diff options
author | Son HO | 2024-06-22 13:22:32 +0200 |
---|---|---|
committer | GitHub | 2024-06-22 13:22:32 +0200 |
commit | 8144c39f4d37aa1fa14a8a061eb7ed60e153fb4c (patch) | |
tree | b3de971e89c369f30de349806c87913edeb17333 /backends/lean/Base/IList | |
parent | 4d30546c809cb2c512e0c3fd8ee540fff1330eab (diff) |
Improve `scalar_tac` and `scalar_decr_tac` (#256)
* Fix an issue in a proof of the hashmap
* Improve scalar_decr_tac
* Improve the error message of scalar_tac and add the missing Termination.lean
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 61 |
1 files changed, 41 insertions, 20 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index ab71daed..c77f075f 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -4,8 +4,29 @@ import Base.Arith import Base.Utils +-- TODO: move? +-- This lemma is generally useful. It often happens that (because we +-- make a split on a condition for instance) we have `x ≠ y` in the context +-- and need to simplify `y ≠ x` somewhere. +@[simp] +theorem neq_imp {α : Type u} {x y : α} (h : ¬ x = y) : ¬ y = x := by intro; simp_all + namespace List +-- Small helper +-- We cover a set of cases which might imply inequality, to make sure that using +-- this as the precondition of a `simp` lemma will allow the lemma to get correctly +-- triggered. +-- TODO: there should be something more systematic to do, with discharged procedures +-- or simprocs I guess. +@[simp] +abbrev Int.not_eq (i j : Int) : Prop := + i ≠ j ∨ j ≠ i ∨ i < j ∨ j < i + +theorem Int.not_eq_imp_not_eq {i j} : Int.not_eq i j → i ≠ j := by + intro h g + simp_all + def len (ls : List α) : Int := match ls with | [] => 0 @@ -32,7 +53,7 @@ def indexOpt (ls : List α) (i : Int) : Option α := @[simp] theorem indexOpt_nil : indexOpt ([] : List α) i = none := by simp [indexOpt] @[simp] theorem indexOpt_zero_cons : indexOpt ((x :: tl) : List α) 0 = some x := by simp [indexOpt] -@[simp] theorem indexOpt_nzero_cons (hne : i ≠ 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [*, indexOpt] +@[simp] theorem indexOpt_nzero_cons (hne : Int.not_eq i 0) : indexOpt ((x :: tl) : List α) i = indexOpt tl (i - 1) := by simp [indexOpt]; intro; simp_all -- Remark: if i < 0, then the result is the default element def index [Inhabited α] (ls : List α) (i : Int) : α := @@ -42,10 +63,7 @@ def index [Inhabited α] (ls : List α) (i : Int) : α := if i = 0 then x else index tl (i - 1) @[simp] theorem index_zero_cons [Inhabited α] : index ((x :: tl) : List α) 0 = x := by simp [index] -@[simp] theorem index_nzero_cons [Inhabited α] (hne : i ≠ 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [*, index] -@[simp] theorem index_zero_lt_cons [Inhabited α] (hne : 0 < i) : index ((x :: tl) : List α) i = index tl (i - 1) := by - have : i ≠ 0 := by scalar_tac - simp [*, index] +@[simp] theorem index_nzero_cons [Inhabited α] (hne : Int.not_eq i 0) : index ((x :: tl) : List α) i = index tl (i - 1) := by simp [index]; intro; simp_all theorem indexOpt_bounds (ls : List α) (i : Int) : ls.indexOpt i = none ↔ i < 0 ∨ ls.len ≤ i := @@ -128,15 +146,15 @@ decreasing_by int_decr_tac @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] -@[simp] theorem update_nzero_cons (hne : i ≠ 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [*, update] +@[simp] theorem update_nzero_cons (hne : Int.not_eq i 0) : update ((x :: tl) : List α) i y = x :: update tl (i - 1) y := by simp [update]; intro; simp_all @[simp] theorem idrop_nil : idrop i ([] : List α) = [] := by simp [idrop] @[simp] theorem idrop_zero : idrop 0 (ls : List α) = ls := by cases ls <;> simp [idrop] -@[simp] theorem idrop_nzero_cons (hne : i ≠ 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [*, idrop] +@[simp] theorem idrop_nzero_cons (hne : Int.not_eq i 0) : idrop i ((x :: tl) : List α) = idrop (i - 1) tl := by simp [idrop]; intro; simp_all @[simp] theorem itake_nil : itake i ([] : List α) = [] := by simp [itake] @[simp] theorem itake_zero : itake 0 (ls : List α) = [] := by cases ls <;> simp [itake] -@[simp] theorem itake_nzero_cons (hne : i ≠ 0) : itake i ((x :: tl) : List α) = x :: itake (i - 1) tl := by simp [*, itake] +@[simp] theorem itake_nzero_cons (hne : Int.not_eq i 0) : itake i ((x :: tl) : List α) = x :: itake (i - 1) tl := by simp [itake]; intro; simp_all @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] @@ -146,20 +164,21 @@ decreasing_by int_decr_tac rw [ireplicate]; simp [*] @[simp] -theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := +theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : Int.not_eq i 0) : + slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := by + apply Int.not_eq_imp_not_eq at hne match tl with - | [] => by simp [slice]; simp [*] + | [] => simp [slice]; simp [*] | hd :: tl => - if h: i - 1 = 0 then by + if h: i - 1 = 0 then have : i = 1 := by int_tac simp [*, slice] else - have hi := slice_nzero_cons (i - 1) (j - 1) hd tl h - by - conv => lhs; simp [slice, *] - conv at hi => lhs; simp [slice, *] - simp [slice] - simp [*] + have hi := slice_nzero_cons (i - 1) (j - 1) hd tl (by simp_all) + conv => lhs; simp [slice, *] + conv at hi => lhs; simp [slice, *] + simp [slice] + simp [*] @[simp] theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : @@ -319,7 +338,8 @@ theorem itake_len_le (i : Int) (ls : List α) : (ls.itake i).len ≤ ls.len := by simp [*] @[simp] -theorem itake_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : (ls.itake i).len = i := +theorem itake_len (i : Int) (ls : List α) (_ : 0 ≤ i) (_ : i ≤ ls.len) : + (ls.itake i).len = i := match ls with | [] => by simp_all; int_tac | hd :: tl => @@ -359,7 +379,8 @@ theorem index_itake [Inhabited α] (i : Int) (j : Int) (ls : List α) | [] => by simp at * | hd :: tl => have : ¬ 0 = i := by int_tac -- TODO: this is slightly annoying - if h: j = 0 then by simp [*] at * + if h: j = 0 then by + simp_all else by simp [*] -- TODO: rewriting rule: ¬ i = 0 → 0 ≤ i → 0 < i ? @@ -422,7 +443,7 @@ theorem index_itake_append_end [Inhabited α] (i j : Int) (l0 l1 : List α) @[simp] theorem index_update_ne {α : Type u} [Inhabited α] (l: List α) (i: ℤ) (j: ℤ) (x: α) : - j ≠ i → (l.update i x).index j = l.index j + Int.not_eq i j → (l.update i x).index j = l.index j := λ _ => match l with | [] => by simp at * |