diff options
author | Son HO | 2023-07-31 16:15:58 +0200 |
---|---|---|
committer | GitHub | 2023-07-31 16:15:58 +0200 |
commit | 887d0ef1efc8912c6273b5ebcf979384e9d7fa97 (patch) | |
tree | 92d6021eb549f7cc25501856edd58859786b7e90 /backends/lean/Base/Progress | |
parent | 53adf30fe440eb8b6f58ba89f4a4c0acc7877498 (diff) | |
parent | 9b3a58e423333fc9a4a5a264c3beb0a3d951e86b (diff) |
Merge pull request #31 from AeneasVerif/son_lean_backend
Improve the Lean backend
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Progress.lean | 1 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Base.lean | 316 | ||||
-rw-r--r-- | backends/lean/Base/Progress/Progress.lean | 377 |
3 files changed, 694 insertions, 0 deletions
diff --git a/backends/lean/Base/Progress.lean b/backends/lean/Base/Progress.lean new file mode 100644 index 00000000..d812b896 --- /dev/null +++ b/backends/lean/Base/Progress.lean @@ -0,0 +1 @@ +import Base.Progress.Progress diff --git a/backends/lean/Base/Progress/Base.lean b/backends/lean/Base/Progress/Base.lean new file mode 100644 index 00000000..6f820a84 --- /dev/null +++ b/backends/lean/Base/Progress/Base.lean @@ -0,0 +1,316 @@ +import Lean +import Std.Lean.HashSet +import Base.Utils +import Base.Primitives.Base + +namespace Progress + +open Lean Elab Term Meta +open Utils + +-- We can't define and use trace classes in the same file +initialize registerTraceClass `Progress + +/- # Progress tactic -/ + +structure PSpecDesc where + -- The universally quantified variables + fvars : Array Expr + -- The existentially quantified variables + evars : Array Expr + -- The function + fExpr : Expr + fName : Name + -- The function arguments + fLevels : List Level + args : Array Expr + -- The universally quantified variables which appear in the function arguments + argsFVars : Array FVarId + -- The returned value + ret : Expr + -- The postcondition (if there is) + post : Option Expr + +section Methods + variable [MonadLiftT MetaM m] [MonadControlT MetaM m] [Monad m] [MonadOptions m] + variable [MonadTrace m] [MonadLiftT IO m] [MonadRef m] [AddMessageContext m] + variable [MonadError m] + variable {a : Type} + + /- Analyze a pspec theorem to decompose its arguments. + + PSpec theorems should be of the following shape: + ``` + ∀ x1 ... xn, H1 → ... Hn → ∃ y1 ... ym. f x1 ... xn = .ret ... ∧ Post1 ∧ ... ∧ Postk + ``` + + The continuation `k` receives the following inputs: + - universally quantified variables + - assumptions + - existentially quantified variables + - function name + - function arguments + - return + - postconditions + + TODO: generalize for when we do inductive proofs + -/ + partial + def withPSpec [Inhabited (m a)] [Nonempty (m a)] (th : Expr) (k : PSpecDesc → m a) + (sanityChecks : Bool := false) : + m a := do + trace[Progress] "Proposition: {th}" + -- Dive into the quantified variables and the assumptions + forallTelescope th.consumeMData fun fvars th => do + trace[Progress] "Universally quantified arguments and assumptions: {fvars}" + -- Dive into the existentials + existsTelescope th.consumeMData fun evars th => do + trace[Progress] "Existentials: {evars}" + trace[Progress] "Proposition after stripping the quantifiers: {th}" + -- Take the first conjunct + let (th, post) ← optSplitConj th.consumeMData + trace[Progress] "After splitting the conjunction:\n- eq: {th}\n- post: {post}" + -- Destruct the equality + let (mExpr, ret) ← destEq th.consumeMData + trace[Progress] "After splitting the equality:\n- lhs: {th}\n- rhs: {ret}" + -- Destruct the monadic application to dive into the bind, if necessary (this + -- is for when we use `withPSpec` inside of the `progress` tactic), and + -- destruct the application to get the function name + mExpr.consumeMData.withApp fun mf margs => do + trace[Progress] "After stripping the arguments of the monad expression:\n- mf: {mf}\n- margs: {margs}" + let (fExpr, f, args) ← do + if mf.isConst ∧ mf.constName = ``Bind.bind then do + -- Dive into the bind + let fExpr := (margs.get! 4).consumeMData + fExpr.withApp fun f args => pure (fExpr, f, args) + else pure (mExpr, mf, margs) + trace[Progress] "After stripping the arguments of the function call:\n- f: {f}\n- args: {args}" + if ¬ f.isConst then throwError "Not a constant: {f}" + -- Compute the set of universally quantified variables which appear in the function arguments + let allArgsFVars ← args.foldlM (fun hs arg => getFVarIds arg hs) HashSet.empty + -- Sanity check + if sanityChecks then + -- All the variables which appear in the inputs given to the function are + -- universally quantified (in particular, they are not *existentially* quantified) + let fvarsSet : HashSet FVarId := HashSet.ofArray (fvars.map (fun x => x.fvarId!)) + let filtArgsFVars := allArgsFVars.toArray.filter (fun fvar => ¬ fvarsSet.contains fvar) + if ¬ filtArgsFVars.isEmpty then + let filtArgsFVars := filtArgsFVars.map (fun fvarId => Expr.fvar fvarId) + throwError "Some of the function inputs are not universally quantified: {filtArgsFVars}" + let argsFVars := fvars.map (fun x => x.fvarId!) + let argsFVars := argsFVars.filter (fun fvar => allArgsFVars.contains fvar) + -- Return + trace[Progress] "Function: {f.constName!}"; + let thDesc := { + fvars := fvars + evars := evars + fExpr + fName := f.constName! + fLevels := f.constLevels! + args := args + argsFVars + ret := ret + post := post + } + k thDesc + +end Methods + +def getPSpecFunName (th : Expr) : MetaM Name := + withPSpec th (fun d => do pure d.fName) true + +def getPSpecClassFunNames (th : Expr) : MetaM (Name × Name) := + withPSpec th (fun d => do + let arg0 := d.args.get! 0 + arg0.withApp fun f _ => do + if ¬ f.isConst then throwError "Not a constant: {f}" + pure (d.fName, f.constName) + ) true + +def getPSpecClassFunNameArg (th : Expr) : MetaM (Name × Expr) := + withPSpec th (fun d => do + let arg0 := d.args.get! 0 + pure (d.fName, arg0) + ) true + +-- "Regular" pspec attribute +structure PSpecAttr where + attr : AttributeImpl + ext : MapDeclarationExtension Name + deriving Inhabited + +/- pspec attribute for type classes: we use the name of the type class to + lookup another map. We use the *first* argument of the type class to lookup + into this second map. + + Example: + ======== + We use type classes for addition. For instance, the addition between two + U32 is written (without syntactic sugar) as `HAdd.add (Scalar ty) x y`. As a consequence, + we store the theorem through the bindings: HAdd.add → Scalar → ... + + SH: TODO: this (and `PSpecClassExprAttr`) is a bit ad-hoc. For now it works for the + specs of the scalar operations, which is what I really need, but I'm not sure it + applies well to other situations. A better way would probably to use type classes, but + I couldn't get them to work on those cases. It is worth retrying. +-/ +structure PSpecClassAttr where + attr : AttributeImpl + ext : MapDeclarationExtension (NameMap Name) + deriving Inhabited + +/- Same as `PSpecClassAttr` but we use the full first argument (it works when it + is a constant). -/ +structure PSpecClassExprAttr where + attr : AttributeImpl + ext : MapDeclarationExtension (HashMap Expr Name) + deriving Inhabited + +-- TODO: the original function doesn't define correctly the `addImportedFn`. Do a PR? +def mkMapDeclarationExtension [Inhabited α] (name : Name := by exact decl_name%) : IO (MapDeclarationExtension α) := + registerSimplePersistentEnvExtension { + name := name, + addImportedFn := fun a => a.foldl (fun s a => a.foldl (fun s (k, v) => s.insert k v) s) RBMap.empty, + addEntryFn := fun s n => s.insert n.1 n.2 , + toArrayFn := fun es => es.toArray.qsort (fun a b => Name.quickLt a.1 b.1) + } + +/- The persistent map from function to pspec theorems. -/ +initialize pspecAttr : PSpecAttr ← do + let ext ← mkMapDeclarationExtension `pspecMap + let attrImpl : AttributeImpl := { + name := `pspec + descr := "Marks theorems to use with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'pspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let fName ← MetaM.run' (getPSpecFunName thDecl.type) + trace[Progress] "Registering spec theorem for {fName}" + let env := ext.addEntry env (fName, thName) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + +/- The persistent map from type classes to pspec theorems -/ +initialize pspecClassAttr : PSpecClassAttr ← do + let ext : MapDeclarationExtension (NameMap Name) ← mkMapDeclarationExtension `pspecClassMap + let attrImpl : AttributeImpl := { + name := `cpspec + descr := "Marks theorems to use for type classes with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'cpspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let (fName, argName) ← MetaM.run' (getPSpecClassFunNames thDecl.type) + trace[Progress] "Registering class spec theorem for ({fName}, {argName})" + -- Update the entry if there is one, add an entry if there is none + let env := + match (ext.getState (← getEnv)).find? fName with + | none => + let m := RBMap.ofList [(argName, thName)] + ext.addEntry env (fName, m) + | some m => + let m := m.insert argName thName + ext.addEntry env (fName, m) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + +/- The 2nd persistent map from type classes to pspec theorems -/ +initialize pspecClassExprAttr : PSpecClassExprAttr ← do + let ext : MapDeclarationExtension (HashMap Expr Name) ← mkMapDeclarationExtension `pspecClassExprMap + let attrImpl : AttributeImpl := { + name := `cepspec + descr := "Marks theorems to use for type classes with the `progress` tactic" + add := fun thName stx attrKind => do + Attribute.Builtin.ensureNoArgs stx + -- TODO: use the attribute kind + unless attrKind == AttributeKind.global do + throwError "invalid attribute 'cpspec', must be global" + -- Lookup the theorem + let env ← getEnv + let thDecl := env.constants.find! thName + let (fName, arg) ← MetaM.run' (getPSpecClassFunNameArg thDecl.type) + -- Sanity check: no variables appear in the argument + MetaM.run' do + let fvars ← getFVarIds arg + if ¬ fvars.isEmpty then throwError "The first argument ({arg}) contains variables" + -- We store two bindings: + -- - arg to theorem name + -- - reduced arg to theorem name + let rarg ← MetaM.run' (reduceAll arg) + trace[Progress] "Registering class spec theorem for ({fName}, {arg}) and ({fName}, {rarg})" + -- Update the entry if there is one, add an entry if there is none + let env := + match (ext.getState (← getEnv)).find? fName with + | none => + let m := HashMap.ofList [(arg, thName), (rarg, thName)] + ext.addEntry env (fName, m) + | some m => + let m := m.insert arg thName + let m := m.insert rarg thName + ext.addEntry env (fName, m) + setEnv env + pure () + } + registerBuiltinAttribute attrImpl + pure { attr := attrImpl, ext := ext } + + +def PSpecAttr.find? (s : PSpecAttr) (name : Name) : MetaM (Option Name) := do + return (s.ext.getState (← getEnv)).find? name + +def PSpecClassAttr.find? (s : PSpecClassAttr) (className argName : Name) : MetaM (Option Name) := do + match (s.ext.getState (← getEnv)).find? className with + | none => return none + | some map => return map.find? argName + +def PSpecClassExprAttr.find? (s : PSpecClassExprAttr) (className : Name) (arg : Expr) : MetaM (Option Name) := do + match (s.ext.getState (← getEnv)).find? className with + | none => return none + | some map => return map.find? arg + +def PSpecAttr.getState (s : PSpecAttr) : MetaM (NameMap Name) := do + pure (s.ext.getState (← getEnv)) + +def PSpecClassAttr.getState (s : PSpecClassAttr) : MetaM (NameMap (NameMap Name)) := do + pure (s.ext.getState (← getEnv)) + +def PSpecClassExprAttr.getState (s : PSpecClassExprAttr) : MetaM (NameMap (HashMap Expr Name)) := do + pure (s.ext.getState (← getEnv)) + +def showStoredPSpec : MetaM Unit := do + let st ← pspecAttr.getState + let s := st.toList.foldl (fun s (f, th) => f!"{s}\n{f} → {th}") f!"" + IO.println s + +def showStoredPSpecClass : MetaM Unit := do + let st ← pspecClassAttr.getState + let s := st.toList.foldl (fun s (f, m) => + let ms := m.toList.foldl (fun s (f, th) => + f!"{s}\n {f} → {th}") f!"" + f!"{s}\n{f} → [{ms}]") f!"" + IO.println s + +def showStoredPSpecExprClass : MetaM Unit := do + let st ← pspecClassExprAttr.getState + let s := st.toList.foldl (fun s (f, m) => + let ms := m.toList.foldl (fun s (f, th) => + f!"{s}\n {f} → {th}") f!"" + f!"{s}\n{f} → [{ms}]") f!"" + IO.println s + +end Progress diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean new file mode 100644 index 00000000..6a4729dc --- /dev/null +++ b/backends/lean/Base/Progress/Progress.lean @@ -0,0 +1,377 @@ +import Lean +import Base.Arith +import Base.Progress.Base +import Base.Primitives -- TODO: remove? + +namespace Progress + +open Lean Elab Term Meta Tactic +open Utils + +inductive TheoremOrLocal where +| Theorem (thName : Name) +| Local (asm : LocalDecl) + +instance : ToMessageData TheoremOrLocal where + toMessageData := λ x => match x with | .Theorem thName => m!"{thName}" | .Local asm => m!"{asm.userName}" + +/- Type to propagate the errors of `progressWith`. + We need this because we use the exceptions to backtrack, when trying to + use the assumptions for instance. When there is actually an error we want + to propagate to the user, we return it. -/ +inductive ProgressError +| Ok +| Error (msg : MessageData) +deriving Inhabited + +def progressWith (fExpr : Expr) (th : TheoremOrLocal) + (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool) + (asmTac : TacticM Unit) : TacticM ProgressError := do + /- Apply the theorem + We try to match the theorem with the goal + In order to do so, we introduce meta-variables for all the parameters + (i.e., quantified variables and assumpions), and unify those with the goal. + Remark: we do not introduce meta-variables for the quantified variables + which don't appear in the function arguments (we want to let them + quantified). + We also make sure that all the meta variables which appear in the + function arguments have been instantiated + -/ + let env ← getEnv + let thTy ← do + match th with + | .Theorem thName => + let thDecl := env.constants.find! thName + -- We have to introduce fresh meta-variables for the universes already + let ul : List (Name × Level) ← + thDecl.levelParams.mapM (λ x => do pure (x, ← mkFreshLevelMVar)) + let ulMap : HashMap Name Level := HashMap.ofList ul + let thTy := thDecl.type.instantiateLevelParamsCore (λ x => ulMap.find! x) + pure thTy + | .Local asmDecl => pure asmDecl.type + trace[Progress] "Looked up theorem/assumption type: {thTy}" + -- TODO: the tactic fails if we uncomment withNewMCtxDepth + -- withNewMCtxDepth do + let (mvars, binders, thExBody) ← forallMetaTelescope thTy + trace[Progress] "After stripping foralls: {thExBody}" + -- Introduce the existentially quantified variables and the post-condition + -- in the context + let thBody ← + existsTelescope thExBody.consumeMData fun _evars thBody => do + trace[Progress] "After stripping existentials: {thBody}" + let (thBody, _) ← optSplitConj thBody + trace[Progress] "After splitting the conjunction: {thBody}" + let (thBody, _) ← destEq thBody + trace[Progress] "After splitting equality: {thBody}" + -- There shouldn't be any existential variables in thBody + pure thBody.consumeMData + -- Match the body with the target + trace[Progress] "Matching:\n- body:\n{thBody}\n- target:\n{fExpr}" + let ok ← isDefEq thBody fExpr + if ¬ ok then throwError "Could not unify the theorem with the target:\n- theorem: {thBody}\n- target: {fExpr}" + let mgoal ← Tactic.getMainGoal + postprocessAppMVars `progress mgoal mvars binders true true + Term.synthesizeSyntheticMVarsNoPostponing + let thBody ← instantiateMVars thBody + trace[Progress] "thBody (after instantiation): {thBody}" + -- Add the instantiated theorem to the assumptions (we apply it on the metavariables). + let th ← do + match th with + | .Theorem thName => mkAppOptM thName (mvars.map some) + | .Local decl => mkAppOptM' (mkFVar decl.fvarId) (mvars.map some) + let asmName ← do match keep with | none => mkFreshAnonPropUserName | some n => do pure n + let thTy ← inferType th + let thAsm ← Utils.addDeclTac asmName th thTy (asLet := false) + withMainContext do -- The context changed - TODO: remove once addDeclTac is updated + let ngoal ← getMainGoal + trace[Progress] "current goal: {ngoal}" + trace[Progress] "current goal: {← ngoal.isAssigned}" + -- The assumption should be of the shape: + -- `∃ x1 ... xn, f args = ... ∧ ...` + -- We introduce the existentially quantified variables and split the top-most + -- conjunction if there is one. We use the provided `ids` list to name the + -- introduced variables. + let res ← splitAllExistsTac thAsm ids.toList fun h ids => do + -- Split the conjunctions. + -- For the conjunctions, we split according once to separate the equality `f ... = .ret ...` + -- from the postcondition, if there is, then continue to split the postcondition if there + -- are remaining ids. + let splitEqAndPost (k : Expr → Option Expr → List (Option Name) → TacticM ProgressError) : TacticM ProgressError := do + if ← isConj (← inferType h) then do + let hName := (← h.fvarId!.getDecl).userName + let (optIds, ids) ← do + match ids with + | [] => do pure (some (hName, ← mkFreshAnonPropUserName), []) + | none :: ids => do pure (some (hName, ← mkFreshAnonPropUserName), ids) + | some id :: ids => do pure (some (hName, id), ids) + splitConjTac h optIds (fun hEq hPost => k hEq (some hPost) ids) + else k h none ids + -- Simplify the target by using the equality and some monad simplifications, + -- then continue splitting the post-condition + splitEqAndPost fun hEq hPost ids => do + trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}" + simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div] + [hEq.fvarId!] (.targets #[] true) + -- Clear the equality, unless the user requests not to do so + let mgoal ← do + if keep.isSome then getMainGoal + else do + let mgoal ← getMainGoal + mgoal.tryClearMany #[hEq.fvarId!] + setGoals (mgoal :: (← getUnsolvedGoals)) + trace[Progress] "Goal after splitting eq and post and simplifying the target: {mgoal}" + -- Continue splitting following the post following the user's instructions + match hPost with + | none => + -- Sanity check + if ¬ ids.isEmpty then + return (.Error m!"Too many ids provided ({ids}): there is no postcondition to split") + else return .Ok + | some hPost => do + let rec splitPostWithIds (prevId : Name) (hPost : Expr) (ids0 : List (Option Name)) : TacticM ProgressError := do + match ids0 with + | [] => + /- We used all the user provided ids. + Split the remaining conjunctions by using fresh ids if the user + instructed to fully split the post-condition, otherwise stop -/ + if splitPost then + splitFullConjTac true hPost (λ _ => pure .Ok) + else pure .Ok + | nid :: ids => do + trace[Progress] "Splitting post: {← inferType hPost}" + -- Split + let nid ← do + match nid with + | none => mkFreshAnonPropUserName + | some nid => pure nid + trace[Progress] "\n- prevId: {prevId}\n- nid: {nid}\n- remaining ids: {ids}" + if ← isConj (← inferType hPost) then + splitConjTac hPost (some (prevId, nid)) (λ _ nhPost => splitPostWithIds nid nhPost ids) + else return (.Error m!"Too many ids provided ({ids0}) not enough conjuncts to split in the postcondition") + let curPostId := (← hPost.fvarId!.getDecl).userName + splitPostWithIds curPostId hPost ids + match res with + | .Error _ => return res -- Can we get there? We're using "return" + | .Ok => + -- Update the set of goals + let curGoals ← getUnsolvedGoals + let newGoals := mvars.map Expr.mvarId! + let newGoals ← newGoals.filterM fun mvar => not <$> mvar.isAssigned + trace[Progress] "new goals: {newGoals}" + setGoals newGoals.toList + allGoals asmTac + let newGoals ← getUnsolvedGoals + setGoals (newGoals ++ curGoals) + trace[Progress] "progress: replaced the goals" + -- + pure .Ok + +-- Small utility: if `args` is not empty, return the name of the app in the first +-- arg, if it is a const. +def getFirstArgAppName (args : Array Expr) : MetaM (Option Name) := do + if args.size = 0 then pure none + else + (args.get! 0).withApp fun f _ => do + if f.isConst then pure (some f.constName) + else pure none + +def getFirstArg (args : Array Expr) : Option Expr := do + if args.size = 0 then none + else some (args.get! 0) + +/- Helper: try to lookup a theorem and apply it, or continue with another tactic + if it fails -/ +def tryLookupApply (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool) + (asmTac : TacticM Unit) (fExpr : Expr) + (kind : String) (th : Option TheoremOrLocal) (x : TacticM Unit) : TacticM Unit := do + let res ← do + match th with + | none => + trace[Progress] "Could not find a {kind}" + pure none + | some th => do + trace[Progress] "Lookuped up {kind}: {th}" + -- Apply the theorem + let res ← do + try + let res ← progressWith fExpr th keep ids splitPost asmTac + pure (some res) + catch _ => none + match res with + | some .Ok => return () + | some (.Error msg) => throwError msg + | none => x + +-- The array of ids are identifiers to use when introducing fresh variables +def progressAsmsOrLookupTheorem (keep : Option Name) (withTh : Option TheoremOrLocal) + (ids : Array (Option Name)) (splitPost : Bool) (asmTac : TacticM Unit) : TacticM Unit := do + withMainContext do + -- Retrieve the goal + let mgoal ← Tactic.getMainGoal + let goalTy ← mgoal.getType + trace[Progress] "goal: {goalTy}" + -- Dive into the goal to lookup the theorem + let (fExpr, fName, args) ← do + withPSpec goalTy fun desc => + -- TODO: check that no quantified variables in the arguments + pure (desc.fExpr, desc.fName, desc.args) + trace[Progress] "Function: {fName}" + -- If the user provided a theorem/assumption: use it. + -- Otherwise, lookup one. + match withTh with + | some th => do + match ← progressWith fExpr th keep ids splitPost asmTac with + | .Ok => return () + | .Error msg => throwError msg + | none => + -- Try all the assumptions one by one and if it fails try to lookup a theorem. + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getDecls + for decl in decls.reverse do + trace[Progress] "Trying assumption: {decl.userName} : {decl.type}" + let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue + match res with + | .Ok => return () + | .Error msg => throwError msg + -- It failed: try to lookup a theorem + -- TODO: use a list of theorems, and try them one by one? + trace[Progress] "No assumption succeeded: trying to lookup a theorem" + let pspec ← do + let thName ← pspecAttr.find? fName + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec theorem" pspec do + -- It failed: try to lookup a *class* expr spec theorem (those are more + -- specific than class spec theorems) + let pspecClassExpr ← do + match getFirstArg args with + | none => pure none + | some arg => do + let thName ← pspecClassExprAttr.find? fName arg + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec class expr theorem" pspecClassExpr do + -- It failed: try to lookup a *class* spec theorem + let pspecClass ← do + match ← getFirstArgAppName args with + | none => pure none + | some argName => do + let thName ← pspecClassAttr.find? fName argName + pure (thName.map fun th => .Theorem th) + tryLookupApply keep ids splitPost asmTac fExpr "pspec class theorem" pspecClass do + -- Try a recursive call - we try the assumptions of kind "auxDecl" + let ctx ← Lean.MonadLCtx.getLCtx + let decls ← ctx.getAllDecls + let decls := decls.filter (λ decl => match decl.kind with + | .default | .implDetail => false | .auxDecl => true) + for decl in decls.reverse do + trace[Progress] "Trying recursive assumption: {decl.userName} : {decl.type}" + let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue + match res with + | .Ok => return () + | .Error msg => throwError msg + -- Nothing worked: failed + throwError "Progress failed" + +syntax progressArgs := ("keep" (ident <|> "_"))? ("with" ident)? ("as" " ⟨ " (ident <|> "_"),* " .."? " ⟩")? + +def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do + let args := args.raw + -- Process the arguments to retrieve the identifiers to use + trace[Progress] "Progress arguments: {args}" + let (keepArg, withArg, asArgs) ← + match args.getArgs.toList with + | [keepArg, withArg, asArgs] => do pure (keepArg, withArg, asArgs) + | _ => throwError "Unexpected: invalid arguments" + let keep : Option Name ← do + trace[Progress] "Keep arg: {keepArg}" + let args := keepArg.getArgs + if args.size > 0 then do + trace[Progress] "Keep args: {args}" + let arg := args.get! 1 + trace[Progress] "Keep arg: {arg}" + if arg.isIdent then pure (some arg.getId) + else do pure (some (← mkFreshAnonPropUserName)) + else do pure none + trace[Progress] "Keep: {keep}" + let withArg ← do + let withArg := withArg.getArgs + if withArg.size > 0 then + let id := withArg.get! 1 + trace[Progress] "With arg: {id}" + -- Attempt to lookup a local declaration + match (← getLCtx).findFromUserName? id.getId with + | some decl => do + trace[Progress] "With arg: local decl" + pure (some (.Local decl)) + | none => do + -- Not a local declaration: should be a theorem + trace[Progress] "With arg: theorem" + addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none + let cs ← resolveGlobalConstWithInfos id + match cs with + | [] => throwError "Could not find theorem {id}" + | id :: _ => + pure (some (.Theorem id)) + else pure none + let ids := + let args := asArgs.getArgs + let args := (args.get! 2).getSepArgs + args.map (λ s => if s.isIdent then some s.getId else none) + trace[Progress] "User-provided ids: {ids}" + let splitPost : Bool := + let args := asArgs.getArgs + (args.get! 3).getArgs.size > 0 + trace[Progress] "Split post: {splitPost}" + /- For scalarTac we have a fast track: if the goal is not a linear + arithmetic goal, we skip (note that otherwise, scalarTac would try + to prove a contradiction) -/ + let scalarTac : TacticM Unit := do + if ← Arith.goalIsLinearInt then + -- Also: we don't try to split the goal if it is a conjunction + -- (it shouldn't be) + Arith.scalarTac false + else + throwError "Not a linear arithmetic goal" + progressAsmsOrLookupTheorem keep withArg ids splitPost ( + withMainContext do + trace[Progress] "trying to solve assumption: {← getMainGoal}" + firstTac [assumptionTac, scalarTac]) + trace[Diverge] "Progress done" + +elab "progress" args:progressArgs : tactic => + evalProgress args + +namespace Test + open Primitives Result + + set_option trace.Progress true + set_option pp.rawOnError true + + #eval showStoredPSpec + #eval showStoredPSpecClass + + example {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val + y.val) + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + progress keep _ as ⟨ z, h1 .. ⟩ + simp [*, h1] + + example {ty} {x y : Scalar ty} + (hmin : Scalar.min ty ≤ x.val + y.val) + (hmax : x.val + y.val ≤ Scalar.max ty) : + ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by + progress keep h with Scalar.add_spec as ⟨ z ⟩ + simp [*, h] + + /- Checking that universe instantiation works: the original spec uses + `α : Type u` where u is quantified, while here we use `α : Type 0` -/ + example {α : Type} (v: Vec α) (i: Usize) (x : α) + (hbounds : i.val < v.length) : + ∃ nv, v.index_mut_back α i x = ret nv ∧ + nv.val = v.val.update i.val x := by + progress + simp [*] + +end Test + +end Progress |