diff options
author | Son Ho | 2023-07-26 15:00:11 +0200 |
---|---|---|
committer | Son Ho | 2023-07-26 15:00:11 +0200 |
commit | 3337c4ac3326c3132dcc322f55f23a7d2054ceb0 (patch) | |
tree | 4753f8a49b2b28917600a872caa3d31964cb6fd8 /backends/lean/Base/Primitives | |
parent | 81e991822879a942af34489b7a072f31739f28f6 (diff) |
Update some of the Vec function specs
Diffstat (limited to 'backends/lean/Base/Primitives')
-rw-r--r-- | backends/lean/Base/Primitives/Vec.lean | 13 |
1 files changed, 9 insertions, 4 deletions
diff --git a/backends/lean/Base/Primitives/Vec.lean b/backends/lean/Base/Primitives/Vec.lean index 523372bb..a09d6ac2 100644 --- a/backends/lean/Base/Primitives/Vec.lean +++ b/backends/lean/Base/Primitives/Vec.lean @@ -85,14 +85,19 @@ def Vec.index (α : Type u) (v: Vec α) (i: Usize) : Result α := | none => fail .arrayOutOfBounds | some x => ret x +/- In the theorems below: we don't always need the `∃ ..`, but we use one + so that `progress` introduces an opaque variable and an equality. This + helps control the context. + -/ + @[pspec] theorem Vec.index_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) (hbound : i.val < v.length) : - v.index α i = ret (v.val.index i.val) := by + ∃ x, v.index α i = ret x ∧ x = v.val.index i.val := by simp only [index] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) - simp only [*] + simp [*] -- This shouldn't be used def Vec.index_back (α : Type u) (v: Vec α) (i: Usize) (_: α) : Result Unit := @@ -109,11 +114,11 @@ def Vec.index_mut (α : Type u) (v: Vec α) (i: Usize) : Result α := @[pspec] theorem Vec.index_mut_spec {α : Type u} [Inhabited α] (v: Vec α) (i: Usize) (hbound : i.val < v.length) : - v.index_mut α i = ret (v.val.index i.val) := by + ∃ x, v.index_mut α i = ret x ∧ x = v.val.index i.val := by simp only [index_mut] -- TODO: dependent rewrite have h := List.indexOpt_eq_index v.val i.val (by scalar_tac) (by simp [*]) - simp only [*] + simp [*] instance {α : Type u} (p : Vec α → Prop) : Arith.HasIntProp (Subtype p) where prop_ty := λ x => p x |