainContext do + -- Get the local context + let ctx ← Lean.MonadLCtx.getLCtx + -- Just a matter of precaution + let ctx ← instantiateLCtxMVars ctx + -- Explore the declarations - Remark: we don't explore the subexpressions + -- (we could, but it is rarely necessary, because terms of the shape `x ≠ y` + -- are often introduced because of branchings in the code, and using `split` + -- introduces exactly the assumptions `x = y` and `x ≠ y`). + let decls ← ctx.getDecls + for decl in decls do + let ty ← Lean.Meta.inferType decl.toExpr + ty.withApp fun f args => do + trace[Arith] "decl: {f} {args}" + -- Check if this is an inequality between integers + pure () + +-- TODO: int_tac + +elab "int_tac_preprocess" : tactic => + intTacPreprocess + +example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by + int_tac_preprocess + simp_all + int_tac_preprocess + +-- A tactic to solve linear arithmetic goals in the presence of scalars +syntax "scalar_tac" : tactic macro_rules - | `(tactic| int_tac) => + | `(tactic| scalar_tac) => `(tactic| intro_has_prop_instances; have := Scalar.cMin_bound ScalarTy.Usize; have := Scalar.cMin_bound ScalarTy.Isize; have := Scalar.cMax_bound ScalarTy.Usize; have := Scalar.cMax_bound ScalarTy.Isize; + -- TODO: not too sure about that simp only [*, Scalar.max, Scalar.min, Scalar.cMin, Scalar.cMax] at *; + -- TODO: use int_tac linarith) example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by - int_tac + scalar_tac example {a: Type} (v : Vec a) : v.val.length ≤ Scalar.max ScalarTy.Usize := by - int_tac + scalar_tac end Arith diff --git a/backends/lean/Base/ArithBase.lean b/backends/lean/Base/ArithBase.lean new file mode 100644 index 00000000..ddd2dc24 --- /dev/null +++ b/backends/lean/Base/ArithBase.lean @@ -0,0 +1,10 @@ +import Lean + +namespace Arith + +open Lean Elab Term Meta + +-- We can't define and use trace classes in the same file +initialize registerTraceClass `Arith + +end Arith diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean index aaaea6f7..fedb1c74 100644 --- a/backends/lean/Base/Diverge/ElabBase.lean +++ b/backends/lean/Base/Diverge/ElabBase.lean @@ -12,116 +12,4 @@ initialize registerTraceClass `Diverge.def.genBody initialize registerTraceClass `Diverge.def.valid initialize registerTraceClass `Diverge.def.unfold --- Useful helper to explore definitions and figure out the variant --- of their sub-expressions. -def explore_term (incr : String) (e : Expr) : MetaM Unit := - match e with - | .bvar _ => do logInfo m!"{incr}bvar: {e}"; return () - | .fvar _ => do logInfo m!"{incr}fvar: {e}"; return () - | .mvar _ => do logInfo m!"{incr}mvar: {e}"; return () - | .sort _ => do logInfo m!"{incr}sort: {e}"; return () - | .const _ _ => do logInfo m!"{incr}const: {e}"; return () - | .app fn arg => do - logInfo m!"{incr}app: {e}" - explore_term (incr ++ " ") fn - explore_term (incr ++ " ") arg - | .lam _bName bTy body _binfo => do - logInfo m!"{incr}lam: {e}" - explore_term (incr ++ " ") bTy - explore_term (incr ++ " ") body - | .forallE _bName bTy body _bInfo => do - logInfo m!"{incr}forallE: {e}" - explore_term (incr ++ " ") bTy - explore_term (incr ++ " ") body - | .letE _dName ty val body _nonDep => do - logInfo m!"{incr}letE: {e}" - explore_term (incr ++ " ") ty - explore_term (incr ++ " ") val - explore_term (incr ++ " ") body - | .lit _ => do logInfo m!"{incr}lit: {e}"; return () - | .mdata _ e => do - logInfo m!"{incr}mdata: {e}" - explore_term (incr ++ " ") e - | .proj _ _ struct => do - logInfo m!"{incr}proj: {e}" - explore_term (incr ++ " ") struct - -def explore_decl (n : Name) : TermElabM Unit := do - logInfo m!"Name: {n}" - let env ← getEnv - let decl := env.constants.find! n - match decl with - | .defnInfo val => - logInfo m!"About to explore defn: {decl.name}" - logInfo m!"# Type:" - explore_term "" val.type - logInfo m!"# Value:" - explore_term "" val.value - | .axiomInfo _ => throwError m!"axiom: {n}" - | .thmInfo _ => throwError m!"thm: {n}" - | .opaqueInfo _ => throwError m!"opaque: {n}" - | .quotInfo _ => throwError m!"quot: {n}" - | .inductInfo _ => throwError m!"induct: {n}" - | .ctorInfo _ => throwError m!"ctor: {n}" - | .recInfo _ => throwError m!"rec: {n}" - -syntax (name := printDecl) "print_decl " ident : command - -open Lean.Elab.Command - -@[command_elab printDecl] def elabPrintDecl : CommandElab := fun stx => do - liftTermElabM do - let id := stx[1] - addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none - let cs ← resolveGlobalConstWithInfos id - explore_decl cs[0]! - -private def test1 : Nat := 0 -private def test2 (x : Nat) : Nat := x - -print_decl test1 -print_decl test2 - --- A map visitor function for expressions (adapted from `AbstractNestedProofs.visit`) --- The continuation takes as parameters: --- - the current depth of the expression (useful for printing/debugging) --- - the expression to explore -partial def mapVisit (k : Nat → Expr → MetaM Expr) (e : Expr) : MetaM Expr := do - let mapVisitBinders (xs : Array Expr) (k2 : MetaM Expr) : MetaM Expr := do - let localInstances ← getLocalInstances - let mut lctx ← getLCtx - for x in xs do - let xFVarId := x.fvarId! - let localDecl ← xFVarId.getDecl - let type ← mapVisit k localDecl.type - let localDecl := localDecl.setType type - let localDecl ← match localDecl.value? with - | some value => let value ← mapVisit k value; pure <| localDecl.setValue value - | none => pure localDecl - lctx :=lctx.modifyLocalDecl xFVarId fun _ => localDecl - withLCtx lctx localInstances k2 - -- TODO: use a cache? (Lean.checkCache) - let rec visit (i : Nat) (e : Expr) : MetaM Expr := do - -- Explore - let e ← k i e - match e with - | .bvar _ - | .fvar _ - | .mvar _ - | .sort _ - | .lit _ - | .const _ _ => pure e - | .app .. => do e.withApp fun f args => return mkAppN f (← args.mapM (visit (i + 1))) - | .lam .. => - lambdaLetTelescope e fun xs b => - mapVisitBinders xs do mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false) - | .forallE .. => do - forallTelescope e fun xs b => mapVisitBinders xs do mkForallFVars xs (← visit (i + 1) b) - | .letE .. => do - lambdaLetTelescope e fun xs b => mapVisitBinders xs do - mkLambdaFVars xs (← visit (i + 1) b) (usedLetOnly := false) - | .mdata _ b => return e.updateMData! (← visit (i + 1) b) - | .proj _ _ b => return e.updateProj! (← visit (i + 1) b) - visit 0 e - end Diverge |