summaryrefslogtreecommitdiff
path: root/backends/lean
diff options
context:
space:
mode:
authorSon Ho2023-06-22 16:02:09 +0200
committerSon Ho2023-06-22 16:02:09 +0200
commit9421b215a8911bc545eb524b8b07e7ca2eb717f3 (patch)
tree76e31c91b52cbe7f29b2a28507eb357dc66d1ba5 /backends/lean
parent34f1f4d877b32002cd292cb1fe27969184efcf94 (diff)
Make intro_has_prop_instances work
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Arith.lean171
1 files changed, 145 insertions, 26 deletions
diff --git a/backends/lean/Base/Arith.lean b/backends/lean/Base/Arith.lean
index d4611deb..a792deb2 100644
--- a/backends/lean/Base/Arith.lean
+++ b/backends/lean/Base/Arith.lean
@@ -75,7 +75,28 @@ class IsScalar (a : Type) where
instance (ty : ScalarTy) : IsScalar (Scalar ty) where
---example (ty : ScalarTy) : IsScalar (Scalar ty) := _
+example (ty : ScalarTy) : IsScalar (Scalar ty) := inferInstance
+
+-- TODO: lookup doesn't work
+class HasProp {a : Type} (x : a) where
+ prop_ty : Prop
+ prop : prop_ty
+
+class HasProp' (a : Type) where
+ prop_ty : a → Prop
+ prop : ∀ x:a, prop_ty x
+
+instance {ty : ScalarTy} (x : Scalar x) : HasProp x where
+ -- prop_ty is inferred
+ prop := And.intro x.hmin x.hmax
+
+instance (ty : ScalarTy) : HasProp' (Scalar ty) where
+ -- prop_ty is inferred
+ prop := λ x => And.intro x.hmin x.hmax
+
+example {a : Type} (x : a) [HasProp x] : Prop :=
+ let i : HasProp x := inferInstance
+ i.prop_ty
open Lean Lean.Elab Command Term Lean.Meta
@@ -96,6 +117,40 @@ def isScalarExpr (e : Expr) : MetaM Bool := do
| .some _ => pure true
| _ => pure false
+#check @HasProp'.prop
+
+-- Return an instance of `HasProp` for `e` if it has some
+def lookupHasProp (e : Expr) : MetaM (Option Expr) := do
+ logInfo f!"lookupHasProp"
+ -- TODO: do we need Lean.observing?
+ -- This actually eliminates the error messages
+ Lean.observing? do
+ logInfo f!"lookupHasProp: observing"
+ let ty ← Lean.Meta.inferType e
+ let hasProp ← mkAppM `Arith.HasProp' #[ty]
+ let hasPropInst ← trySynthInstance hasProp
+ match hasPropInst with
+ | LOption.some i =>
+ logInfo m!"Found HasProp instance"
+ let i_prop ← mkProjection i `prop
+ some (← mkAppM' i_prop #[e])
+ | _ => none
+
+-- Auxiliary function for `collectHasPropInstances`
+private partial def collectHasPropInstancesAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
+ -- We do it in a very simpler manner: we deconstruct applications,
+ -- and recursively explore the sub-expressions. Note that we do
+ -- not go inside foralls and abstractions (should we?).
+ e.withApp fun f args => do
+ let hasPropInst ← lookupHasProp f
+ let hs := Option.getD (hasPropInst.map hs.insert) hs
+ let hs ← args.foldlM collectHasPropInstancesAux hs
+ pure hs
+
+-- Explore a term and return the instances of `HasProp` found for the sub-expressions
+def collectHasPropInstances (e : Expr) : MetaM (HashSet Expr) :=
+ collectHasPropInstancesAux HashSet.empty e
+
-- Explore a term and return the set of scalar expressions found inside
partial def collectScalarExprsAux (hs : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do
-- We do it in a very simpler manner: we deconstruct applications,
@@ -125,22 +180,43 @@ def getScalarExprsFromMainCtx : Tactic.TacticM (HashSet Expr) := do
-- Return
pure hs
-
-#check TSyntax
-#check mkIdent
--- TODO: addDecl?
--- Project the scalar expressions into the context, to retrieve the bound inequalities
--- def projectScalarExpr (e: Expr) : Tactic.TacticM Unit := do
--- let e ← `($e)
--- let e ← Lean.Elab.Term.elabTerm `($e) none
--- Lean.Elab.Tactic.evalCases `($e)
+-- Collect the instances of `HasProp` for the subexpressions in the context
+def getHasPropInstancesFromMainCtx : Tactic.TacticM (HashSet Expr) := do
+ Lean.Elab.Tactic.withMainContext do
+ -- Get the local context
+ let ctx ← Lean.MonadLCtx.getLCtx
+ -- Just a matter of precaution
+ let ctx ← instantiateLCtxMVars ctx
+ -- Initialize the hashset
+ let hs := HashSet.empty
+ -- Explore the declarations
+ let decls ← ctx.getDecls
+ let hs ← decls.foldlM (fun hs d => collectHasPropInstancesAux hs d.toExpr) hs
+ -- Return
+ pure hs
elab "list_scalar_exprs" : tactic => do
+ logInfo m!"Listing scalar expressions"
let hs ← getScalarExprsFromMainCtx
hs.forM fun e => do
- dbg_trace f!"+ Scalar expression: {e}"
+ logInfo m!"+ Scalar expression: {e}"
+
+example (x y : U32) (z : Usize) : True := by
+ list_scalar_exprs
+ simp
+
+elab "display_has_prop_instances" : tactic => do
+ logInfo m!"Displaying the HasProp instances"
+ let hs ← getHasPropInstancesFromMainCtx
+ hs.forM fun e => do
+ logInfo m!"+ HasProp instance: {e}"
-#check LocalContext
+example (x : U32) : True := by
+ let i : HasProp' U32 := inferInstance
+ have p := @HasProp'.prop _ i x
+ simp only [HasProp'.prop_ty] at p
+ display_has_prop_instances
+ simp
elab "list_local_decls_1" : tactic =>
Lean.Elab.Tactic.withMainContext do
@@ -169,18 +245,12 @@ elab "list_local_decls_1" : tactic =>
| _ => dbg_trace f!" Not a scalar"; pure .none
pure ()
-def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit :=
+def evalAddDecl (name : Name) (val : Expr) (type : Expr) (asLet : Bool := false) : Tactic.TacticM Unit :=
-- I don't think we need that
Lean.Elab.Tactic.withMainContext do
- --
- let val ← elabTerm val .none
- let type ← inferType val
- -- In some situations, the type will be left as a metavariable (for instance,
- -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will
- -- not choose): we force the instantiation of the meta-variable
- synthesizeSyntheticMVarsUsingDefault
-- Insert the new declaration
- withLetDecl name type val fun nval => do
+ let withDecl := if asLet then withLetDecl name type val else withLocalDeclD name type
+ withDecl fun nval => do
-- For debugging
let lctx ← Lean.MonadLCtx.getLCtx
let fid := nval.fvarId!
@@ -192,6 +262,11 @@ def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit :=
let mvarId ← Tactic.getMainGoal
let newMVar ← mkFreshExprSyntheticOpaqueMVar (← mvarId.getType)
let newVal ← mkLetFVars #[nval] newMVar
+ -- There are two cases:
+ -- - asLet is true: newVal is `let $name := $val in $newMVar`
+ -- - asLet is false: ewVal is `λ $name => $newMVar`
+ -- We need to apply it to `val`
+ let newVal := if asLet then newVal else mkAppN newVal #[val]
-- Focus on the current goal
Tactic.focus do
-- Assign the main goal.
@@ -202,18 +277,62 @@ def evalCustomLet (name : Name) (val : Syntax) : Tactic.TacticM Unit :=
-- we focused on the current goal
Lean.Elab.Tactic.setGoals [newMVar.mvarId!]
-elab "custom_let " n:ident " := " v:term : tactic =>
- evalCustomLet n.getId v
+def evalAddDeclSyntax (name : Name) (val : Syntax) (asLet : Bool := false) : Tactic.TacticM Unit :=
+ -- I don't think we need that
+ Lean.Elab.Tactic.withMainContext do
+ --
+ let val ← elabTerm val .none
+ let type ← inferType val
+ -- In some situations, the type will be left as a metavariable (for instance,
+ -- if the term is `3`, Lean has the choice between `Nat` and `Int` and will
+ -- not choose): we force the instantiation of the meta-variable
+ synthesizeSyntheticMVarsUsingDefault
+ --
+ evalAddDecl name val type asLet
--- Insert x = 3 in the context
elab "custom_let " n:ident " := " v:term : tactic =>
- evalCustomLet n.getId v
+ evalAddDeclSyntax n.getId v (asLet := true)
+
+elab "custom_have " n:ident " := " v:term : tactic =>
+ evalAddDeclSyntax n.getId v (asLet := false)
example : Nat := by
custom_let x := 4
- apply x
+ custom_have y := 4
+ apply y
example (x : Bool) : Nat := by
cases x <;> custom_let x := 3 <;> apply x
+#check mkIdent
+#check Syntax
+
+-- Lookup the instances of `HasProp' for all the sub-expressions in the context,
+-- and introduce the corresponding assumptions
+elab "intro_has_prop_instances" : tactic => do
+ logInfo m!"Introducing the HasProp instances"
+ let hs ← getHasPropInstancesFromMainCtx
+ hs.forM fun e => do
+ let type ← inferType e
+ let name := `h
+ evalAddDecl name e type (asLet := false)
+ -- Simplify to unfold the `prop_ty` projector
+ --let simpTheorems := ++ [``HasProp'.prop_ty]
+ let simpTheorems ← Tactic.simpOnlyBuiltins.foldlM (·.addConst ·) ({} : SimpTheorems)
+ -- Add the equational theorem for `HashProp'.prop_ty`
+ let simpTheorems ← simpTheorems.addDeclToUnfold ``HasProp'.prop_ty
+ let congrTheorems ← getSimpCongrTheorems
+ let ctx : Simp.Context := { simpTheorems := #[simpTheorems], congrTheorems }
+ -- Where to apply the simplifier
+ let loc := Tactic.Location.targets #[mkIdent name] false
+ -- Apply the simplifier
+ let _ ← Tactic.simpLocation ctx (discharge? := .none) loc
+ pure ()
+ -- simpLocation
+
+example (x y : U32) : x.val ≤ Scalar.max ScalarTy.U32 := by
+ intro_has_prop_instances
+ simp [*]
+
+
end Arith