diff options
author | Son Ho | 2023-11-29 14:26:04 +0100 |
---|---|---|
committer | Son Ho | 2023-11-29 14:26:04 +0100 |
commit | 0273fee7f6b74da1d3b66c3c6a2158c012d04197 (patch) | |
tree | 5f6db32814f6f0b3a98f2de1db39225ff2c7645d /backends/lean/Base/IList | |
parent | f4e2c2bb09d9d7b54afc0692b7f690f5ec2eb029 (diff) | |
parent | 90e42e0e1c1889aabfa66283fb15b43a5852a02a (diff) |
Merge branch 'main' into afromher_shifts
Diffstat (limited to 'backends/lean/Base/IList')
-rw-r--r-- | backends/lean/Base/IList/IList.lean | 39 |
1 files changed, 38 insertions, 1 deletions
diff --git a/backends/lean/Base/IList/IList.lean b/backends/lean/Base/IList/IList.lean index a940da25..f71f2de2 100644 --- a/backends/lean/Base/IList/IList.lean +++ b/backends/lean/Base/IList/IList.lean @@ -112,7 +112,13 @@ def pairwise_rel section Lemmas -variable {α : Type u} +variable {α : Type u} + +def ireplicate {α : Type u} (i : ℤ) (x : α) : List α := + if i ≤ 0 then [] + else x :: ireplicate (i - 1) x +termination_by ireplicate i x => i.toNat +decreasing_by int_decr_tac @[simp] theorem update_nil : update ([] : List α) i y = [] := by simp [update] @[simp] theorem update_zero_cons : update ((x :: tl) : List α) 0 y = y :: tl := by simp [update] @@ -129,6 +135,10 @@ variable {α : Type u} @[simp] theorem slice_nil : slice i j ([] : List α) = [] := by simp [slice] @[simp] theorem slice_zero : slice 0 0 (ls : List α) = [] := by cases ls <;> simp [slice] +@[simp] theorem ireplicate_zero : ireplicate 0 x = [] := by rw [ireplicate]; simp +@[simp] theorem ireplicate_nzero_cons (hne : 0 < i) : ireplicate i x = x :: ireplicate (i - 1) x := by + rw [ireplicate]; simp [*]; intro; linarith + @[simp] theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : slice i j ((x :: tl) : List α) = slice (i - 1) (j - 1) tl := match tl with @@ -144,6 +154,33 @@ theorem slice_nzero_cons (i j : Int) (x : α) (tl : List α) (hne : i ≠ 0) : s conv at this => lhs; simp [slice, *] simp [*, slice] +@[simp] +theorem ireplicate_replicate {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + ireplicate l x = replicate l.toNat x := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_replicate (l - 1) x (by int_tac) + simp [*] + have hl : l.toNat = .succ (l.toNat - 1) := by + cases hl: l.toNat <;> simp_all + conv => rhs; rw[hl] +termination_by ireplicate_replicate l x h => l.toNat +decreasing_by int_decr_tac + +@[simp] +theorem ireplicate_len {α : Type u} (l : ℤ) (x : α) (h : 0 ≤ l) : + (ireplicate l x).len = l := + if hz: l = 0 then by + simp [*] + else by + have : 0 < l := by int_tac + have hr := ireplicate_len (l - 1) x (by int_tac) + simp [*] +termination_by ireplicate_len l x h => l.toNat +decreasing_by int_decr_tac + theorem len_eq_length (ls : List α) : ls.len = ls.length := by induction ls . rfl |