summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
authorSon Ho2024-05-24 16:32:59 +0200
committerSon Ho2024-05-24 16:32:59 +0200
commit321263384bb1e6e8bfd08806f35164bdba387d74 (patch)
tree04d90b72b7591e380079614a4335e9ca7fe11268 /backends/lean
parent765cb792916c1c69f864a6cf59a49c504ad603a2 (diff)
parent0baa0519cf477fe1fa447417585960fc811bcae9 (diff)
Merge branch 'main' into afromher/recursive_projectors
Diffstat (limited to 'backends/lean')
-rw-r--r--backends/lean/Base/Arith/Arith.lean0
-rw-r--r--backends/lean/Base/Arith/Int.lean162
-rw-r--r--backends/lean/Base/Arith/Scalar.lean2
-rw-r--r--backends/lean/Base/Utils.lean22
4 files changed, 82 insertions, 104 deletions
diff --git a/backends/lean/Base/Arith/Arith.lean b/backends/lean/Base/Arith/Arith.lean
deleted file mode 100644
index e69de29b..00000000
--- a/backends/lean/Base/Arith/Arith.lean
+++ /dev/null
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean
index 5a85dff0..4a3db5f8 100644
--- a/backends/lean/Base/Arith/Int.lean
+++ b/backends/lean/Base/Arith/Int.lean
@@ -3,22 +3,25 @@
import Lean
import Lean.Meta.Tactic.Simp
import Init.Data.List.Basic
-import Mathlib.Tactic.Linarith
--- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet
---import Mathlib.Tactic.Omega
import Base.Utils
import Base.Arith.Base
namespace Arith
open Utils
+open Lean Lean.Elab Lean.Meta
+
+/- We can introduce a term in the context.
+ For instance, if we find `x : U32` in the context we can introduce `0 ≤ x ∧ x ≤ U32.max`
--- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)`
--- but the lookup didn't work
+ Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)`
+ but the lookup didn't work.
+ -/
class HasIntProp (a : Sort u) where
prop_ty : a → Prop
prop : ∀ x:a, prop_ty x
+/- Proposition with implications: if we find P we can introduce Q in the context -/
class PropHasImp (x : Prop) where
concl : Prop
prop : x → concl
@@ -27,14 +30,9 @@ instance (p : Int → Prop) : HasIntProp (Subtype p) where
prop_ty := λ x => p x
prop := λ x => x.property
--- This also works for `x ≠ y` because this expression reduces to `¬ x = y`
--- and `Ne` is marked as `reducible`
-instance (x y : Int) : PropHasImp (¬ x = y) where
- concl := x < y ∨ x > y
- prop := λ (h:x ≠ y) => ne_is_lt_or_gt h
-
--- Check if a proposition is a linear integer proposition.
--- We notably use this to check the goals.
+/- Check if a proposition is a linear integer proposition.
+ We notably use this to check the goals: this is useful to filter goals that
+ are unlikely to be solvable with arithmetic tactics. -/
class IsLinearIntProp (x : Prop) where
instance (x y : Int) : IsLinearIntProp (x < y) where
@@ -43,17 +41,35 @@ instance (x y : Int) : IsLinearIntProp (x ≤ y) where
instance (x y : Int) : IsLinearIntProp (x ≥ y) where
instance (x y : Int) : IsLinearIntProp (x ≥ y) where
instance (x y : Int) : IsLinearIntProp (x = y) where
-/- It seems we don't need to do any special preprocessing when the *goal*
- has the following shape - I guess `linarith` automatically calls `intro` -/
-instance (x y : Int) : IsLinearIntProp (¬ x = y) where
-open Lean Lean.Elab Lean.Meta
+instance (x y : Nat) : IsLinearIntProp (x < y) where
+instance (x y : Nat) : IsLinearIntProp (x > y) where
+instance (x y : Nat) : IsLinearIntProp (x ≤ y) where
+instance (x y : Nat) : IsLinearIntProp (x ≥ y) where
+instance (x y : Nat) : IsLinearIntProp (x ≥ y) where
+instance (x y : Nat) : IsLinearIntProp (x = y) where
--- Explore a term by decomposing the applications (we explore the applied
--- functions and their arguments, but ignore lambdas, forall, etc. -
--- should we go inside?).
--- Remark: we pretend projections are applications, and explore the projected
--- terms.
+instance : IsLinearIntProp False where
+instance (p : Prop) [IsLinearIntProp p] : IsLinearIntProp (¬ p) where
+instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p ∨ q) where
+instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p ∧ q) where
+-- We use the one below for goals
+instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p → q) where
+
+-- Check if the goal is a linear arithmetic goal
+def goalIsLinearInt : Tactic.TacticM Bool := do
+ Tactic.withMainContext do
+ let gty ← Tactic.getMainTarget
+ match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with
+ | .some _ => pure true
+ | _ => pure false
+
+/- Explore a term by decomposing the applications (we explore the applied
+ functions and their arguments, but ignore lambdas, forall, etc. -
+ should we go inside?).
+
+ Remark: we pretend projections are applications, and explore the projected
+ terms. -/
partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do
-- Explore the current expression
let e := e.consumeMData
@@ -68,8 +84,8 @@ partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : Me
args.foldlM (foldTermApps k) s
| _ => pure s
--- Provided a function `k` which lookups type class instances on an expression,
--- collect all the instances lookuped by applying `k` on the sub-expressions of `e`.
+/- Provided a function `k` which lookups type class instances on an expression,
+ collect all the instances lookuped by applying `k` on the sub-expressions of `e`. -/
def collectInstances
(k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
let k s e := do
@@ -78,8 +94,8 @@ def collectInstances
| some i => pure (s.insert i)
foldTermApps k s e
--- Similar to `collectInstances`, but explores all the local declarations in the
--- main context.
+/- Similar to `collectInstances`, but explores all the local declarations in the
+ main context. -/
def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do
Tactic.withMainContext do
-- Get the local context
@@ -152,6 +168,9 @@ example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by
display_prop_has_imp_instances
simp
+example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by
+ omega
+
-- Lookup instances in a context and introduce them with additional declarations.
def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do
let hs ← collectInstancesFromMainCtx lookup
@@ -174,60 +193,33 @@ def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do
elab "intro_has_int_prop_instances" : tactic => do
let _ ← introHasIntPropInstances
+def introPropHasImpInstances : Tactic.TacticM (Array Expr) := do
+ trace[Arith] "Introducing the PropHasImp instances"
+ introInstances ``PropHasImp.concl lookupPropHasImp
+
-- Lookup the instances of `PropHasImp for all the sub-expressions in the context,
-- and introduce the corresponding assumptions
elab "intro_prop_has_imp_instances" : tactic => do
- trace[Arith] "Introducing the PropHasImp instances"
- let _ ← introInstances ``PropHasImp.concl lookupPropHasImp
+ let _ ← introPropHasImpInstances
-example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by
- intro_prop_has_imp_instances
- rename_i h
- split_disj h
- . linarith
- . linarith
-
-/- Boosting a bit the linarith tac.
-
- We do the following:
- - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we
- introduce two goals with the assumptions `x < y` and `x > y`
- TODO: we could create a PR for mathlib.
+/- Boosting a bit the `omega` tac.
-/
def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do
Tactic.withMainContext do
- -- Lookup the instances of PropHasImp (this is how we detect assumptions
- -- of the proper shape), introduce assumptions in the context and split
- -- on those
- -- TODO: get rid of the assumptions that we split
- let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit :=
- match asms with
- | [] => pure ()
- | asm :: asms =>
- let k := splitOnAsms asms
- Utils.splitDisjTac asm k k
- -- Introduce the scalar bounds
+ -- Introduce the instances of `HasIntProp`
let _ ← introHasIntPropInstances
- -- Extra preprocessing, before we split on the disjunctions
+ -- Introduce the instances of `PropHasImp`
+ let _ ← introPropHasImpInstances
+ -- Extra preprocessing
extraPreprocess
- -- Split - note that the extra-preprocessing step might actually have
- -- proven the goal (by doing simplifications for instance)
- Tactic.allGoals do
- let asms ← introInstances ``PropHasImp.concl lookupPropHasImp
- splitOnAsms asms.toList
+ -- Reduce all the terms in the goal - note that the extra preprocessing step
+ -- might have proven the goal, hence the `Tactic.allGoals`
+ Tactic.allGoals do tryTac (dsimpAt false [] [] [] Tactic.Location.wildcard)
elab "int_tac_preprocess" : tactic =>
intTacPreprocess (do pure ())
--- Check if the goal is a linear arithmetic goal
-def goalIsLinearInt : Tactic.TacticM Bool := do
- Tactic.withMainContext do
- let gty ← Tactic.getMainTarget
- match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with
- | .some _ => pure true
- | _ => pure false
-
-def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do
+def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do
Tactic.withMainContext do
Tactic.focus do
let g ← Tactic.getMainGoal
@@ -243,31 +235,15 @@ def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Ta
-- Split the conjunctions in the goal
if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget)
-- Call linarith
- let linarith := do
- let cfg : Linarith.LinarithConfig := {
- -- We do this with our custom preprocessing
- splitNe := false
- }
- Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg
Tactic.allGoals do
- -- We check if the goal is a linear arithmetic goal: if yes, we directly
- -- call linarith, otherwise we first apply exfalso (we do this because
- -- linarith is too general and sometimes fails to do this correctly).
- if ← goalIsLinearInt then do
- trace[Arith] "linarith goal: {← Tactic.getMainGoal}"
- linarith
- else do
+ try do Tactic.Omega.omegaTactic {}
+ catch _ =>
let g ← Tactic.getMainGoal
- let gs ← g.apply (Expr.const ``False.elim [.zero])
- let goals ← Tactic.getGoals
- Tactic.setGoals (gs ++ goals)
- Tactic.allGoals do
- trace[Arith] "linarith goal: {← Tactic.getMainGoal}"
- linarith
+ throwError "{tacName} failed to prove the goal:\n{g}"
elab "int_tac" args:(" split_goal"?): tactic =>
let split := args.raw.getArgs.size > 0
- intTac split (do pure ())
+ intTac "int_tac" split (do pure ())
-- For termination proofs
syntax "int_decr_tac" : tactic
@@ -280,19 +256,11 @@ macro_rules
| apply Arith.to_int_sub_to_nat_lt) <;>
simp_all <;> int_tac)
-example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
- int_tac_preprocess
- linarith
- linarith
-
-example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
- int_tac
-
--- Checking that things append correctly when there are several disjunctions
+-- Checking that things happen correctly when there are several disjunctions
example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by
int_tac split_goal
--- Checking that things append correctly when there are several disjunctions
+-- Checking that things happen correctly when there are several disjunctions
example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by
int_tac split_goal
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 9441be86..86b2e216 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -38,7 +38,7 @@ elab "scalar_tac_preprocess" : tactic =>
-- A tactic to solve linear arithmetic goals in the presence of scalars
def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do
- intTac splitGoalConjs scalarTacExtraPreprocess
+ intTac "scalar_tac" splitGoalConjs scalarTacExtraPreprocess
elab "scalar_tac" : tactic =>
scalarTac false
diff --git a/backends/lean/Base/Utils.lean b/backends/lean/Base/Utils.lean
index eacfe72b..7ae5a832 100644
--- a/backends/lean/Base/Utils.lean
+++ b/backends/lean/Base/Utils.lean
@@ -658,6 +658,12 @@ example (h : ∃ x y z, x + y + z ≥ 0) : ∃ x, x ≥ 0 := by
rename_i x y z
exists x + y + z
+/- Initialize a context for the `simp` function.
+
+ The initialization of the context is adapted from `Tactic.elabSimpArgs`.
+ Something very annoying is that there is no function which allows to
+ initialize a simp context without doing an elaboration - as a consequence
+ we write our own here. -/
def mkSimpCtx (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Simp.Context := do
-- Initialize either with the builtin simp theorems or with all the simp theorems
@@ -689,7 +695,6 @@ def mkSimpCtx (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (
let congrTheorems ← getSimpCongrTheorems
pure { simpTheorems := #[simpThms], congrTheorems }
-
inductive Location where
/-- Apply the tactic everywhere. Same as `Tactic.Location.wildcard` -/
| wildcard
@@ -725,11 +730,7 @@ where
| some (_, mvarId) => replaceMainGoal [mvarId]
return usedSimps
-/- Call the simp tactic.
- The initialization of the context is adapted from Tactic.elabSimpArgs.
- Something very annoying is that there is no function which allows to
- initialize a simp context without doing an elaboration - as a consequence
- we write our own here. -/
+/- Call the simp tactic. -/
def simpAt (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
(loc : Location) :
Tactic.TacticM Unit := do
@@ -738,6 +739,15 @@ def simpAt (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hyp
-- Apply the simplifier
let _ ← customSimpLocation ctx (discharge? := .none) loc
+/- Call the dsimp tactic. -/
+def dsimpAt (simpOnly : Bool) (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId)
+ (loc : Tactic.Location) :
+ Tactic.TacticM Unit := do
+ -- Initialize the simp context
+ let ctx ← mkSimpCtx simpOnly declsToUnfold thms hypsToUse
+ -- Apply the simplifier
+ dsimpLocation ctx loc
+
-- Call the simpAll tactic
def simpAll (declsToUnfold : List Name) (thms : List Name) (hypsToUse : List FVarId) :
Tactic.TacticM Unit := do