diff options
author | Son Ho | 2024-06-17 06:16:43 +0200 |
---|---|---|
committer | Son Ho | 2024-06-17 06:16:43 +0200 |
commit | e57e6f08e5cc34bf4e9237650f5ecbab440b9ea2 (patch) | |
tree | 1e48b2d23719d72f39282213a1806591cc35c3b8 /backends/lean/Base/Primitives | |
parent | f3b22b5cca9bc1154f55a81c9a82dc491074067d (diff) | |
parent | 85098d7caf5e3196c2e8f92411efd2814bfed1ea (diff) |
Merge branch 'son/update-lean' into has-int-pred
Diffstat (limited to 'backends/lean/Base/Primitives')
-rw-r--r-- | backends/lean/Base/Primitives/ArraySlice.lean | 5 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/CoreConvertNum.lean | 1 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 154 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/ScalarNotations.lean | 109 | ||||
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 7 |
5 files changed, 155 insertions, 121 deletions
diff --git a/backends/lean/Base/Primitives/ArraySlice.lean b/backends/lean/Base/Primitives/ArraySlice.lean index 157f9df1..be460987 100644 --- a/backends/lean/Base/Primitives/ArraySlice.lean +++ b/backends/lean/Base/Primitives/ArraySlice.lean @@ -126,7 +126,7 @@ abbrev Slice.v {α : Type u} (v : Slice α) : List α := v.val example {a: Type u} (v : Slice a) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac -def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp; decide ⟩ +def Slice.new (α : Type u): Slice α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ -- TODO: very annoying that the α is an explicit parameter def Slice.len (α : Type u) (v : Slice α) : Usize := @@ -325,8 +325,7 @@ theorem Slice.subslice_spec {α : Type u} [Inhabited α] (s : Slice α) (r : Ran have := List.index_slice r.start.val r.end_.val i s.val (by scalar_tac) (by scalar_tac) (by trivial) (by scalar_tac) simp [*] -attribute [pp_dot] List.len List.length List.index -- use the dot notation when printing -set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse) +set_option pp.fieldNotation.generalized true def Slice.update_subslice (α : Type u) (s : Slice α) (r : Range Usize) (ss : Slice α) : Result (Slice α) := -- TODO: not completely sure here diff --git a/backends/lean/Base/Primitives/CoreConvertNum.lean b/backends/lean/Base/Primitives/CoreConvertNum.lean index eb456a96..b53d11db 100644 --- a/backends/lean/Base/Primitives/CoreConvertNum.lean +++ b/backends/lean/Base/Primitives/CoreConvertNum.lean @@ -4,6 +4,7 @@ import Init.Data.List.Basic import Mathlib.Tactic.Linarith import Base.IList import Base.Primitives.Scalar +import Base.Primitives.ScalarNotations import Base.Primitives.ArraySlice import Base.Arith import Base.Progress.Base diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index 8fb067e1..9f809ead 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -1,6 +1,5 @@ import Lean import Lean.Meta.Tactic.Simp -import Mathlib.Tactic.Linarith import Base.Primitives.Base import Base.Primitives.Core import Base.Diverge.Base @@ -9,6 +8,9 @@ import Base.Arith.Int namespace Primitives +-- Deactivate the warnings which appear when we use `#assert` +set_option linter.hashCommand false + ---------------------- -- MACHINE INTEGERS -- ---------------------- @@ -279,11 +281,11 @@ theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by have := Scalar.cMin_bound ty - linarith + omega theorem Scalar.cMax_suffices ty (h : x ≤ Scalar.cMax ty) : x ≤ Scalar.max ty := by have := Scalar.cMax_bound ty - linarith + omega /-- The scalar type. @@ -310,40 +312,15 @@ theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty := λ h => by - apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> linarith + apply And.intro <;> have hmin := Scalar.cMin_bound ty <;> have hmax := Scalar.cMax_bound ty <;> omega -/- [match_pattern] attribute: allows to us `Scalar.ofIntCore` inside of patterns. - This is particularly useful once we introduce notations like `#u32` (which - desugards to `Scalar.ofIntCore`) as it allows to write expressions like this: - Example: - ``` - match x with - | 0#u32 => ... - | 1#u32 => ... - | ... - ``` - -/ -@[match_pattern] def Scalar.ofIntCore {ty : ScalarTy} (x : Int) +def Scalar.ofIntCore {ty : ScalarTy} (x : Int) (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : Scalar ty := { val := x, hmin := h.left, hmax := h.right } --- The definitions below are used later to introduce nice syntax for constants, --- like `1#u32`. We are reusing the technique described here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Different.20elaboration.20inside.2Foutside.20of.20match.20patterns/near/425455284 - -class InBounds (ty : ScalarTy) (x : Int) := - hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty - --- This trick to trigger reduction for decidable propositions comes from --- here: https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/instance.20with.20tactic.20autoparam/near/343495807 -class Decide (p : Prop) [Decidable p] : Prop where - isTrue : p -instance : @Decide p (.isTrue h) := @Decide.mk p (_) h - -instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty v where - hInBounds := Decide.isTrue - -@[reducible, match_pattern] def Scalar.ofInt {ty : ScalarTy} (x : Int) [InBounds ty x] : Scalar ty := - Scalar.ofIntCore x (Scalar.bound_suffices ty x InBounds.hInBounds) +@[reducible] def Scalar.ofInt {ty : ScalarTy} (x : Int) + (hInBounds : Scalar.cMin ty ≤ x ∧ x ≤ Scalar.cMax ty := by decide) : Scalar ty := + Scalar.ofIntCore x (Scalar.bound_suffices ty x hInBounds) @[simp] abbrev Scalar.in_bounds (ty : ScalarTy) (x : Int) : Prop := Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty @@ -351,10 +328,17 @@ instance [Decide (Scalar.cMin ty ≤ v ∧ v ≤ Scalar.cMax ty)] : InBounds ty @[simp] abbrev Scalar.check_bounds (ty : ScalarTy) (x : Int) : Bool := (Scalar.cMin ty ≤ x || Scalar.min ty ≤ x) ∧ (x ≤ Scalar.cMax ty || x ≤ Scalar.max ty) +/- Discussion: + This coercion can be slightly annoying at times, because if we write + something like `u = 3` (where `u` is, for instance, as `U32`), then instead of + coercing `u` to `Int`, Lean will lift `3` to `U32`). + For now we deactivate it. + -- TODO(raitobezarius): the inbounds constraint is a bit ugly as we can pretty trivially -- discharge the lhs on ≥ 0. instance {ty: ScalarTy} [InBounds ty (Int.ofNat n)]: OfNat (Scalar ty) (n: ℕ) where ofNat := Scalar.ofInt n +-/ theorem Scalar.check_bounds_imp_in_bounds {ty : ScalarTy} {x : Int} (h: Scalar.check_bounds ty x) : @@ -363,7 +347,7 @@ theorem Scalar.check_bounds_imp_in_bounds {ty : ScalarTy} {x : Int} have ⟨ hmin, hmax ⟩ := h have hbmin := Scalar.cMin_bound ty have hbmax := Scalar.cMax_bound ty - cases hmin <;> cases hmax <;> apply And.intro <;> linarith + cases hmin <;> cases hmax <;> apply And.intro <;> omega theorem Scalar.check_bounds_eq_in_bounds (ty : ScalarTy) (x : Int) : Scalar.check_bounds ty x ↔ Scalar.in_bounds ty x := by @@ -405,9 +389,8 @@ theorem Scalar.tryMk_eq (ty : ScalarTy) (x : Int) : simp [tryMk, ofOption, tryMkOpt] split_ifs <;> simp -instance (ty: ScalarTy) : InBounds ty 0 where - hInBounds := by - induction ty <;> simp [Scalar.cMax, Scalar.cMin, Scalar.max, Scalar.min] <;> decide +@[simp] theorem zero_in_cbounds {ty : ScalarTy} : Scalar.cMin ty ≤ 0 ∧ 0 ≤ Scalar.cMax ty := by + cases ty <;> simp [Scalar.cMax, Scalar.cMin, Scalar.max, Scalar.min] <;> decide def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val) @@ -749,7 +732,6 @@ theorem Scalar.add_spec {ty} {x y : Scalar ty} (∃ z, x + y = ok z ∧ (↑z : Int) = ↑x + ↑y) := by have h := @add_equiv ty x y split at h <;> simp_all - apply h theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} (hmax : ↑x + ↑y ≤ Scalar.max ty) : @@ -757,7 +739,7 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} have hmin : Scalar.min ty ≤ ↑x + ↑y := by have hx := x.hmin have hy := y.hmin - cases ty <;> simp [min, ScalarTy.isSigned] at * <;> linarith + cases ty <;> simp [min, ScalarTy.isSigned] at * <;> omega apply add_spec <;> assumption /- Fine-grained theorems -/ @@ -844,7 +826,6 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty} ∃ z, x - y = ok z ∧ (↑z : Int) = ↑x - ↑y := by have h := @sub_equiv ty x y split at h <;> simp_all - apply h theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned) {x y : Scalar ty} (hmin : Scalar.min ty ≤ ↑x - ↑y) : @@ -853,7 +834,7 @@ theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned) have hx := x.hmin have hxm := x.hmax have hy := y.hmin - cases ty <;> simp [min, max, ScalarTy.isSigned] at * <;> linarith + cases ty <;> simp [min, max, ScalarTy.isSigned] at * <;> omega intros apply sub_spec <;> assumption @@ -1049,11 +1030,11 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S have hx := x.hmin have hy := y.hmin simp [h] at hx hy - have hmin : 0 ≤ ↑x / ↑y := Int.ediv_nonneg hx hy + have hmin : 0 ≤ x.val / y.val := Int.ediv_nonneg hx hy have hmax : ↑x / ↑y ≤ Scalar.max ty := by have := Int.ediv_le_self ↑y hx have := x.hmax - linarith + omega have hs := @div_spec ty x y hnz simp [*] at hs apply hs @@ -1170,7 +1151,7 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S have h : (0 : Int) < y := by int_tac have h := Int.emod_lt_of_pos ↑x h have := y.hmax - linarith + omega have hs := @rem_spec ty x y hnz simp [*] at hs simp [*] @@ -1261,73 +1242,18 @@ def U128.ofIntCore := @Scalar.ofIntCore .U128 -- ofInt -- TODO: typeclass? -@[match_pattern] abbrev Isize.ofInt := @Scalar.ofInt .Isize -@[match_pattern] abbrev I8.ofInt := @Scalar.ofInt .I8 -@[match_pattern] abbrev I16.ofInt := @Scalar.ofInt .I16 -@[match_pattern] abbrev I32.ofInt := @Scalar.ofInt .I32 -@[match_pattern] abbrev I64.ofInt := @Scalar.ofInt .I64 -@[match_pattern] abbrev I128.ofInt := @Scalar.ofInt .I128 -@[match_pattern] abbrev Usize.ofInt := @Scalar.ofInt .Usize -@[match_pattern] abbrev U8.ofInt := @Scalar.ofInt .U8 -@[match_pattern] abbrev U16.ofInt := @Scalar.ofInt .U16 -@[match_pattern] abbrev U32.ofInt := @Scalar.ofInt .U32 -@[match_pattern] abbrev U64.ofInt := @Scalar.ofInt .U64 -@[match_pattern] abbrev U128.ofInt := @Scalar.ofInt .U128 - -postfix:max "#isize" => Isize.ofInt -postfix:max "#i8" => I8.ofInt -postfix:max "#i16" => I16.ofInt -postfix:max "#i32" => I32.ofInt -postfix:max "#i64" => I64.ofInt -postfix:max "#i128" => I128.ofInt -postfix:max "#usize" => Usize.ofInt -postfix:max "#u8" => U8.ofInt -postfix:max "#u16" => U16.ofInt -postfix:max "#u32" => U32.ofInt -postfix:max "#u64" => U64.ofInt -postfix:max "#u128" => U128.ofInt - -/- Testing the notations -/ -example := 0#u32 -example := 1#u32 -example := 1#i32 -example := 0#isize -example := (-1)#isize -example (x : U32) : Bool := - match x with - | 0#u32 => true - | _ => false - -example (x : U32) : Bool := - match x with - | 1#u32 => true - | _ => false - -example (x : I32) : Bool := - match x with - | (-1)#i32 => true - | _ => false - --- Notation for pattern matching --- We make the precedence looser than the negation. -notation:70 a:70 "#scalar" => Scalar.mk (a) _ _ - -example {ty} (x : Scalar ty) : ℤ := - match x with - | v#scalar => v - -example {ty} (x : Scalar ty) : Bool := - match x with - | 1#scalar => true - | _ => false - -example {ty} (x : Scalar ty) : Bool := - match x with - | -(1 : Int)#scalar => true - | _ => false - --- Testing the notations -example : Result Usize := 0#usize + 1#usize +abbrev Isize.ofInt := @Scalar.ofInt .Isize +abbrev I8.ofInt := @Scalar.ofInt .I8 +abbrev I16.ofInt := @Scalar.ofInt .I16 +abbrev I32.ofInt := @Scalar.ofInt .I32 +abbrev I64.ofInt := @Scalar.ofInt .I64 +abbrev I128.ofInt := @Scalar.ofInt .I128 +abbrev Usize.ofInt := @Scalar.ofInt .Usize +abbrev U8.ofInt := @Scalar.ofInt .U8 +abbrev U16.ofInt := @Scalar.ofInt .U16 +abbrev U32.ofInt := @Scalar.ofInt .U32 +abbrev U64.ofInt := @Scalar.ofInt .U64 +abbrev U128.ofInt := @Scalar.ofInt .U128 -- TODO: factor those lemmas out @[simp] theorem Scalar.ofInt_val_eq {ty} (h : Scalar.min ty ≤ x ∧ x ≤ Scalar.max ty) : (Scalar.ofIntCore x h).val = x := by @@ -1457,18 +1383,18 @@ theorem coe_max {ty: ScalarTy} (a b: Scalar ty): ↑(Max.max a b) = (Max.max (↠-- Max theory -- TODO: do the min theory later on. -theorem Scalar.zero_le_unsigned {ty} (s: ¬ ty.isSigned) (x: Scalar ty): Scalar.ofInt 0 ≤ x := by +theorem Scalar.zero_le_unsigned {ty} (s: ¬ ty.isSigned) (x: Scalar ty): Scalar.ofInt 0 (by simp) ≤ x := by apply (Scalar.le_equiv _ _).2 convert x.hmin cases ty <;> simp [ScalarTy.isSigned] at s <;> simp [Scalar.min] @[simp] theorem Scalar.max_unsigned_left_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty): - Max.max (Scalar.ofInt 0) x = x := max_eq_right (Scalar.zero_le_unsigned s.out x) + Max.max (Scalar.ofInt 0 (by simp)) x = x := max_eq_right (Scalar.zero_le_unsigned s.out x) @[simp] theorem Scalar.max_unsigned_right_zero_eq {ty} [s: Fact (¬ ty.isSigned)] (x: Scalar ty): - Max.max x (Scalar.ofInt 0) = x := max_eq_left (Scalar.zero_le_unsigned s.out x) + Max.max x (Scalar.ofInt 0 (by simp)) = x := max_eq_left (Scalar.zero_le_unsigned s.out x) -- Leading zeros def core.num.Usize.leading_zeros (x : Usize) : U32 := sorry diff --git a/backends/lean/Base/Primitives/ScalarNotations.lean b/backends/lean/Base/Primitives/ScalarNotations.lean new file mode 100644 index 00000000..3bc86a9c --- /dev/null +++ b/backends/lean/Base/Primitives/ScalarNotations.lean @@ -0,0 +1,109 @@ +import Lean +import Lean.Meta.Tactic.Simp +import Mathlib.Tactic.Linarith +import Base.Primitives.Scalar +import Base.Arith + +namespace Primitives + +open Lean Meta Elab Term + +/- Something strange happens here: when we solve the goal with scalar_tac, it + sometimes leaves meta-variables in place, which then causes issues when + type-checking functions. For instance, it happens when we have const-generics + in the translation: the constants contain meta-variables, which are then + used in the types, which cause issues later. An example is given below: + -/ +macro:max x:term:max noWs "#isize" : term => `(Isize.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#i8" : term => `(I8.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#i16" : term => `(I16.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#i32" : term => `(I32.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#i64" : term => `(I64.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#i128" : term => `(I128.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#usize" : term => `(Usize.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#u8" : term => `(U8.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#u16" : term => `(U16.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#u32" : term => `(U32.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#u64" : term => `(U64.ofInt $x (by first | decide | scalar_tac)) +macro:max x:term:max noWs "#u128" : term => `(U128.ofInt $x (by first | decide | scalar_tac)) + +-- Notation for pattern matching +-- We make the precedence looser than the negation. +notation:70 a:70 "#scalar" => Scalar.mk (a) _ _ + +/- Testing the notations -/ +example := 0#u32 +example := 1#u32 +example := 1#i32 +example := 0#isize +example := (-1)#isize + +example := 1#u32 + +/- +-- This doesn't work anymore +example (x : U32) : Bool := + match x with + | 0#u32 => true + | _ => false + +example (x : U32) : Bool := + match x with + | 1#u32 => true + | _ => false + +example (x : I32) : Bool := + match x with + | (-1)#i32 => true + | _ => false +-/ + +example (x : U32) : Bool := + match x with + | 0#scalar => true + | _ => false + +example (x : U32) : Bool := + match x with + | 1#scalar => true + | _ => false + +example (x : I32) : Bool := + match x with + | (-1)#scalar => true + | _ => false + +example {ty} (x : Scalar ty) : ℤ := + match x with + | v#scalar => v + +example {ty} (x : Scalar ty) : Bool := + match x with + | 1#scalar => true + | _ => false + +example {ty} (x : Scalar ty) : Bool := + match x with + | -(1 : Int)#scalar => true + | _ => false + +-- Testing the notations +example : Result Usize := 0#usize + 1#usize + +-- More complex expressions +example (x y : Int) (h : 0 ≤ x + y ∧ x + y ≤ 1000) : U32 := (x + y)#u32 + +namespace Scalar.Examples + + abbrev Array (a : Type) (len : U32) := { l : List a // l.length = len.val } + + -- Checking the syntax + example : Array Int 0#u32 := ⟨ [], by simp ⟩ + + /- The example below fails if we don't use `decide` in the elaboration + of the scalar notation -/ + example (a : Array (Array Int 32#u32) 32#u32) := a + +end Scalar.Examples + +end Primitives diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index 5ed7b606..0b010944 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -2,7 +2,6 @@ import Lean import Lean.Meta.Tactic.Simp import Init.Data.List.Basic -import Mathlib.Tactic.Linarith import Base.IList import Base.Primitives.Scalar import Base.Primitives.ArraySlice @@ -34,7 +33,7 @@ abbrev Vec.v {α : Type u} (v : Vec α) : List α := v.val example {a: Type u} (v : Vec a) : v.length ≤ Scalar.max ScalarTy.Usize := by scalar_tac -def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp; decide ⟩ +def Vec.new (α : Type u): Vec α := ⟨ [], by apply Scalar.cMax_suffices .Usize; simp ⟩ instance (α : Type u) : Inhabited (Vec α) := by constructor @@ -59,7 +58,7 @@ def Vec.push (α : Type u) (v : Vec α) (x : α) : Result (Vec α) have h : nlen ≤ Usize.max := by simp [Usize.max] at * have hm := Usize.refined_max.property - cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try linarith + cases h <;> cases hm <;> simp [U32.max, U64.max] at * <;> try omega ok ⟨ List.concat v.val x, by simp at *; assumption ⟩ else fail maximumSizeExceeded @@ -192,7 +191,7 @@ def alloc.slice.Slice.to_vec def core.slice.Slice.reverse (T : Type) (s : Slice T) : Slice T := ⟨ s.val.reverse, by sorry ⟩ -def alloc.vec.Vec.with_capacity (T : Type) (s : Usize) : alloc.vec.Vec T := Vec.new T +def alloc.vec.Vec.with_capacity (T : Type) (_ : Usize) : alloc.vec.Vec T := Vec.new T /- [alloc::vec::{(core::ops::deref::Deref for alloc::vec::Vec<T, A>)#9}::deref]: Source: '/rustc/d59363ad0b6391b7fc5bbb02c9ccf9300eef3753/library/alloc/src/vec/mod.rs', lines 2624:4-2624:27 |