diff options
author | Son Ho | 2024-05-24 16:32:59 +0200 |
---|---|---|
committer | Son Ho | 2024-05-24 16:32:59 +0200 |
commit | 321263384bb1e6e8bfd08806f35164bdba387d74 (patch) | |
tree | 04d90b72b7591e380079614a4335e9ca7fe11268 /backends/lean/Base/Arith | |
parent | 765cb792916c1c69f864a6cf59a49c504ad603a2 (diff) | |
parent | 0baa0519cf477fe1fa447417585960fc811bcae9 (diff) |
Merge branch 'main' into afromher/recursive_projectors
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 162 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 2 | ||||
-rw-r--r-- | tests/test_runner/.ocamlformat (renamed from backends/lean/Base/Arith/Arith.lean) | 0 |
3 files changed, 66 insertions, 98 deletions
diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index 5a85dff0..4a3db5f8 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -3,22 +3,25 @@ import Lean import Lean.Meta.Tactic.Simp import Init.Data.List.Basic -import Mathlib.Tactic.Linarith --- TODO: there is no Omega tactic for now - it seems it hasn't been ported yet ---import Mathlib.Tactic.Omega import Base.Utils import Base.Arith.Base namespace Arith open Utils +open Lean Lean.Elab Lean.Meta + +/- We can introduce a term in the context. + For instance, if we find `x : U32` in the context we can introduce `0 ≤ x ∧ x ≤ U32.max` --- Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` --- but the lookup didn't work + Remark: I tried a version of the shape `HasScalarProp {a : Type} (x : a)` + but the lookup didn't work. + -/ class HasIntProp (a : Sort u) where prop_ty : a → Prop prop : ∀ x:a, prop_ty x +/- Proposition with implications: if we find P we can introduce Q in the context -/ class PropHasImp (x : Prop) where concl : Prop prop : x → concl @@ -27,14 +30,9 @@ instance (p : Int → Prop) : HasIntProp (Subtype p) where prop_ty := λ x => p x prop := λ x => x.property --- This also works for `x ≠ y` because this expression reduces to `¬ x = y` --- and `Ne` is marked as `reducible` -instance (x y : Int) : PropHasImp (¬ x = y) where - concl := x < y ∨ x > y - prop := λ (h:x ≠ y) => ne_is_lt_or_gt h - --- Check if a proposition is a linear integer proposition. --- We notably use this to check the goals. +/- Check if a proposition is a linear integer proposition. + We notably use this to check the goals: this is useful to filter goals that + are unlikely to be solvable with arithmetic tactics. -/ class IsLinearIntProp (x : Prop) where instance (x y : Int) : IsLinearIntProp (x < y) where @@ -43,17 +41,35 @@ instance (x y : Int) : IsLinearIntProp (x ≤ y) where instance (x y : Int) : IsLinearIntProp (x ≥ y) where instance (x y : Int) : IsLinearIntProp (x ≥ y) where instance (x y : Int) : IsLinearIntProp (x = y) where -/- It seems we don't need to do any special preprocessing when the *goal* - has the following shape - I guess `linarith` automatically calls `intro` -/ -instance (x y : Int) : IsLinearIntProp (¬ x = y) where -open Lean Lean.Elab Lean.Meta +instance (x y : Nat) : IsLinearIntProp (x < y) where +instance (x y : Nat) : IsLinearIntProp (x > y) where +instance (x y : Nat) : IsLinearIntProp (x ≤ y) where +instance (x y : Nat) : IsLinearIntProp (x ≥ y) where +instance (x y : Nat) : IsLinearIntProp (x ≥ y) where +instance (x y : Nat) : IsLinearIntProp (x = y) where --- Explore a term by decomposing the applications (we explore the applied --- functions and their arguments, but ignore lambdas, forall, etc. - --- should we go inside?). --- Remark: we pretend projections are applications, and explore the projected --- terms. +instance : IsLinearIntProp False where +instance (p : Prop) [IsLinearIntProp p] : IsLinearIntProp (¬ p) where +instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p ∨ q) where +instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p ∧ q) where +-- We use the one below for goals +instance (p q : Prop) [IsLinearIntProp p] [IsLinearIntProp q] : IsLinearIntProp (p → q) where + +-- Check if the goal is a linear arithmetic goal +def goalIsLinearInt : Tactic.TacticM Bool := do + Tactic.withMainContext do + let gty ← Tactic.getMainTarget + match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with + | .some _ => pure true + | _ => pure false + +/- Explore a term by decomposing the applications (we explore the applied + functions and their arguments, but ignore lambdas, forall, etc. - + should we go inside?). + + Remark: we pretend projections are applications, and explore the projected + terms. -/ partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : MetaM α := do -- Explore the current expression let e := e.consumeMData @@ -68,8 +84,8 @@ partial def foldTermApps (k : α → Expr → MetaM α) (s : α) (e : Expr) : Me args.foldlM (foldTermApps k) s | _ => pure s --- Provided a function `k` which lookups type class instances on an expression, --- collect all the instances lookuped by applying `k` on the sub-expressions of `e`. +/- Provided a function `k` which lookups type class instances on an expression, + collect all the instances lookuped by applying `k` on the sub-expressions of `e`. -/ def collectInstances (k : Expr → MetaM (Option Expr)) (s : HashSet Expr) (e : Expr) : MetaM (HashSet Expr) := do let k s e := do @@ -78,8 +94,8 @@ def collectInstances | some i => pure (s.insert i) foldTermApps k s e --- Similar to `collectInstances`, but explores all the local declarations in the --- main context. +/- Similar to `collectInstances`, but explores all the local declarations in the + main context. -/ def collectInstancesFromMainCtx (k : Expr → MetaM (Option Expr)) : Tactic.TacticM (HashSet Expr) := do Tactic.withMainContext do -- Get the local context @@ -152,6 +168,9 @@ example (x y : Int) (_ : x ≠ y) (_ : ¬ x = y) : True := by display_prop_has_imp_instances simp +example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by + omega + -- Lookup instances in a context and introduce them with additional declarations. def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) : Tactic.TacticM (Array Expr) := do let hs ← collectInstancesFromMainCtx lookup @@ -174,60 +193,33 @@ def introHasIntPropInstances : Tactic.TacticM (Array Expr) := do elab "intro_has_int_prop_instances" : tactic => do let _ ← introHasIntPropInstances +def introPropHasImpInstances : Tactic.TacticM (Array Expr) := do + trace[Arith] "Introducing the PropHasImp instances" + introInstances ``PropHasImp.concl lookupPropHasImp + -- Lookup the instances of `PropHasImp for all the sub-expressions in the context, -- and introduce the corresponding assumptions elab "intro_prop_has_imp_instances" : tactic => do - trace[Arith] "Introducing the PropHasImp instances" - let _ ← introInstances ``PropHasImp.concl lookupPropHasImp + let _ ← introPropHasImpInstances -example (x y : Int) (h0 : x ≤ y) (h1 : x ≠ y) : x < y := by - intro_prop_has_imp_instances - rename_i h - split_disj h - . linarith - . linarith - -/- Boosting a bit the linarith tac. - - We do the following: - - for all the assumptions of the shape `(x : Int) ≠ y` or `¬ (x = y), we - introduce two goals with the assumptions `x < y` and `x > y` - TODO: we could create a PR for mathlib. +/- Boosting a bit the `omega` tac. -/ def intTacPreprocess (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do - -- Lookup the instances of PropHasImp (this is how we detect assumptions - -- of the proper shape), introduce assumptions in the context and split - -- on those - -- TODO: get rid of the assumptions that we split - let rec splitOnAsms (asms : List Expr) : Tactic.TacticM Unit := - match asms with - | [] => pure () - | asm :: asms => - let k := splitOnAsms asms - Utils.splitDisjTac asm k k - -- Introduce the scalar bounds + -- Introduce the instances of `HasIntProp` let _ ← introHasIntPropInstances - -- Extra preprocessing, before we split on the disjunctions + -- Introduce the instances of `PropHasImp` + let _ ← introPropHasImpInstances + -- Extra preprocessing extraPreprocess - -- Split - note that the extra-preprocessing step might actually have - -- proven the goal (by doing simplifications for instance) - Tactic.allGoals do - let asms ← introInstances ``PropHasImp.concl lookupPropHasImp - splitOnAsms asms.toList + -- Reduce all the terms in the goal - note that the extra preprocessing step + -- might have proven the goal, hence the `Tactic.allGoals` + Tactic.allGoals do tryTac (dsimpAt false [] [] [] Tactic.Location.wildcard) elab "int_tac_preprocess" : tactic => intTacPreprocess (do pure ()) --- Check if the goal is a linear arithmetic goal -def goalIsLinearInt : Tactic.TacticM Bool := do - Tactic.withMainContext do - let gty ← Tactic.getMainTarget - match ← trySynthInstance (← mkAppM ``IsLinearIntProp #[gty]) with - | .some _ => pure true - | _ => pure false - -def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do +def intTac (tacName : String) (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Tactic.TacticM Unit := do Tactic.withMainContext do Tactic.focus do let g ← Tactic.getMainGoal @@ -243,31 +235,15 @@ def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Ta -- Split the conjunctions in the goal if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) -- Call linarith - let linarith := do - let cfg : Linarith.LinarithConfig := { - -- We do this with our custom preprocessing - splitNe := false - } - Tactic.liftMetaFinishingTactic <| Linarith.linarith false [] cfg Tactic.allGoals do - -- We check if the goal is a linear arithmetic goal: if yes, we directly - -- call linarith, otherwise we first apply exfalso (we do this because - -- linarith is too general and sometimes fails to do this correctly). - if ← goalIsLinearInt then do - trace[Arith] "linarith goal: {← Tactic.getMainGoal}" - linarith - else do + try do Tactic.Omega.omegaTactic {} + catch _ => let g ← Tactic.getMainGoal - let gs ← g.apply (Expr.const ``False.elim [.zero]) - let goals ← Tactic.getGoals - Tactic.setGoals (gs ++ goals) - Tactic.allGoals do - trace[Arith] "linarith goal: {← Tactic.getMainGoal}" - linarith + throwError "{tacName} failed to prove the goal:\n{g}" elab "int_tac" args:(" split_goal"?): tactic => let split := args.raw.getArgs.size > 0 - intTac split (do pure ()) + intTac "int_tac" split (do pure ()) -- For termination proofs syntax "int_decr_tac" : tactic @@ -280,19 +256,11 @@ macro_rules | apply Arith.to_int_sub_to_nat_lt) <;> simp_all <;> int_tac) -example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by - int_tac_preprocess - linarith - linarith - -example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by - int_tac - --- Checking that things append correctly when there are several disjunctions +-- Checking that things happen correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y := by int_tac split_goal --- Checking that things append correctly when there are several disjunctions +-- Checking that things happen correctly when there are several disjunctions example (x y : Int) (h0: 0 ≤ x) (h1: x ≠ 0) (h2 : 0 ≤ y) (h3 : y ≠ 0) : 0 < x ∧ 0 < y ∧ x + y ≥ 2 := by int_tac split_goal diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 9441be86..86b2e216 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -38,7 +38,7 @@ elab "scalar_tac_preprocess" : tactic => -- A tactic to solve linear arithmetic goals in the presence of scalars def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do - intTac splitGoalConjs scalarTacExtraPreprocess + intTac "scalar_tac" splitGoalConjs scalarTacExtraPreprocess elab "scalar_tac" : tactic => scalarTac false diff --git a/backends/lean/Base/Arith/Arith.lean b/tests/test_runner/.ocamlformat index e69de29b..e69de29b 100644 --- a/backends/lean/Base/Arith/Arith.lean +++ b/tests/test_runner/.ocamlformat |