summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Progress/Progress.lean
diff options
context:
space:
mode:
authorSon HO2023-07-31 16:15:58 +0200
committerGitHub2023-07-31 16:15:58 +0200
commit887d0ef1efc8912c6273b5ebcf979384e9d7fa97 (patch)
tree92d6021eb549f7cc25501856edd58859786b7e90 /backends/lean/Base/Progress/Progress.lean
parent53adf30fe440eb8b6f58ba89f4a4c0acc7877498 (diff)
parent9b3a58e423333fc9a4a5a264c3beb0a3d951e86b (diff)
Merge pull request #31 from AeneasVerif/son_lean_backend
Improve the Lean backend
Diffstat (limited to 'backends/lean/Base/Progress/Progress.lean')
-rw-r--r--backends/lean/Base/Progress/Progress.lean377
1 files changed, 377 insertions, 0 deletions
diff --git a/backends/lean/Base/Progress/Progress.lean b/backends/lean/Base/Progress/Progress.lean
new file mode 100644
index 00000000..6a4729dc
--- /dev/null
+++ b/backends/lean/Base/Progress/Progress.lean
@@ -0,0 +1,377 @@
+import Lean
+import Base.Arith
+import Base.Progress.Base
+import Base.Primitives -- TODO: remove?
+
+namespace Progress
+
+open Lean Elab Term Meta Tactic
+open Utils
+
+inductive TheoremOrLocal where
+| Theorem (thName : Name)
+| Local (asm : LocalDecl)
+
+instance : ToMessageData TheoremOrLocal where
+ toMessageData := λ x => match x with | .Theorem thName => m!"{thName}" | .Local asm => m!"{asm.userName}"
+
+/- Type to propagate the errors of `progressWith`.
+ We need this because we use the exceptions to backtrack, when trying to
+ use the assumptions for instance. When there is actually an error we want
+ to propagate to the user, we return it. -/
+inductive ProgressError
+| Ok
+| Error (msg : MessageData)
+deriving Inhabited
+
+def progressWith (fExpr : Expr) (th : TheoremOrLocal)
+ (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool)
+ (asmTac : TacticM Unit) : TacticM ProgressError := do
+ /- Apply the theorem
+ We try to match the theorem with the goal
+ In order to do so, we introduce meta-variables for all the parameters
+ (i.e., quantified variables and assumpions), and unify those with the goal.
+ Remark: we do not introduce meta-variables for the quantified variables
+ which don't appear in the function arguments (we want to let them
+ quantified).
+ We also make sure that all the meta variables which appear in the
+ function arguments have been instantiated
+ -/
+ let env ← getEnv
+ let thTy ← do
+ match th with
+ | .Theorem thName =>
+ let thDecl := env.constants.find! thName
+ -- We have to introduce fresh meta-variables for the universes already
+ let ul : List (Name × Level) ←
+ thDecl.levelParams.mapM (λ x => do pure (x, ← mkFreshLevelMVar))
+ let ulMap : HashMap Name Level := HashMap.ofList ul
+ let thTy := thDecl.type.instantiateLevelParamsCore (λ x => ulMap.find! x)
+ pure thTy
+ | .Local asmDecl => pure asmDecl.type
+ trace[Progress] "Looked up theorem/assumption type: {thTy}"
+ -- TODO: the tactic fails if we uncomment withNewMCtxDepth
+ -- withNewMCtxDepth do
+ let (mvars, binders, thExBody) ← forallMetaTelescope thTy
+ trace[Progress] "After stripping foralls: {thExBody}"
+ -- Introduce the existentially quantified variables and the post-condition
+ -- in the context
+ let thBody ←
+ existsTelescope thExBody.consumeMData fun _evars thBody => do
+ trace[Progress] "After stripping existentials: {thBody}"
+ let (thBody, _) ← optSplitConj thBody
+ trace[Progress] "After splitting the conjunction: {thBody}"
+ let (thBody, _) ← destEq thBody
+ trace[Progress] "After splitting equality: {thBody}"
+ -- There shouldn't be any existential variables in thBody
+ pure thBody.consumeMData
+ -- Match the body with the target
+ trace[Progress] "Matching:\n- body:\n{thBody}\n- target:\n{fExpr}"
+ let ok ← isDefEq thBody fExpr
+ if ¬ ok then throwError "Could not unify the theorem with the target:\n- theorem: {thBody}\n- target: {fExpr}"
+ let mgoal ← Tactic.getMainGoal
+ postprocessAppMVars `progress mgoal mvars binders true true
+ Term.synthesizeSyntheticMVarsNoPostponing
+ let thBody ← instantiateMVars thBody
+ trace[Progress] "thBody (after instantiation): {thBody}"
+ -- Add the instantiated theorem to the assumptions (we apply it on the metavariables).
+ let th ← do
+ match th with
+ | .Theorem thName => mkAppOptM thName (mvars.map some)
+ | .Local decl => mkAppOptM' (mkFVar decl.fvarId) (mvars.map some)
+ let asmName ← do match keep with | none => mkFreshAnonPropUserName | some n => do pure n
+ let thTy ← inferType th
+ let thAsm ← Utils.addDeclTac asmName th thTy (asLet := false)
+ withMainContext do -- The context changed - TODO: remove once addDeclTac is updated
+ let ngoal ← getMainGoal
+ trace[Progress] "current goal: {ngoal}"
+ trace[Progress] "current goal: {← ngoal.isAssigned}"
+ -- The assumption should be of the shape:
+ -- `∃ x1 ... xn, f args = ... ∧ ...`
+ -- We introduce the existentially quantified variables and split the top-most
+ -- conjunction if there is one. We use the provided `ids` list to name the
+ -- introduced variables.
+ let res ← splitAllExistsTac thAsm ids.toList fun h ids => do
+ -- Split the conjunctions.
+ -- For the conjunctions, we split according once to separate the equality `f ... = .ret ...`
+ -- from the postcondition, if there is, then continue to split the postcondition if there
+ -- are remaining ids.
+ let splitEqAndPost (k : Expr → Option Expr → List (Option Name) → TacticM ProgressError) : TacticM ProgressError := do
+ if ← isConj (← inferType h) then do
+ let hName := (← h.fvarId!.getDecl).userName
+ let (optIds, ids) ← do
+ match ids with
+ | [] => do pure (some (hName, ← mkFreshAnonPropUserName), [])
+ | none :: ids => do pure (some (hName, ← mkFreshAnonPropUserName), ids)
+ | some id :: ids => do pure (some (hName, id), ids)
+ splitConjTac h optIds (fun hEq hPost => k hEq (some hPost) ids)
+ else k h none ids
+ -- Simplify the target by using the equality and some monad simplifications,
+ -- then continue splitting the post-condition
+ splitEqAndPost fun hEq hPost ids => do
+ trace[Progress] "eq and post:\n{hEq} : {← inferType hEq}\n{hPost}"
+ simpAt [] [``Primitives.bind_tc_ret, ``Primitives.bind_tc_fail, ``Primitives.bind_tc_div]
+ [hEq.fvarId!] (.targets #[] true)
+ -- Clear the equality, unless the user requests not to do so
+ let mgoal ← do
+ if keep.isSome then getMainGoal
+ else do
+ let mgoal ← getMainGoal
+ mgoal.tryClearMany #[hEq.fvarId!]
+ setGoals (mgoal :: (← getUnsolvedGoals))
+ trace[Progress] "Goal after splitting eq and post and simplifying the target: {mgoal}"
+ -- Continue splitting following the post following the user's instructions
+ match hPost with
+ | none =>
+ -- Sanity check
+ if ¬ ids.isEmpty then
+ return (.Error m!"Too many ids provided ({ids}): there is no postcondition to split")
+ else return .Ok
+ | some hPost => do
+ let rec splitPostWithIds (prevId : Name) (hPost : Expr) (ids0 : List (Option Name)) : TacticM ProgressError := do
+ match ids0 with
+ | [] =>
+ /- We used all the user provided ids.
+ Split the remaining conjunctions by using fresh ids if the user
+ instructed to fully split the post-condition, otherwise stop -/
+ if splitPost then
+ splitFullConjTac true hPost (λ _ => pure .Ok)
+ else pure .Ok
+ | nid :: ids => do
+ trace[Progress] "Splitting post: {← inferType hPost}"
+ -- Split
+ let nid ← do
+ match nid with
+ | none => mkFreshAnonPropUserName
+ | some nid => pure nid
+ trace[Progress] "\n- prevId: {prevId}\n- nid: {nid}\n- remaining ids: {ids}"
+ if ← isConj (← inferType hPost) then
+ splitConjTac hPost (some (prevId, nid)) (λ _ nhPost => splitPostWithIds nid nhPost ids)
+ else return (.Error m!"Too many ids provided ({ids0}) not enough conjuncts to split in the postcondition")
+ let curPostId := (← hPost.fvarId!.getDecl).userName
+ splitPostWithIds curPostId hPost ids
+ match res with
+ | .Error _ => return res -- Can we get there? We're using "return"
+ | .Ok =>
+ -- Update the set of goals
+ let curGoals ← getUnsolvedGoals
+ let newGoals := mvars.map Expr.mvarId!
+ let newGoals ← newGoals.filterM fun mvar => not <$> mvar.isAssigned
+ trace[Progress] "new goals: {newGoals}"
+ setGoals newGoals.toList
+ allGoals asmTac
+ let newGoals ← getUnsolvedGoals
+ setGoals (newGoals ++ curGoals)
+ trace[Progress] "progress: replaced the goals"
+ --
+ pure .Ok
+
+-- Small utility: if `args` is not empty, return the name of the app in the first
+-- arg, if it is a const.
+def getFirstArgAppName (args : Array Expr) : MetaM (Option Name) := do
+ if args.size = 0 then pure none
+ else
+ (args.get! 0).withApp fun f _ => do
+ if f.isConst then pure (some f.constName)
+ else pure none
+
+def getFirstArg (args : Array Expr) : Option Expr := do
+ if args.size = 0 then none
+ else some (args.get! 0)
+
+/- Helper: try to lookup a theorem and apply it, or continue with another tactic
+ if it fails -/
+def tryLookupApply (keep : Option Name) (ids : Array (Option Name)) (splitPost : Bool)
+ (asmTac : TacticM Unit) (fExpr : Expr)
+ (kind : String) (th : Option TheoremOrLocal) (x : TacticM Unit) : TacticM Unit := do
+ let res ← do
+ match th with
+ | none =>
+ trace[Progress] "Could not find a {kind}"
+ pure none
+ | some th => do
+ trace[Progress] "Lookuped up {kind}: {th}"
+ -- Apply the theorem
+ let res ← do
+ try
+ let res ← progressWith fExpr th keep ids splitPost asmTac
+ pure (some res)
+ catch _ => none
+ match res with
+ | some .Ok => return ()
+ | some (.Error msg) => throwError msg
+ | none => x
+
+-- The array of ids are identifiers to use when introducing fresh variables
+def progressAsmsOrLookupTheorem (keep : Option Name) (withTh : Option TheoremOrLocal)
+ (ids : Array (Option Name)) (splitPost : Bool) (asmTac : TacticM Unit) : TacticM Unit := do
+ withMainContext do
+ -- Retrieve the goal
+ let mgoal ← Tactic.getMainGoal
+ let goalTy ← mgoal.getType
+ trace[Progress] "goal: {goalTy}"
+ -- Dive into the goal to lookup the theorem
+ let (fExpr, fName, args) ← do
+ withPSpec goalTy fun desc =>
+ -- TODO: check that no quantified variables in the arguments
+ pure (desc.fExpr, desc.fName, desc.args)
+ trace[Progress] "Function: {fName}"
+ -- If the user provided a theorem/assumption: use it.
+ -- Otherwise, lookup one.
+ match withTh with
+ | some th => do
+ match ← progressWith fExpr th keep ids splitPost asmTac with
+ | .Ok => return ()
+ | .Error msg => throwError msg
+ | none =>
+ -- Try all the assumptions one by one and if it fails try to lookup a theorem.
+ let ctx ← Lean.MonadLCtx.getLCtx
+ let decls ← ctx.getDecls
+ for decl in decls.reverse do
+ trace[Progress] "Trying assumption: {decl.userName} : {decl.type}"
+ let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue
+ match res with
+ | .Ok => return ()
+ | .Error msg => throwError msg
+ -- It failed: try to lookup a theorem
+ -- TODO: use a list of theorems, and try them one by one?
+ trace[Progress] "No assumption succeeded: trying to lookup a theorem"
+ let pspec ← do
+ let thName ← pspecAttr.find? fName
+ pure (thName.map fun th => .Theorem th)
+ tryLookupApply keep ids splitPost asmTac fExpr "pspec theorem" pspec do
+ -- It failed: try to lookup a *class* expr spec theorem (those are more
+ -- specific than class spec theorems)
+ let pspecClassExpr ← do
+ match getFirstArg args with
+ | none => pure none
+ | some arg => do
+ let thName ← pspecClassExprAttr.find? fName arg
+ pure (thName.map fun th => .Theorem th)
+ tryLookupApply keep ids splitPost asmTac fExpr "pspec class expr theorem" pspecClassExpr do
+ -- It failed: try to lookup a *class* spec theorem
+ let pspecClass ← do
+ match ← getFirstArgAppName args with
+ | none => pure none
+ | some argName => do
+ let thName ← pspecClassAttr.find? fName argName
+ pure (thName.map fun th => .Theorem th)
+ tryLookupApply keep ids splitPost asmTac fExpr "pspec class theorem" pspecClass do
+ -- Try a recursive call - we try the assumptions of kind "auxDecl"
+ let ctx ← Lean.MonadLCtx.getLCtx
+ let decls ← ctx.getAllDecls
+ let decls := decls.filter (λ decl => match decl.kind with
+ | .default | .implDetail => false | .auxDecl => true)
+ for decl in decls.reverse do
+ trace[Progress] "Trying recursive assumption: {decl.userName} : {decl.type}"
+ let res ← do try progressWith fExpr (.Local decl) keep ids splitPost asmTac catch _ => continue
+ match res with
+ | .Ok => return ()
+ | .Error msg => throwError msg
+ -- Nothing worked: failed
+ throwError "Progress failed"
+
+syntax progressArgs := ("keep" (ident <|> "_"))? ("with" ident)? ("as" " ⟨ " (ident <|> "_"),* " .."? " ⟩")?
+
+def evalProgress (args : TSyntax `Progress.progressArgs) : TacticM Unit := do
+ let args := args.raw
+ -- Process the arguments to retrieve the identifiers to use
+ trace[Progress] "Progress arguments: {args}"
+ let (keepArg, withArg, asArgs) ←
+ match args.getArgs.toList with
+ | [keepArg, withArg, asArgs] => do pure (keepArg, withArg, asArgs)
+ | _ => throwError "Unexpected: invalid arguments"
+ let keep : Option Name ← do
+ trace[Progress] "Keep arg: {keepArg}"
+ let args := keepArg.getArgs
+ if args.size > 0 then do
+ trace[Progress] "Keep args: {args}"
+ let arg := args.get! 1
+ trace[Progress] "Keep arg: {arg}"
+ if arg.isIdent then pure (some arg.getId)
+ else do pure (some (← mkFreshAnonPropUserName))
+ else do pure none
+ trace[Progress] "Keep: {keep}"
+ let withArg ← do
+ let withArg := withArg.getArgs
+ if withArg.size > 0 then
+ let id := withArg.get! 1
+ trace[Progress] "With arg: {id}"
+ -- Attempt to lookup a local declaration
+ match (← getLCtx).findFromUserName? id.getId with
+ | some decl => do
+ trace[Progress] "With arg: local decl"
+ pure (some (.Local decl))
+ | none => do
+ -- Not a local declaration: should be a theorem
+ trace[Progress] "With arg: theorem"
+ addCompletionInfo <| CompletionInfo.id id id.getId (danglingDot := false) {} none
+ let cs ← resolveGlobalConstWithInfos id
+ match cs with
+ | [] => throwError "Could not find theorem {id}"
+ | id :: _ =>
+ pure (some (.Theorem id))
+ else pure none
+ let ids :=
+ let args := asArgs.getArgs
+ let args := (args.get! 2).getSepArgs
+ args.map (λ s => if s.isIdent then some s.getId else none)
+ trace[Progress] "User-provided ids: {ids}"
+ let splitPost : Bool :=
+ let args := asArgs.getArgs
+ (args.get! 3).getArgs.size > 0
+ trace[Progress] "Split post: {splitPost}"
+ /- For scalarTac we have a fast track: if the goal is not a linear
+ arithmetic goal, we skip (note that otherwise, scalarTac would try
+ to prove a contradiction) -/
+ let scalarTac : TacticM Unit := do
+ if ← Arith.goalIsLinearInt then
+ -- Also: we don't try to split the goal if it is a conjunction
+ -- (it shouldn't be)
+ Arith.scalarTac false
+ else
+ throwError "Not a linear arithmetic goal"
+ progressAsmsOrLookupTheorem keep withArg ids splitPost (
+ withMainContext do
+ trace[Progress] "trying to solve assumption: {← getMainGoal}"
+ firstTac [assumptionTac, scalarTac])
+ trace[Diverge] "Progress done"
+
+elab "progress" args:progressArgs : tactic =>
+ evalProgress args
+
+namespace Test
+ open Primitives Result
+
+ set_option trace.Progress true
+ set_option pp.rawOnError true
+
+ #eval showStoredPSpec
+ #eval showStoredPSpecClass
+
+ example {ty} {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val + y.val)
+ (hmax : x.val + y.val ≤ Scalar.max ty) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ progress keep _ as ⟨ z, h1 .. ⟩
+ simp [*, h1]
+
+ example {ty} {x y : Scalar ty}
+ (hmin : Scalar.min ty ≤ x.val + y.val)
+ (hmax : x.val + y.val ≤ Scalar.max ty) :
+ ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by
+ progress keep h with Scalar.add_spec as ⟨ z ⟩
+ simp [*, h]
+
+ /- Checking that universe instantiation works: the original spec uses
+ `α : Type u` where u is quantified, while here we use `α : Type 0` -/
+ example {α : Type} (v: Vec α) (i: Usize) (x : α)
+ (hbounds : i.val < v.length) :
+ ∃ nv, v.index_mut_back α i x = ret nv ∧
+ nv.val = v.val.update i.val x := by
+ progress
+ simp [*]
+
+end Test
+
+end Progress