diff options
author | Jonathan Protzenko | 2023-01-30 18:05:21 -0800 |
---|---|---|
committer | Son HO | 2023-06-04 21:44:33 +0200 |
commit | 9804a5f28cedc79ac89d3b97ec6addb42752df3d (patch) | |
tree | 3549c94a08498578f3cfd145475891f45d4ba422 /backends/lean | |
parent | 1d6742c059cf53e73c9bc66cec7ac1f857830e78 (diff) |
Fix some printing bits, proper syntax for terminates and decreases clauses
Diffstat (limited to '')
-rw-r--r-- | backends/lean/primitives.lean | 33 |
1 files changed, 30 insertions, 3 deletions
diff --git a/backends/lean/primitives.lean b/backends/lean/primitives.lean index dc2314fc..6a41d1f4 100644 --- a/backends/lean/primitives.lean +++ b/backends/lean/primitives.lean @@ -6,6 +6,8 @@ import Lean -- Results & monadic combinators +-- TODO: use syntactic conventions and capitalize error, result, etc. + inductive error where | assertionFailure: error | integerOverflow: error @@ -23,17 +25,24 @@ deriving Repr, BEq open result +/- HELPERS -/ + -- TODO: is there automated syntax for these discriminators? def is_ret {α: Type} (r: result α): Bool := match r with | result.ret _ => true | result.fail _ => false -def eval_global {α: Type} (x: result α) (h: is_ret x): α := +def massert (b:Bool) : result Unit := + if b then .ret () else fail assertionFailure + +def eval_global {α: Type} (x: result α) (_: is_ret x): α := match x with | result.fail _ => by contradiction | result.ret x => x +/- DO-DSL SUPPORT -/ + def bind (x: result α) (f: α -> result β) : result β := match x with | ret v => f v @@ -47,8 +56,26 @@ instance : Bind result where instance : Pure result where pure := fun x => ret x -def massert (b:Bool) : result Unit := - if b then return () else fail assertionFailure +/- CUSTOM-DSL SUPPORT -/ + +-- Let-binding the result of a monadic operation is oftentimes not sufficient, +-- because we may need a hypothesis for equational reasoning in the scope. We +-- rely on subtype, and a custom let-binding operator, in effect recreating our +-- own variant of the do-dsl + +def result.attach : (o : result α) → result { x : α // o = ret x } + | .ret x => .ret ⟨x, rfl⟩ + | .fail e => .fail e + +macro "let" h:ident " : " e:term " <-- " f:term : doElem => + `(doElem| let ⟨$e, $h⟩ ← result.attach $f) + +-- Silly example of the kind of reasoning that this notation enables +#eval do + let h: y <-- .ret (0: Nat) + let _: y = 0 := by cases h; simp + let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩ + .ret r ---------------------- -- MACHINE INTEGERS -- |