diff options
author | Son HO | 2023-09-14 08:19:59 +0200 |
---|---|---|
committer | GitHub | 2023-09-14 08:19:59 +0200 |
commit | 242aca3092c6594206896ea62eb40395accc8459 (patch) | |
tree | 4a105b1284821a89ca344188fdddb727de2deea3 /backends/lean/Base/Diverge/Base.lean | |
parent | da97fc1e68d147439436ff883ac865a9cdeca18e (diff) | |
parent | 743e8cb9d5366b879f53d7d0ba8adeb2f83ef72f (diff) |
Merge pull request #36 from AeneasVerif/update_lean
Update the version of Lean and fix a bug in the progress tactic
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Diverge/Base.lean | 35 |
1 files changed, 16 insertions, 19 deletions
diff --git a/backends/lean/Base/Diverge/Base.lean b/backends/lean/Base/Diverge/Base.lean index 1d548389..6a52387d 100644 --- a/backends/lean/Base/Diverge/Base.lean +++ b/backends/lean/Base/Diverge/Base.lean @@ -270,7 +270,7 @@ namespace Fix simp [karrow_rel, result_rel] have hg := hg Hrgh; simp [result_rel] at hg cases heq0: g fg <;> simp_all - rename_i y _ + rename_i _ y have hh := hh y Hrgh; simp [result_rel] at hh simp_all @@ -546,7 +546,7 @@ namespace FixI termination_by for_all_fin_aux n _ m h => n - m decreasing_by simp_wf - apply Nat.sub_add_lt_sub <;> simp + apply Nat.sub_add_lt_sub <;> try simp simp_all [Arith.add_one_le_iff_le_ne] def for_all_fin {n : Nat} (f : Fin n → Prop) := for_all_fin_aux f 0 (by simp) @@ -569,7 +569,6 @@ namespace FixI intro i h3; cases i; simp_all linarith case succ k hi => - simp_all intro m hk hmn intro hf i hmi have hne: m ≠ n := by @@ -580,7 +579,6 @@ namespace FixI -- Yes: simply use the `for_all_fin_aux` hyp unfold for_all_fin_aux at hf simp_all - tauto else -- No: use the induction hypothesis have hlt: m < i := by simp_all [Nat.lt_iff_le_and_ne] @@ -726,8 +724,8 @@ namespace Ex1 theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by intro k x simp [list_nth_body] - split <;> simp - split <;> simp + split <;> try simp + split <;> try simp def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) @@ -767,8 +765,8 @@ namespace Ex2 theorem list_nth_body_is_valid: ∀ k x, is_valid_p k (λ k => @list_nth_body a k x) := by intro k x simp [list_nth_body] - split <;> simp - split <;> simp + split <;> try simp + split <;> try simp apply is_valid_p_bind <;> intros <;> simp_all def list_nth (ls : List a) (i : Int) : Result a := fix list_nth_body (ls, i) @@ -845,7 +843,7 @@ namespace Ex3 ∀ k x, is_valid_p k (λ k => is_even_is_odd_body k x) := by intro k x simp [is_even_is_odd_body] - split <;> simp <;> split <;> simp + split <;> (try simp) <;> split <;> try simp apply is_valid_p_bind; simp intros; split <;> simp apply is_valid_p_bind; simp @@ -878,7 +876,7 @@ namespace Ex3 -- inductives on the fly). -- The simplest is to repeatedly split then simplify (we identify -- the outer match or monadic let-binding, and split on its scrutinee) - split <;> simp + split <;> try simp cases H0 : fix is_even_is_odd_body (Sum.inr (i - 1)) <;> simp rename_i v split <;> simp @@ -891,7 +889,7 @@ namespace Ex3 simp [is_even, is_odd] conv => lhs; rw [Heq]; simp; rw [is_even_is_odd_body]; simp -- Same remark as for `even` - split <;> simp + split <;> try simp cases H0 : fix is_even_is_odd_body (Sum.inl (i - 1)) <;> simp rename_i v split <;> simp @@ -938,7 +936,7 @@ namespace Ex4 intro k apply (Funs.is_valid_p_is_valid_p tys) simp [Funs.is_valid_p] - (repeat (apply And.intro)) <;> intro x <;> simp at x <;> + (repeat (apply And.intro)) <;> intro x <;> (try simp at x) <;> simp only [is_even_body, is_odd_body] -- Prove the validity of the individual bodies . split <;> simp @@ -995,9 +993,9 @@ namespace Ex5 (ls : List a) : is_valid_p k (λ k => map (f k) ls) := by induction ls <;> simp [map] - apply is_valid_p_bind <;> simp_all + apply is_valid_p_bind <;> try simp_all intros - apply is_valid_p_bind <;> simp_all + apply is_valid_p_bind <;> try simp_all /- An example which uses map -/ inductive Tree (a : Type) := @@ -1016,8 +1014,8 @@ namespace Ex5 ∀ k x, is_valid_p k (λ k => @id_body a k x) := by intro k x simp only [id_body] - split <;> simp - apply is_valid_p_bind <;> simp [*] + split <;> try simp + apply is_valid_p_bind <;> try simp [*] -- We have to show that `map k tl` is valid apply map_is_valid; -- Remark: if we don't do the intro, then the last step is expensive: @@ -1077,12 +1075,11 @@ namespace Ex6 intro k apply (Funs.is_valid_p_is_valid_p tys) simp [Funs.is_valid_p] - (repeat (apply And.intro)); intro x; simp at x + (repeat (apply And.intro)); intro x; try simp at x simp only [list_nth_body] -- Prove the validity of the individual bodies intro k x - simp [list_nth_body] - split <;> simp + split <;> try simp split <;> simp -- Writing the proof terms explicitly |