summaryrefslogtreecommitdiff
path: root/backends/lean/Base
diff options
context:
space:
mode:
authorSon Ho2023-07-18 18:02:03 +0200
committerSon Ho2023-07-18 18:02:03 +0200
commit0a8211041814b5eafac0b9e2dbcd956957a322b5 (patch)
treec823a5a3668201ddcc0caded7933dea0061a059a /backends/lean/Base
parent0f430c055c3a531ceab83635adc5df92f0015c6e (diff)
Move an arithmetic lemma
Diffstat (limited to 'backends/lean/Base')
-rw-r--r--backends/lean/Base/Arith/Base.lean6
-rw-r--r--backends/lean/Base/Diverge/Base.lean14
2 files changed, 10 insertions, 10 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean
index a6e59b74..e008f7b9 100644
--- a/backends/lean/Base/Arith/Base.lean
+++ b/backends/lean/Base/Arith/Base.lean
@@ -28,6 +28,12 @@ theorem ne_is_lt_or_gt {x y : Int} (hne : x ≠ y) : x < y ∨ x > y := by
| .inl _ => left; linarith
| .inr _ => right; linarith
+-- TODO: move?
+theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by
+ -- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4...
+ simp [Nat.add_one_le_iff]
+ simp [Nat.lt_iff_le_and_ne]
+ simp_all
/- Induction over positive integers -/
-- TODO: move
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean
index 4ff1d923..1d548389 100644
--- a/backends/lean/Base/Diverge/Base.lean
+++ b/backends/lean/Base/Diverge/Base.lean
@@ -4,6 +4,7 @@ import Init.Data.List.Basic
import Mathlib.Tactic.RunCmd
import Mathlib.Tactic.Linarith
import Base.Primitives.Base
+import Base.Arith.Base
/- TODO: this is very useful, but is there more? -/
set_option profiler true
@@ -537,23 +538,16 @@ namespace FixI
let j: Fin tys1.length := ⟨ j, jLt ⟩
Eq.mp (by simp) (get_fun tl j)
- -- TODO: move
- theorem add_one_le_iff_le_ne (n m : Nat) (h1 : m ≤ n) (h2 : m ≠ n) : m + 1 ≤ n := by
- -- Damn, those proofs on natural numbers are hard - I wish Omega was in mathlib4...
- simp [Nat.add_one_le_iff]
- simp [Nat.lt_iff_le_and_ne]
- simp_all
-
def for_all_fin_aux {n : Nat} (f : Fin n → Prop) (m : Nat) (h : m ≤ n) : Prop :=
if heq: m = n then True
else
f ⟨ m, by simp_all [Nat.lt_iff_le_and_ne] ⟩ ∧
- for_all_fin_aux f (m + 1) (by simp_all [add_one_le_iff_le_ne])
+ for_all_fin_aux f (m + 1) (by simp_all [Arith.add_one_le_iff_le_ne])
termination_by for_all_fin_aux n _ m h => n - m
decreasing_by
simp_wf
apply Nat.sub_add_lt_sub <;> simp
- simp_all [add_one_le_iff_le_ne]
+ simp_all [Arith.add_one_le_iff_le_ne]
def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp)
@@ -603,7 +597,7 @@ namespace FixI
apply hi <;> simp_all
. unfold for_all_fin_aux at hf
simp_all
- . simp_all [add_one_le_iff_le_ne]
+ . simp_all [Arith.add_one_le_iff_le_ne]
-- TODO: this is not necessary anymore
theorem for_all_fin_imp_forall (n : Nat) (f : Fin n → Prop) :