diff options
author | Son Ho | 2023-12-07 20:52:04 +0100 |
---|---|---|
committer | Son Ho | 2023-12-07 20:52:04 +0100 |
commit | b3ebef29fe3f13a9004b39fcb89afb33fbbfd248 (patch) | |
tree | a530dfb5c8f45a4a79ce0f03714bb0b90495ee8c /backends/lean | |
parent | f7493580421d31b1d3798521b4f9154e69755f89 (diff) |
Start working on a version of Diverge.FixI more suited to higher-order functions
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Diverge/Base.lean | 570 | ||||
-rw-r--r-- | backends/lean/Base/Diverge/ElabBase.lean | 6 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Base.lean | 1 |
3 files changed, 510 insertions, 67 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean index 6a52387d..9d986f4e 100644 --- a/backends/lean/Base/Diverge/Base.lean +++ b/backends/lean/Base/Diverge/Base.lean @@ -12,6 +12,78 @@ set_option profiler.threshold 100 namespace Diverge +/- Auxiliary lemmas -/ +namespace Lemmas + -- TODO: not necessary anymore + def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop := + if heq: m = n then True + else + f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧ + for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne]) + termination_by for_all_fin_aux n _ m h => n - m + decreasing_by + simp_wf + apply Nat.sub_add_lt_sub <;> try simp + simp_all [Arith.add_one_le_iff_le_ne] + + def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) + + theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) : + (h : m ≤ n) → + for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i + := by + generalize h: (n - m) = k + revert m + induction k -- TODO: induction h rather? + case zero => + simp_all + intro m h1 h2 + have h: n = m := by + linarith + unfold for_all_fin_aux; simp_all + simp_all + -- There is no i s.t. m ≤ i + intro i h3; cases i; simp_all + linarith + case succ k hi => + intro m hk hmn + intro hf i hmi + have hne: m ≠ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + linarith + -- m = i? + if heq: m = i then + -- Yes: simply use the `for_all_fin_aux` hyp + unfold for_all_fin_aux at hf + simp_all + else + -- No: use the induction hypothesis + have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] + have hineq: m + 1 ≤ n := by + have hineq := Nat.lt_of_sub_eq_succ hk + simp [*, Nat.add_one_le_iff] + have heq1: n - (m + 1) = k := by + -- TODO: very annoying arithmetic proof + simp [Nat.sub_eq_iff_eq_add hineq] + have hineq1: m ≤ n := by linarith + simp [Nat.sub_eq_iff_eq_add hineq1] at hk + simp_arith [hk] + have hi := hi (m + 1) heq1 hineq + apply hi <;> simp_all + . unfold for_all_fin_aux at hf + simp_all + . simp_all [Arith.add_one_le_iff_le_ne] + + -- TODO: this is not necessary anymore + theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) : + for_all_fin f → ∀ i, f i + := by + intro Hf i + apply for_all_fin_aux_imp_forall <;> try assumption + simp + +end Lemmas + namespace Fix open Primitives @@ -436,6 +508,10 @@ namespace FixI /- Indexed fixed-point: definitions with indexed types, convenient to use for mutually recursive definitions. We simply port the definitions and proofs from Fix to a more specific case. + + Remark: the index designates the function in the mutually recursive group + (it should be a finite type). We make the return type depend on the input + type because we group the type parameters in the input type. -/ open Primitives Fix @@ -538,73 +614,6 @@ namespace FixI let j: Fin tys1.length := ⟨ j, jLt ⟩ Eq.mp (by simp) (get_fun tl j) - def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop := - if heq: m = n then True - else - f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧ - for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne]) - termination_by for_all_fin_aux n _ m h => n - m - decreasing_by - simp_wf - apply Nat.sub_add_lt_sub <;> try simp - simp_all [Arith.add_one_le_iff_le_ne] - - def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) - - theorem for_all_fin_aux_imp_forall {n : Nat} (f : Fin n → Prop) (m : Nat) : - (h : m ≤ n) → - for_all_fin_aux f m h → ∀ i, m ≤ i.val → f i - := by - generalize h: (n - m) = k - revert m - induction k -- TODO: induction h rather? - case zero => - simp_all - intro m h1 h2 - have h: n = m := by - linarith - unfold for_all_fin_aux; simp_all - simp_all - -- There is no i s.t. m ≤ i - intro i h3; cases i; simp_all - linarith - case succ k hi => - intro m hk hmn - intro hf i hmi - have hne: m ≠ n := by - have hineq := Nat.lt_of_sub_eq_succ hk - linarith - -- m = i? - if heq: m = i then - -- Yes: simply use the `for_all_fin_aux` hyp - unfold for_all_fin_aux at hf - simp_all - else - -- No: use the induction hypothesis - have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] - have hineq: m + 1 ≤ n := by - have hineq := Nat.lt_of_sub_eq_succ hk - simp [*, Nat.add_one_le_iff] - have heq1: n - (m + 1) = k := by - -- TODO: very annoying arithmetic proof - simp [Nat.sub_eq_iff_eq_add hineq] - have hineq1: m ≤ n := by linarith - simp [Nat.sub_eq_iff_eq_add hineq1] at hk - simp_arith [hk] - have hi := hi (m + 1) heq1 hineq - apply hi <;> simp_all - . unfold for_all_fin_aux at hf - simp_all - . simp_all [Arith.add_one_le_iff_le_ne] - - -- TODO: this is not necessary anymore - theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) : - for_all_fin f → ∀ i, f i - := by - intro Hf i - apply for_all_fin_aux_imp_forall <;> try assumption - simp - /- Automating the proofs -/ @[simp] theorem is_valid_p_same (k : ((i:id) → (x:a i) → Result (b i x)) → (i:id) → (x:a i) → Result (b i x)) (x : Result c) : @@ -707,6 +716,222 @@ namespace FixI end FixI +namespace FixII + /- Indexed fixed-point: definitions with indexed types, convenient to use for mutually + recursive definitions. We simply port the definitions and proofs from Fix to a more + specific case. + + Here however, we group the types into a parameter distinct from the inputs. + -/ + open Primitives Fix + + -- The index type + variable {id : Type u} + + -- The input/output types + variable {ty : id → Type v} {a : (i:id) → ty i → Type w} {b : (i:id) → ty i → Type x} + + -- Monotonicity relation over monadic arrows (i.e., Kleisli arrows) + def karrow_rel (k1 k2 : (i:id) → (t:ty i) → (a i t) → Result (b i t)) : Prop := + ∀ i t x, result_rel (k1 i t x) (k2 i t x) + + def kk_to_gen (k : (i:id) → (t:ty i) → (x:a i t) → Result (b i t)) : + (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst) := + λ ⟨ i, t, x ⟩ => k i t x + + def kk_of_gen (k : (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) : + (i:id) → (t:ty i) → a i t → Result (b i t) := + λ i t x => k ⟨ i, t, x ⟩ + + def k_to_gen (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) : + ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst) := + λ kk => kk_to_gen (k (kk_of_gen kk)) + + def k_of_gen (k : ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → (x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) : + ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t) := + λ kk => kk_of_gen (k (kk_to_gen kk)) + + def e_to_gen (e : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c) : + ((x: (i:id) × (t:ty i) × (a i t)) → Result (b x.fst x.snd.fst)) → Result c := + λ k => e (kk_of_gen k) + + def is_valid_p (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) + (e : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c) : Prop := + Fix.is_valid_p (k_to_gen k) (e_to_gen e) + + def is_valid (f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) : Prop := + ∀ k i t x, is_valid_p k (λ k => f k i t x) + + def fix + (f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) : + (i:id) → (t:ty i) → a i t → Result (b i t) := + kk_of_gen (Fix.fix (k_to_gen f)) + + theorem is_valid_fix_fixed_eq + {{f : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)}} + (Hvalid : is_valid f) : + fix f = f (fix f) := by + have Hvalid' : Fix.is_valid (k_to_gen f) := by + intro k x + simp only [is_valid, is_valid_p] at Hvalid + let ⟨ i, t, x ⟩ := x + have Hvalid := Hvalid (k_of_gen k) i t x + simp only [k_to_gen, k_of_gen, kk_to_gen, kk_of_gen] at Hvalid + refine Hvalid + have Heq := Fix.is_valid_fix_fixed_eq Hvalid' + simp [fix] + conv => lhs; rw [Heq] + + /- Some utilities to define the mutually recursive functions -/ + + -- TODO: use more + abbrev kk_ty (id : Type u) (ty : id → Type v) (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) := + (i:id) → (t:ty i) → a i t → Result (b i t) + abbrev k_ty (id : Type u) (ty : id → Type v) (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) := + kk_ty id ty a b → kk_ty id ty a b + + abbrev in_out_ty : Type (imax (u + 1) (imax (v + 1) (w + 1))) := + (ty : Type u) × (ty → Type v) × (ty → Type w) + -- TODO: remove? + abbrev mk_in_out_ty (ty : Type u) (in_ty : ty → Type v) (out_ty : ty → Type w) : + in_out_ty := + Sigma.mk ty (Prod.mk in_ty out_ty) + + -- Initially, we had left out the parameters id, a and b. + -- However, by parameterizing Funs with those parameters, we can state + -- and prove lemmas like Funs.is_valid_p_is_valid_p + inductive Funs (id : Type u) (ty : id → Type v) + (a : (i:id) → ty i → Type w) (b : (i:id) → ty i → Type x) : + List in_out_ty.{v, w, x} → Type (max (u + 1) (max (v + 1) (max (w + 1) (x + 1)))) := + | Nil : Funs id ty a b [] + | Cons {it: Type v} {ity : it → Type w} {oty : it → Type x} {tys : List in_out_ty} + (f : kk_ty id ty a b → (i:it) → (x:ity i) → Result (oty i)) (tl : Funs id ty a b tys) : + Funs id ty a b (⟨ it, ity, oty ⟩ :: tys) + + def get_fun {tys : List in_out_ty} (fl : Funs id ty a b tys) : + (i : Fin tys.length) → kk_ty id ty a b → (t : (tys.get i).fst) → + ((tys.get i).snd.fst t) → Result ((tys.get i).snd.snd t) := + match fl with + | .Nil => λ i => by have h:= i.isLt; simp at h + | @Funs.Cons id ty a b it ity oty tys1 f tl => + λ ⟨ i, iLt ⟩ => + match i with + | 0 => + Eq.mp (by simp [List.get]) f + | .succ j => + have jLt: j < tys1.length := by + simp at iLt + revert iLt + simp_arith + let j: Fin tys1.length := ⟨ j, jLt ⟩ + Eq.mp (by simp) (get_fun tl j) + + /- Automating the proofs -/ + @[simp] theorem is_valid_p_same + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (x : Result c) : + is_valid_p k (λ _ => x) := by + simp [is_valid_p, k_to_gen, e_to_gen] + + @[simp] theorem is_valid_p_rec + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) (i : id) (t : ty i) (x : a i t) : + is_valid_p k (λ k => k i t x) := by + simp [is_valid_p, k_to_gen, e_to_gen, kk_to_gen, kk_of_gen] + + theorem is_valid_p_ite + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) + (cond : Prop) [h : Decidable cond] + {e1 e2 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c} + (he1: is_valid_p k e1) (he2 : is_valid_p k e2) : + is_valid_p k (λ k => ite cond (e1 k) (e2 k)) := by + split <;> assumption + + theorem is_valid_p_dite + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) + (cond : Prop) [h : Decidable cond] + {e1 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → cond → Result c} + {e2 : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Not cond → Result c} + (he1: ∀ x, is_valid_p k (λ k => e1 k x)) + (he2 : ∀ x, is_valid_p k (λ k => e2 k x)) : + is_valid_p k (λ k => dite cond (e1 k) (e2 k)) := by + split <;> simp [*] + + theorem is_valid_p_bind + {{k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)}} + {{g : ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result c}} + {{h : c → ((i:id) → (t:ty i) → a i t → Result (b i t)) → Result d}} + (Hgvalid : is_valid_p k g) + (Hhvalid : ∀ y, is_valid_p k (h y)) : + is_valid_p k (λ k => do let y ← g k; h y k) := by + apply Fix.is_valid_p_bind + . apply Hgvalid + . apply Hhvalid + + def Funs.is_valid_p + (k : k_ty id ty a b) + (fl : Funs id ty a b tys) : + Prop := + match fl with + | .Nil => True + | .Cons f fl => + (∀ i x, FixII.is_valid_p k (λ k => f k i x)) ∧ fl.is_valid_p k + + theorem Funs.is_valid_p_Nil (k : k_ty id ty a b) : + Funs.is_valid_p k Funs.Nil := by simp [Funs.is_valid_p] + + def Funs.is_valid_p_is_valid_p_aux + {k : k_ty id ty a b} + {tys : List in_out_ty} + (fl : Funs id ty a b tys) (Hvalid : is_valid_p k fl) : + ∀ (i : Fin tys.length) (t : (tys.get i).fst) (x : (tys.get i).snd.fst t), + FixII.is_valid_p k (fun k => get_fun fl i k t x) := by + -- Prepare the induction + have ⟨ n, Hn ⟩ : { n : Nat // tys.length = n } := ⟨ tys.length, by rfl ⟩ + revert tys fl Hvalid + induction n + -- + case zero => + intro tys fl Hvalid Hlen; + have Heq: tys = [] := by cases tys <;> simp_all + intro i x + simp_all + have Hi := i.isLt + simp_all + case succ n Hn => + intro tys fl Hvalid Hlen i x; + cases fl <;> simp at Hlen i x Hvalid + rename_i ity oty tys f fl + have ⟨ Hvf, Hvalid ⟩ := Hvalid + have Hvf1: is_valid_p k fl := by + simp [Hvalid, Funs.is_valid_p] + have Hn := @Hn tys fl Hvf1 (by simp [*]) + -- Case disjunction on i + match i with + | ⟨ 0, _ ⟩ => + simp at x + simp [get_fun] + apply (Hvf x) + | ⟨ .succ j, HiLt ⟩ => + simp_arith at HiLt + simp at x + let j : Fin (List.length tys) := ⟨ j, by simp_arith [HiLt] ⟩ + have Hn := Hn j x + apply Hn + + def Funs.is_valid_p_is_valid_p + (tys : List in_out_ty) + (k : k_ty (Fin (List.length tys)) (λ i => (tys.get i).fst) + (fun i t => (List.get tys i).snd.fst t) (fun i t => (List.get tys i).snd.snd t)) + (fl : Funs (Fin tys.length) (λ i => (tys.get i).fst) + (λ i t => (tys.get i).snd.fst t) (λ i t => (tys.get i).snd.snd t) tys) : + fl.is_valid_p k → + ∀ (i : Fin tys.length) (t : (tys.get i).fst) (x : (tys.get i).snd.fst t), + FixII.is_valid_p k (fun k => get_fun fl i k t x) + := by + intro Hvalid + apply is_valid_p_is_valid_p_aux; simp [*] + +end FixII + namespace Ex1 /- An example of use of the fixed-point -/ open Primitives Fix @@ -1133,3 +1358,214 @@ namespace Ex6 Heqix end Ex6 + +namespace Ex7 + /- `list_nth` again, but this time we use FixII -/ + open Primitives FixII + + @[simp] def tys.{u} : List in_out_ty := + [mk_in_out_ty (Type u) (λ a => List a × Int) (λ a => a)] + + @[simp] def ty (i : Fin 1) := (tys.get i).fst + @[simp] def input_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.fst t + @[simp] def output_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.snd t + + def list_nth_body.{u} (k : (i:Fin 1) → (t:ty i) → input_ty i t → Result (output_ty i t)) + (a : Type u) (x : List a × Int) : Result a := + let ⟨ ls, i ⟩ := x + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else k 0 a ⟨ tl, i - 1 ⟩ + + @[simp] def bodies : + Funs (Fin 1) ty input_ty output_ty tys := + Funs.Cons list_nth_body Funs.Nil + + def body (k : (i : Fin 1) → (t : ty i) → (x : input_ty i t) → Result (output_ty i t)) (i: Fin 1) : + (t : ty i) → (x : input_ty i t) → Result (output_ty i t) := get_fun bodies i k + + theorem body_is_valid: is_valid body := by + -- Split the proof into proofs of validity of the individual bodies + rw [is_valid] + simp only [body] + intro k + apply (Funs.is_valid_p_is_valid_p tys) + simp [Funs.is_valid_p] + (repeat (apply And.intro)); intro x; try simp at x + simp only [list_nth_body] + -- Prove the validity of the individual bodies + intro k x + split <;> try simp + split <;> simp + + -- Writing the proof terms explicitly + theorem list_nth_body_is_valid' (k : k_ty (Fin 1) ty input_ty output_ty) + (a : Type u) (x : List a × Int) : is_valid_p k (fun k => list_nth_body k a x) := + let ⟨ ls, i ⟩ := x + match ls with + | [] => is_valid_p_same k (.fail .panic) + | hd :: tl => + is_valid_p_ite k (Eq i 0) (is_valid_p_same k (.ret hd)) (is_valid_p_rec k 0 a ⟨tl, i-1⟩) + + theorem body_is_valid' : is_valid body := + fun k => + Funs.is_valid_p_is_valid_p tys k bodies + (And.intro (list_nth_body_is_valid' k) (Funs.is_valid_p_Nil k)) + + def list_nth {a: Type u} (ls : List a) (i : Int) : Result a := + fix body 0 a ⟨ ls , i ⟩ + + -- The unfolding equation - diverges if `i < 0` + theorem list_nth_eq (ls : List a) (i : Int) : + list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else list_nth tl (i - 1) + := by + have Heq := is_valid_fix_fixed_eq body_is_valid + simp [list_nth] + conv => lhs; rw [Heq] + + -- Write the proof term explicitly: the generation of the proof term (without tactics) + -- is automatable, and the proof term is actually a lot simpler and smaller when we + -- don't use tactics. + theorem list_nth_eq'.{u} {a : Type u} (ls : List a) (i : Int) : + list_nth ls i = + match ls with + | [] => .fail .panic + | hd :: tl => + if i = 0 then .ret hd + else list_nth tl (i - 1) + := + -- Use the fixed-point equation + have Heq := is_valid_fix_fixed_eq body_is_valid.{u} + -- Add the index + have Heqi := congr_fun Heq 0 + -- Add the type parameter + have Heqia := congr_fun Heqi a + -- Add the input + have Heqix := congr_fun Heqia (ls, i) + -- Done + Heqix + +end Ex7 + +namespace Ex8 + /- Higher-order example, with FixII -/ + open Primitives FixII + + variable {id : Type u} {ty : id → Type v} + variable {a : (i:id) → ty i → Type w} {b : (i:id) → ty i → Type x} + + /- An auxiliary function, which doesn't require the fixed-point -/ + def map {a : Type y} {b : Type z} (f : a → Result b) (ls : List a) : Result (List b) := + match ls with + | [] => .ret [] + | hd :: tl => + do + let hd ← f hd + let tl ← map f tl + .ret (hd :: tl) + + /- The validity theorem for `map`, generic in `f` -/ + theorem map_is_valid + (i : id) (t : ty i) + {{f : (a i t → Result (b i t)) → (a i t) → Result c}} + (Hfvalid : ∀ k x, is_valid_p k (λ k => f (k i t) x)) + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) + (ls : List (a i t)) : + is_valid_p k (λ k => map (f (k i t)) ls) := by + induction ls <;> simp [map] + apply is_valid_p_bind <;> try simp_all + intros + apply is_valid_p_bind <;> try simp_all + + theorem map_is_valid' + (i : id) (t : ty i) + (k : ((i:id) → (t:ty i) → a i t → Result (b i t)) → (i:id) → (t:ty i) → a i t → Result (b i t)) + (ls : List (a i t)) : + is_valid_p k (λ k => map (k i t) ls) := by + induction ls <;> simp [map] + apply is_valid_p_bind <;> try simp_all + intros + apply is_valid_p_bind <;> try simp_all + +end Ex8 + +namespace Ex9 + /- An example which uses map -/ + open Primitives FixII Ex8 + + inductive Tree (a : Type u) := + | leaf (x : a) + | node (tl : List (Tree a)) + + @[simp] def tys.{u} : List in_out_ty := + [mk_in_out_ty (Type u) (λ a => Tree a) (λ a => Tree a)] + + @[simp] def ty (i : Fin 1) := (tys.get i).fst + @[simp] def input_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.fst t + @[simp] def output_ty (i : Fin 1) (t : ty i) : Type u := (tys.get i).snd.snd t + + def id_body.{u} (k : (i:Fin 1) → (t:ty i) → input_ty i t → Result (output_ty i t)) + (a : Type u) (t : Tree a) : Result (Tree a) := + match t with + | .leaf x => .ret (.leaf x) + | .node tl => + do + let tl ← map (k 0 a) tl + .ret (.node tl) + + @[simp] def bodies : + Funs (Fin 1) ty input_ty output_ty tys := + Funs.Cons id_body Funs.Nil + + theorem id_body_is_valid : + ∀ (k : ((i : Fin 1) → (t : ty i) → input_ty i t → Result (output_ty i t)) → (i : Fin 1) → (t : ty i) → input_ty i t → Result (output_ty i t)) + (a : Type u) (x : Tree a), + @is_valid_p (Fin 1) ty input_ty output_ty (output_ty 0 a) k (λ k => id_body k a x) := by + intro k a x + simp only [id_body] + split <;> try simp + apply is_valid_p_bind <;> try simp [*] + -- We have to show that `map k tl` is valid + -- Remark: `map_is_valid` doesn't work here, we need the specialized version + apply map_is_valid' + + def body (k : (i : Fin 1) → (t : ty i) → (x : input_ty i t) → Result (output_ty i t)) (i: Fin 1) : + (t : ty i) → (x : input_ty i t) → Result (output_ty i t) := get_fun bodies i k + + theorem body_is_valid : is_valid body := + fun k => + Funs.is_valid_p_is_valid_p tys k bodies + (And.intro (id_body_is_valid k) (Funs.is_valid_p_Nil k)) + + def id {a: Type u} (t : Tree a) : Result (Tree a) := + fix body 0 a t + + -- Writing the proof term explicitly + theorem id_eq' {a : Type u} (t : Tree a) : + id t = + (match t with + | .leaf x => .ret (.leaf x) + | .node tl => + do + let tl ← map id tl + .ret (.node tl)) + := + -- The unfolding equation + have Heq := is_valid_fix_fixed_eq body_is_valid.{u} + -- Add the index + have Heqi := congr_fun Heq 0 + -- Add the type parameter + have Heqia := congr_fun Heqi a + -- Add the input + have Heqix := congr_fun Heqia t + -- Done + Heqix + +end Ex9 diff --git a/backends/lean/Base/Diverge/ElabBase.lean b/backends/lean/Base/Diverge/ElabBase.lean index fedb1c74..1a0676e2 100644 --- a/backends/lean/Base/Diverge/ElabBase.lean +++ b/backends/lean/Base/Diverge/ElabBase.lean @@ -1,8 +1,11 @@ import Lean +import Base.Utils +import Base.Primitives.Base namespace Diverge open Lean Elab Term Meta +open Utils -- We can't define and use trace classes in the same file initialize registerTraceClass `Diverge.elab @@ -12,4 +15,7 @@ initialize registerTraceClass `Diverge.def.genBody initialize registerTraceClass `Diverge.def.valid initialize registerTraceClass `Diverge.def.unfold +-- For the attribute (for higher-order functions) +initialize registerTraceClass `Diverge.attr + end Diverge diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean index cf2a3b70..573f0cc5 100644 --- a/backends/lean/Base/Progress/Base.lean +++ b/backends/lean/Base/Progress/Base.lean @@ -154,6 +154,7 @@ structure PSpecAttr where specs of the scalar operations, which is what I really need, but I'm not sure it applies well to other situations. A better way would probably to use type classes, but I couldn't get them to work on those cases. It is worth retrying. + UPDATE: use discrimination trees (`DiscrTree`) from core Lean -/ structure PSpecClassAttr where attr : AttributeImpl |