summaryrefslogtreecommitdiff
path: root/backends/lean/Base
diff options
context:
space:
mode:
authorSon Ho2023-08-04 19:57:48 +0200
committerSon Ho2023-08-04 19:57:48 +0200
commit79225e6ca645ca3902b3b761966dc869306cedbd (patch)
tree1255b02c9b560d4e0782fbaf2147a162f7e18789 /backends/lean/Base
parent42b37b07b03c6bd594cac11b1f639ba66e16771b (diff)
Add SliceLen as a primitive function and make minor adjustments
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Primitives/Array.lean80
1 files changed, 38 insertions, 42 deletions
diff --git a/backends/lean/Base/Primitives/Array.lean b/backends/lean/Base/Primitives/Array.lean
index d19e9144..2d4a567b 100644
--- a/backends/lean/Base/Primitives/Array.lean
+++ b/backends/lean/Base/Primitives/Array.lean
@@ -14,7 +14,7 @@ namespace Primitives
open Result Error
-abbrev Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val }
+def Array (α : Type u) (n : Usize) := { l : List α // l.length = n.val }
instance (a : Type u) (n : Usize) : Arith.HasIntProp (Array a n) where
prop_ty := λ v => v.val.len = n.val
@@ -33,19 +33,10 @@ abbrev Array.v {α : Type u} {n : Usize} (v : Array α n) : List α := v.val
example {α: Type u} {n : Usize} (v : Array α n) : v.length ≤ Scalar.max ScalarTy.Usize := by
scalar_tac
-def Array.mk (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) :
+def Array.make (α : Type u) (n : Usize) (init : List α) (hl : init.len = n.val := by decide) :
Array α n := ⟨ init, by simp [← List.len_eq_length]; apply hl ⟩
-example : Array Int (Usize.ofInt 2) := Array.mk Int (Usize.ofInt 2) [0, 1]
-
--- Remark: not used yet, but could be used if explicit calls to Len are used in Rust
--- TODO: very annoying that the α and the n are explicit parameters
-def Array.len (α : Type u) (n : Usize) (v : Array α n) : Usize :=
- Usize.ofIntCore v.val.len (by scalar_tac) (by scalar_tac)
-
-@[simp]
-theorem Array.len_val {α : Type u} {n : Usize} (v : Array α n) : (Array.len α n v).val = v.length :=
- by rfl
+example : Array Int (Usize.ofInt 2) := Array.make Int (Usize.ofInt 2) [0, 1]
@[simp]
abbrev Array.index {α : Type u} {n : Usize} [Inhabited α] (v : Array α n) (i : Int) : α :=
@@ -81,7 +72,7 @@ def Array.index_shared_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize)
else
.fail arrayOutOfBounds
-def Array.index_mut (α : Type u) (v: Array α n) (i: Usize) : Result α :=
+def Array.index_mut (α : Type u) (n : Usize) (v: Array α n) (i: Usize) : Result α :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some x => ret x
@@ -89,13 +80,13 @@ def Array.index_mut (α : Type u) (v: Array α n) (i: Usize) : Result α :=
@[pspec]
theorem Array.index_mut_spec {α : Type u} {n : Usize} [Inhabited α] (v: Array α n) (i: Usize)
(hbound : i.val < v.length) :
- ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by
+ ∃ x, v.index_mut α n i = ret x ∧ x = v.val.index i.val := by
simp only [index_mut]
-- TODO: dependent rewrite
have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*])
simp [*]
-def Array.index_mut_back (α : Type u) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) :=
+def Array.index_mut_back (α : Type u) (n : Usize) (v: Array α n) (i: Usize) (x: α) : Result (Array α n) :=
match v.val.indexOpt i.val with
| none => fail .arrayOutOfBounds
| some _ =>
@@ -104,7 +95,7 @@ def Array.index_mut_back (α : Type u) (v: Array α n) (i: Usize) (x: α) : Resu
@[pspec]
theorem Array.index_mut_back_spec {α : Type u} {n : Usize} (v: Array α n) (i: Usize) (x : α)
(hbound : i.val < v.length) :
- ∃ nv, v.index_mut_back α i x = ret nv ∧
+ ∃ nv, v.index_mut_back α n i x = ret nv ∧
nv.val = v.val.update i.val x
:= by
simp only [index_mut_back]
@@ -209,6 +200,11 @@ theorem Slice.index_mut_back_spec {α : Type u} (v: Slice α) (i: Usize) (x : α
. simp_all
/- Array to slice/subslices -/
+
+/- We could make this function not use the `Result` type. By making it monadic, we
+ push the user to use the `Array.to_slice_spec` spec theorem below (through the
+ `progress` tactic), meaning `Array.to_slice` should be considered as opaque.
+ All what the spec theorem reveals is that the "representative" lists are the same. -/
def Array.to_slice (α : Type u) (n : Usize) (v : Array α n) : Result (Slice α) :=
ret ⟨ v.val, by simp [← List.len_eq_length]; scalar_tac ⟩
@@ -233,7 +229,7 @@ theorem Array.to_mut_slice_back_spec {α : Type u} {n : Usize} (a : Array α n)
∃ na, to_mut_slice_back α n a ns = ret na ∧ na.val = ns.val
:= by simp [to_mut_slice_back, *]
-def Array.shared_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
+def Array.subslice_shared (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ a.val.len then
ret ⟨ a.val.slice r.start.val r.end_.val,
@@ -245,29 +241,29 @@ def Array.shared_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range
fail panic
@[pspec]
-theorem Array.shared_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
+theorem Array.subslice_shared_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) :
- ∃ s, shared_subslice α n a r = ret s ∧
+ ∃ s, subslice_shared α n a r = ret s ∧
s.val = a.val.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i))
:= by
- simp [shared_subslice, *]
+ simp [subslice_shared, *]
intro i _ _
have := List.index_slice r.start.val r.end_.val i a.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac)
simp [*]
-def Array.mut_subslice (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
- Array.shared_subslice α n a r
+def Array.subslice_mut (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) : Result (Slice α) :=
+ Array.subslice_shared α n a r
@[pspec]
-theorem Array.mut_subslice_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
+theorem Array.subslice_mut_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ a.val.len) :
- ∃ s, mut_subslice α n a r = ret s ∧
+ ∃ s, subslice_mut α n a r = ret s ∧
s.val = a.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → s.val.index i = a.val.index (r.start.val + i))
- := shared_subslice_spec a r h0 h1
+ := subslice_shared_spec a r h0 h1
-def Array.mut_subslice_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) :=
+def Array.subslice_mut_back (α : Type u) (n : Usize) (a : Array α n) (r : Range Usize) (s : Slice α) : Result (Array α n) :=
-- TODO: not completely sure here
if h: r.start.val < r.end_.val ∧ r.end_.val ≤ a.length ∧ s.val.len = r.end_.val - r.start.val then
let s_beg := a.val.itake r.start.val
@@ -292,13 +288,13 @@ def Array.mut_subslice_back (α : Type u) (n : Usize) (a : Array α n) (r : Rang
-- We should introduce special symbols for the monadic arithmetic operations
-- (the use will never write those symbols directly).
@[pspec]
-theorem Array.mut_subslice_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α)
+theorem Array.subslice_mut_back_spec {α : Type u} {n : Usize} [Inhabited α] (a : Array α n) (r : Range Usize) (s : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : s.length = r.end_.val - r.start.val) :
- ∃ na, mut_subslice_back α n a r s = ret na ∧
+ ∃ na, subslice_mut_back α n a r s = ret na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = s.index (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < n.val → na.index i = a.index i) := by
- simp [mut_subslice_back, *]
+ simp [subslice_mut_back, *]
have h := List.replace_slice_index r.start.val r.end_.val a.val s.val
(by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac)
simp [List.replace_slice] at h
@@ -315,7 +311,7 @@ theorem Array.mut_subslice_back_spec {α : Type u} {n : Usize} [Inhabited α] (a
have := h2 i (by int_tac) (by int_tac)
simp [*]
-def Slice.shared_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
+def Slice.subslice_shared (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
-- TODO: not completely sure here
if r.start.val < r.end_.val ∧ r.end_.val ≤ s.length then
ret ⟨ s.val.slice r.start.val r.end_.val,
@@ -327,32 +323,32 @@ def Slice.shared_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Resul
fail panic
@[pspec]
-theorem Slice.shared_subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
+theorem Slice.subslice_shared_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) :
- ∃ ns, shared_subslice α s r = ret ns ∧
+ ∃ ns, subslice_shared α s r = ret ns ∧
ns.val = s.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i))
:= by
- simp [shared_subslice, *]
+ simp [subslice_shared, *]
intro i _ _
have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac)
simp [*]
-def Slice.mut_subslice (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
- Slice.shared_subslice α s r
+def Slice.subslice_mut (α : Type u) (s : Slice α) (r : Range Usize) : Result (Slice α) :=
+ Slice.subslice_shared α s r
@[pspec]
-theorem Slice.mut_subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
+theorem Slice.subslice_mut_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Range Usize)
(h0 : r.start.val < r.end_.val) (h1 : r.end_.val ≤ s.val.len) :
- ∃ ns, mut_subslice α s r = ret ns ∧
+ ∃ ns, subslice_mut α s r = ret ns ∧
ns.val = s.slice r.start.val r.end_.val ∧
(∀ i, 0 ≤ i → i + r.start.val < r.end_.val → ns.index i = s.index (r.start.val + i))
- := shared_subslice_spec s r h0 h1
+ := subslice_shared_spec s r h0 h1
attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing
set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse)
-def Slice.mut_subslice_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) :=
+def Slice.subslice_mut_back (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) :=
-- TODO: not completely sure here
if h: r.start.val < r.end_.val ∧ r.end_.val ≤ s.length ∧ ss.val.len = r.end_.val - r.start.val then
let s_beg := s.val.itake r.start.val
@@ -372,13 +368,13 @@ def Slice.mut_subslice_back (α : Type u) (s : Slice α) (r : Range Usize) (ss :
fail panic
@[pspec]
-theorem Slice.mut_subslice_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α)
+theorem Slice.subslice_mut_back_spec {α : Type u} [Inhabited α] (a : Slice α) (r : Range Usize) (ss : Slice α)
(_ : r.start.val < r.end_.val) (_ : r.end_.val ≤ a.length) (_ : ss.length = r.end_.val - r.start.val) :
- ∃ na, mut_subslice_back α a r ss = ret na ∧
+ ∃ na, subslice_mut_back α a r ss = ret na ∧
(∀ i, 0 ≤ i → i < r.start.val → na.index i = a.index i) ∧
(∀ i, r.start.val ≤ i → i < r.end_.val → na.index i = ss.index (i - r.start.val)) ∧
(∀ i, r.end_.val ≤ i → i < a.length → na.index i = a.index i) := by
- simp [mut_subslice_back, *]
+ simp [subslice_mut_back, *]
have h := List.replace_slice_index r.start.val r.end_.val a.val ss.val
(by scalar_tac) (by scalar_tac) (by scalar_tac) (by scalar_tac)
simp [List.replace_slice, *] at h