summaryrefslogtreecommitdiff
path: root/backends/lean/Base
diff options
context:
space:
mode:
authorSon Ho2023-10-17 09:36:55 +0200
committerSon Ho2023-10-17 09:48:47 +0200
commit584726e9c4e4378129a35f6cfbbbf934448d10a9 (patch)
tree4e9c385d1115e71acb7581ab998320af867830bc /backends/lean/Base
parent2ec2e374302c772ff2c6a26e39451b4e49e13a16 (diff)
Implement tactics for termination proofs which involve arithmetic
Diffstat (limited to 'backends/lean/Base')
-rw-r--r--backends/lean/Base/Arith/Base.lean12
-rw-r--r--backends/lean/Base/Arith/Int.lean11
-rw-r--r--backends/lean/Base/Arith/Scalar.lean11
-rw-r--r--backends/lean/Base/IList/IList.lean24
4 files changed, 37 insertions, 21 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean
index 9c11ed45..8ada4171 100644
--- a/backends/lean/Base/Arith/Base.lean
+++ b/backends/lean/Base/Arith/Base.lean
@@ -57,4 +57,16 @@ theorem int_pos_ind (p : Int → Prop) :
-- TODO: there is probably something more general to do
theorem nat_zero_eq_int_zero : (0 : Nat) = (0 : Int) := by simp
+-- This is mostly used in termination proofs
+theorem to_int_to_nat_lt (x y : ℤ) (h0 : 0 ≤ x) (h1 : x < y) :
+ ↑(x.toNat) < y := by
+ simp [*]
+
+-- This is mostly used in termination proofs
+theorem to_int_sub_to_nat_lt (x y : ℤ) (x' : ℕ)
+ (h0 : ↑x' ≤ x) (h1 : x - ↑x' < y) :
+ ↑(x.toNat - x') < y := by
+ have : 0 ≤ x := by linarith
+ simp [Int.toNat_sub_of_le, *]
+
end Arith
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean
index 3359ecdb..2959e245 100644
--- a/backends/lean/Base/Arith/Int.lean
+++ b/backends/lean/Base/Arith/Int.lean
@@ -270,6 +270,17 @@ elab "int_tac" args:(" split_goal"?): tactic =>
let split := args.raw.getArgs.size > 0
intTac split (do pure ())
+-- For termination proofs
+syntax "int_decr_tac" : tactic
+macro_rules
+ | `(tactic| int_decr_tac) =>
+ `(tactic|
+ simp_wf;
+ -- TODO: don't use a macro (namespace problems)
+ (first | apply Arith.to_int_to_nat_lt
+ | apply Arith.to_int_sub_to_nat_lt) <;>
+ simp_all <;> int_tac)
+
example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by
int_tac_preprocess
linarith
diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean
index 47751c8a..66c31129 100644
--- a/backends/lean/Base/Arith/Scalar.lean
+++ b/backends/lean/Base/Arith/Scalar.lean
@@ -36,6 +36,17 @@ def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do
elab "scalar_tac" : tactic =>
scalarTac false
+-- For termination proofs
+syntax "scalar_decr_tac" : tactic
+macro_rules
+ | `(tactic| scalar_decr_tac) =>
+ `(tactic|
+ simp_wf;
+ -- TODO: don't use a macro (namespace problems)
+ (first | apply Arith.to_int_to_nat_lt
+ | apply Arith.to_int_sub_to_nat_lt) <;>
+ simp_all <;> scalar_tac)
+
instance (ty : ScalarTy) : HasIntProp (Scalar ty) where
-- prop_ty is inferred
prop := λ x => And.intro x.hmin x.hmax
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean
index 79de93d5..f71f2de2 100644
--- a/backends/lean/Base/IList/IList.lean
+++ b/backends/lean/Base/IList/IList.lean
@@ -118,13 +118,7 @@ def ireplicate {α : Type u} (i : ℤ) (x : α) : List α :=
if i ≤ 0 then []
else x :: ireplicate (i - 1) x
termination_by ireplicate i x => i.toNat
-decreasing_by
- simp_wf
- -- TODO: simplify this kind of proofs
- simp at *
- have : 0 ≤ i := by linarith
- have : 1 ≤ i := by linarith
- simp [Int.toNat_sub_of_le, *]
+decreasing_by int_decr_tac
@[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update]
@[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update]
@@ -173,13 +167,7 @@ theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
cases hl: l.toNat <;> simp_all
conv => rhs; rw[hl]
termination_by ireplicate_replicate l x h => l.toNat
-decreasing_by
- simp_wf
- -- TODO: simplify this kind of proofs
- simp at *
- have : 0 ≤ l := by linarith
- have : 1 ≤ l := by linarith
- simp [Int.toNat_sub_of_le, *]
+decreasing_by int_decr_tac
@[simp]
theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
@@ -191,13 +179,7 @@ theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) :
have hr := ireplicate_len (l - 1) x (by int_tac)
simp [*]
termination_by ireplicate_len l x h => l.toNat
-decreasing_by
- simp_wf
- -- TODO: simplify this kind of proofs
- simp at *
- have : 0 ≤ l := by linarith
- have : 1 ≤ l := by linarith
- simp [Int.toNat_sub_of_le, *]
+decreasing_by int_decr_tac
theorem len_eq_length (ls : List α) : ls.len = ls.length := by
induction ls