diff options
author | Son Ho | 2024-02-02 22:29:54 +0100 |
---|---|---|
committer | Son Ho | 2024-02-02 22:29:54 +0100 |
commit | dd262ccc9ea7a8528959659881060ddbb3bffcd5 (patch) | |
tree | 98ccde266cf5a84e6806af0488b5c88988c8f5c9 /backends/lean/Base/Primitives | |
parent | a68c231db4edf97c4f007724969aec7dd60941a1 (diff) |
Fix more proofs
Diffstat (limited to 'backends/lean/Base/Primitives')
-rw-r--r-- | backends/lean/Base/Primitives/Scalar.lean | 111 |
1 files changed, 55 insertions, 56 deletions
diff --git a/backends/lean/Base/Primitives/Scalar.lean b/backends/lean/Base/Primitives/Scalar.lean index fe8dc8ec..b11bd2a1 100644 --- a/backends/lean/Base/Primitives/Scalar.lean +++ b/backends/lean/Base/Primitives/Scalar.lean @@ -98,19 +98,19 @@ def Isize.refined_min : { n:Int // n = I32.min ∨ n = I64.min } := ⟨ Isize.smin, by simp [Isize.smin] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Isize.refined_max : { n:Int // n = I32.max ∨ n = I64.max } := ⟨ Isize.smax, by simp [Isize.smax] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Usize.refined_max : { n:Int // n = U32.max ∨ n = U64.max } := ⟨ Usize.smax, by simp [Usize.smax] cases System.Platform.numBits_eq <;> - unfold System.Platform.numBits at * <;> simp [*] ⟩ + unfold System.Platform.numBits at * <;> simp [*] <;> decide ⟩ def Isize.min := Isize.refined_min.val def Isize.max := Isize.refined_max.val @@ -231,30 +231,31 @@ def Scalar.cMax (ty : ScalarTy) : Int := | _ => Scalar.max ty theorem Scalar.min_lt_max (ty : ScalarTy) : Scalar.min ty < Scalar.max ty := by - cases ty <;> simp [Scalar.min, Scalar.max] + cases ty <;> simp [Scalar.min, Scalar.max] <;> try decide . simp [Isize.min, Isize.max] have h1 := Isize.refined_min.property have h2 := Isize.refined_max.property - cases h1 <;> cases h2 <;> simp [*] + cases h1 <;> cases h2 <;> simp [*] <;> decide . simp [Usize.max] have h := Usize.refined_max.property - cases h <;> simp [*] + cases h <;> simp [*] <;> decide theorem Scalar.min_le_max (ty : ScalarTy) : Scalar.min ty ≤ Scalar.max ty := by have := Scalar.min_lt_max ty int_tac theorem Scalar.cMin_bound ty : Scalar.min ty ≤ Scalar.cMin ty := by - cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide) have h := Isize.refined_min.property cases h <;> simp [*, Isize.min] + decide theorem Scalar.cMax_bound ty : Scalar.cMax ty ≤ Scalar.max ty := by - cases ty <;> simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at * + cases ty <;> (simp [Scalar.min, Scalar.max, Scalar.cMin, Scalar.cMax] at *; try decide) . have h := Isize.refined_max.property - cases h <;> simp [*, Isize.max] + cases h <;> simp [*, Isize.max]; decide . have h := Usize.refined_max.property - cases h <;> simp [*, Usize.max] + cases h <;> simp [*, Usize.max]; decide theorem Scalar.cMin_suffices ty (h : Scalar.cMin ty ≤ x) : Scalar.min ty ≤ x := by have := Scalar.cMin_bound ty @@ -536,12 +537,11 @@ instance {ty} : HAnd (Scalar ty) (Scalar ty) (Scalar ty) where theorem Scalar.add_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val + y.val) (hmax : x.val + y.val ≤ Scalar.max ty) : - ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - simp [HAdd.hAdd, add, Add.add] - simp [tryMk] + (∃ z, x + y = ret z ∧ z.val = x.val + y.val) := by + -- Applying the unfoldings only on the left + conv => congr; ext; lhs; unfold HAdd.hAdd instHAddScalarResult; simp [add, tryMk] split - . simp [pure] - rfl + . simp [pure]; rfl . tauto theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} @@ -550,33 +550,33 @@ theorem Scalar.add_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} have hmin : Scalar.min ty ≤ x.val + y.val := by have hx := x.hmin have hy := y.hmin - cases ty <;> simp [min] at * <;> linarith + cases ty <;> simp [min, ScalarTy.isSigned] at * <;> linarith apply add_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.add_spec {x y : Usize} (hmax : x.val + y.val ≤ Usize.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U8.add_spec {x y : U8} (hmax : x.val + y.val ≤ U8.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U16.add_spec {x y : U16} (hmax : x.val + y.val ≤ U16.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U32.add_spec {x y : U32} (hmax : x.val + y.val ≤ U32.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U64.add_spec {x y : U64} (hmax : x.val + y.val ≤ U64.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem U128.add_spec {x y : U128} (hmax : x.val + y.val ≤ U128.max) : ∃ z, x + y = ret z ∧ z.val = x.val + y.val := by - apply Scalar.add_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.add_unsigned_spec <;> simp [ScalarTy.isSigned, Scalar.max, *] @[pspec] theorem Isize.add_spec {x y : Isize} (hmin : Isize.min ≤ x.val + y.val) (hmax : x.val + y.val ≤ Isize.max) : @@ -614,48 +614,47 @@ theorem Scalar.sub_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) (hmax : x.val - y.val ≤ Scalar.max ty) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - simp [HSub.hSub, sub, Sub.sub] - simp [tryMk] + conv => congr; ext; lhs; simp [HSub.hSub, sub, tryMk, Sub.sub] split . simp [pure] rfl . tauto -theorem Scalar.sub_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} - (hmin : Scalar.min ty ≤ x.val - y.val) : +theorem Scalar.sub_unsigned_spec {ty : ScalarTy} (s : ¬ ty.isSigned) + {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by have : x.val - y.val ≤ Scalar.max ty := by have hx := x.hmin have hxm := x.hmax have hy := y.hmin - cases ty <;> simp [min, max] at * <;> linarith + cases ty <;> simp [min, max, ScalarTy.isSigned] at * <;> linarith intros apply sub_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.sub_spec {x y : Usize} (hmin : Usize.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U8.sub_spec {x y : U8} (hmin : U8.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U16.sub_spec {x y : U16} (hmin : U16.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U32.sub_spec {x y : U32} (hmin : U32.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U64.sub_spec {x y : U64} (hmin : U64.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem U128.sub_spec {x y : U128} (hmin : U128.min ≤ x.val - y.val) : ∃ z, x - y = ret z ∧ z.val = x.val - y.val := by - apply Scalar.sub_unsigned_spec <;> simp only [Scalar.min, *] + apply Scalar.sub_unsigned_spec <;> simp_all [Scalar.min, ScalarTy.isSigned] @[pspec] theorem Isize.sub_spec {x y : Isize} (hmin : Isize.min ≤ x.val - y.val) (hmax : x.val - y.val ≤ Isize.max) : @@ -692,8 +691,8 @@ theorem Scalar.mul_spec {ty} {x y : Scalar ty} (hmin : Scalar.min ty ≤ x.val * y.val) (hmax : x.val * y.val ≤ Scalar.max ty) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - simp [HMul.hMul, mul, Mul.mul] - simp [tryMk] + conv => congr; ext; lhs; simp [HMul.hMul] + simp [mul, tryMk] split . simp [pure] rfl @@ -705,33 +704,33 @@ theorem Scalar.mul_unsigned_spec {ty} (s: ¬ ty.isSigned) {x y : Scalar ty} have : Scalar.min ty ≤ x.val * y.val := by have hx := x.hmin have hy := y.hmin - cases ty <;> simp at * <;> apply mul_nonneg hx hy + cases ty <;> simp [ScalarTy.isSigned] at * <;> apply mul_nonneg hx hy apply mul_spec <;> assumption /- Fine-grained theorems -/ @[pspec] theorem Usize.mul_spec {x y : Usize} (hmax : x.val * y.val ≤ Usize.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U8.mul_spec {x y : U8} (hmax : x.val * y.val ≤ U8.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U16.mul_spec {x y : U16} (hmax : x.val * y.val ≤ U16.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U32.mul_spec {x y : U32} (hmax : x.val * y.val ≤ U32.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U64.mul_spec {x y : U64} (hmax : x.val * y.val ≤ U64.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem U128.mul_spec {x y : U128} (hmax : x.val * y.val ≤ U128.max) : ∃ z, x * y = ret z ∧ z.val = x.val * y.val := by - apply Scalar.mul_unsigned_spec <;> simp only [Scalar.max, *] + apply Scalar.mul_unsigned_spec <;> simp_all [Scalar.max, ScalarTy.isSigned] @[pspec] theorem Isize.mul_spec {x y : Isize} (hmin : Isize.min ≤ x.val * y.val) (hmax : x.val * y.val ≤ Isize.max) : @@ -778,7 +777,7 @@ theorem Scalar.div_spec {ty} {x y : Scalar ty} theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at * have hx := x.hmin have hy := y.hmin simp [h] at hx hy @@ -794,27 +793,27 @@ theorem Scalar.div_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S /- Fine-grained theorems -/ @[pspec] theorem Usize.div_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [*] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U8.div_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U16.div_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U32.div_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U64.div_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U128.div_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : ∃ z, x / y = ret z ∧ z.val = x.val / y.val := by - apply Scalar.div_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.div_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem Isize.div_spec (x : Isize) {y : Isize} (hnz : y.val ≠ 0) @@ -873,7 +872,7 @@ theorem Scalar.rem_spec {ty} {x y : Scalar ty} theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : Scalar ty} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - have h : Scalar.min ty = 0 := by cases ty <;> simp at * + have h : Scalar.min ty = 0 := by cases ty <;> simp [ScalarTy.isSigned, min] at * have hx := x.hmin have hy := y.hmin simp [h] at hx hy @@ -889,27 +888,27 @@ theorem Scalar.rem_unsigned_spec {ty} (s: ¬ ty.isSigned) (x : Scalar ty) {y : S @[pspec] theorem Usize.rem_spec (x : Usize) {y : Usize} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [*] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U8.rem_spec (x : U8) {y : U8} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U16.rem_spec (x : U16) {y : U16} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U32.rem_spec (x : U32) {y : U32} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U64.rem_spec (x : U64) {y : U64} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem U128.rem_spec (x : U128) {y : U128} (hnz : y.val ≠ 0) : ∃ z, x % y = ret z ∧ z.val = x.val % y.val := by - apply Scalar.rem_unsigned_spec <;> simp [Scalar.max, *] + apply Scalar.rem_unsigned_spec <;> simp [ScalarTy.isSigned, *] @[pspec] theorem I8.rem_spec (x : I8) {y : I8} (hnz : y.val ≠ 0) |