summaryrefslogtreecommitdiff
path: root/backends/lean/Base/Diverge/Base.lean
diff options
context:
space:
mode:
authorSon HO2023-09-14 08:19:59 +0200
committerGitHub2023-09-14 08:19:59 +0200
commit242aca3092c6594206896ea62eb40395accc8459 (patch)
tree4a105b1284821a89ca344188fdddb727de2deea3 /backends/lean/Base/Diverge/Base.lean
parentda97fc1e68d147439436ff883ac865a9cdeca18e (diff)
parent743e8cb9d5366b879f53d7d0ba8adeb2f83ef72f (diff)
Merge pull request #36 from AeneasVerif/update_lean
Update the version of Lean and fix a bug in the progress tactic
Diffstat (limited to '')
-rw-r--r--backends/lean/Base/Diverge/Base.lean35
1 files changed, 16 insertions, 19 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean
index 1d548389..6a52387d 100644
--- a/backends/lean/Base/Diverge/Base.lean
+++ b/backends/lean/Base/Diverge/Base.lean
@@ -270,7 +270,7 @@ namespace Fix
simp [karrow_rel, result_rel]
have hg := hg Hrgh; simp [result_rel] at hg
cases heq0: g fg <;> simp_all
- rename_i y _
+ rename_i _ y
have hh := hh y Hrgh; simp [result_rel] at hh
simp_all
@@ -546,7 +546,7 @@ namespace FixI
termination_by for_all_fin_aux n _ m h => n - m
decreasing_by
simp_wf
- apply Nat.sub_add_lt_sub <;> simp
+ apply Nat.sub_add_lt_sub <;> try simp
simp_all [Arith.add_one_le_iff_le_ne]
def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp)
@@ -569,7 +569,6 @@ namespace FixI
intro i h3; cases i; simp_all
linarith
case succ k hi =>
- simp_all
intro m hk hmn
intro hf i hmi
have hne: m ≠ n := by
@@ -580,7 +579,6 @@ namespace FixI
-- Yes: simply use the `for_all_fin_aux` hyp
unfold for_all_fin_aux at hf
simp_all
- tauto
else
-- No: use the induction hypothesis
have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne]
@@ -726,8 +724,8 @@ namespace Ex1
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
- split <;> simp
- split <;> simp
+ split <;> try simp
+ split <;> try simp
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
@@ -767,8 +765,8 @@ namespace Ex2
theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by
intro k x
simp [list_nth_body]
- split <;> simp
- split <;> simp
+ split <;> try simp
+ split <;> try simp
apply is_valid_p_bind <;> intros <;> simp_all
def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i)
@@ -845,7 +843,7 @@ namespace Ex3
∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by
intro k x
simp [is_even_is_odd_body]
- split <;> simp <;> split <;> simp
+ split <;> (try simp) <;> split <;> try simp
apply is_valid_p_bind; simp
intros; split <;> simp
apply is_valid_p_bind; simp
@@ -878,7 +876,7 @@ namespace Ex3
-- inductives on the fly).
-- The simplest is to repeatedly split then simplify (we identify
-- the outer match or monadic let-binding, and split on its scrutinee)
- split <;> simp
+ split <;> try simp
cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp
rename_i v
split <;> simp
@@ -891,7 +889,7 @@ namespace Ex3
simp [is_even, is_odd]
conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp
-- Same remark as for `even`
- split <;> simp
+ split <;> try simp
cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp
rename_i v
split <;> simp
@@ -938,7 +936,7 @@ namespace Ex4
intro k
apply (Funs.is_valid_p_is_valid_p tys)
simp [Funs.is_valid_p]
- (repeat (apply And.intro)) <;> intro x <;> simp at x <;>
+ (repeat (apply And.intro)) <;> intro x <;> (try simp at x) <;>
simp only [is_even_body, is_odd_body]
-- Prove the validity of the individual bodies
. split <;> simp
@@ -995,9 +993,9 @@ namespace Ex5
(ls : List a) :
is_valid_p k (λ k => map (f k) ls) := by
induction ls <;> simp [map]
- apply is_valid_p_bind <;> simp_all
+ apply is_valid_p_bind <;> try simp_all
intros
- apply is_valid_p_bind <;> simp_all
+ apply is_valid_p_bind <;> try simp_all
/- An example which uses map -/
inductive Tree (a : Type) :=
@@ -1016,8 +1014,8 @@ namespace Ex5
∀ k x, is_valid_p k (λ k => @id_body a k x) := by
intro k x
simp only [id_body]
- split <;> simp
- apply is_valid_p_bind <;> simp [*]
+ split <;> try simp
+ apply is_valid_p_bind <;> try simp [*]
-- We have to show that `map k tl` is valid
apply map_is_valid;
-- Remark: if we don't do the intro, then the last step is expensive:
@@ -1077,12 +1075,11 @@ namespace Ex6
intro k
apply (Funs.is_valid_p_is_valid_p tys)
simp [Funs.is_valid_p]
- (repeat (apply And.intro)); intro x; simp at x
+ (repeat (apply And.intro)); intro x; try simp at x
simp only [list_nth_body]
-- Prove the validity of the individual bodies
intro k x
- simp [list_nth_body]
- split <;> simp
+ split <;> try simp
split <;> simp
-- Writing the proof terms explicitly