diff options
author | Son Ho | 2023-11-29 14:26:04 +0100 |
---|---|---|
committer | Son Ho | 2023-11-29 14:26:04 +0100 |
commit | 0273fee7f6b74da1d3b66c3c6a2158c012d04197 (patch) | |
tree | 5f6db32814f6f0b3a98f2de1db39225ff2c7645d /backends/lean/Base/Arith | |
parent | f4e2c2bb09d9d7b54afc0692b7f690f5ec2eb029 (diff) | |
parent | 90e42e0e1c1889aabfa66283fb15b43a5852a02a (diff) |
Merge branch 'main' into afromher_shifts
Diffstat (limited to '')
-rw-r--r-- | backends/lean/Base/Arith/Base.lean | 12 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Int.lean | 15 | ||||
-rw-r--r-- | backends/lean/Base/Arith/Scalar.lean | 13 |
3 files changed, 37 insertions, 3 deletions
diff --git a/backends/lean/Base/Arith/Base.lean b/backends/lean/Base/Arith/Base.lean index 9c11ed45..8ada4171 100644 --- a/backends/lean/Base/Arith/Base.lean +++ b/backends/lean/Base/Arith/Base.lean @@ -57,4 +57,16 @@ theorem int_pos_ind (p : Int → Prop) : -- TODO: there is probably something more general to do theorem nat_zero_eq_int_zero : (0 : Nat) = (0 : Int) := by simp +-- This is mostly used in termination proofs +theorem to_int_to_nat_lt (x y : ℤ) (h0 : 0 ≤ x) (h1 : x < y) : + ↑(x.toNat) < y := by + simp [*] + +-- This is mostly used in termination proofs +theorem to_int_sub_to_nat_lt (x y : ℤ) (x' : ℕ) + (h0 : ↑x' ≤ x) (h1 : x - ↑x' < y) : + ↑(x.toNat - x') < y := by + have : 0 ≤ x := by linarith + simp [Int.toNat_sub_of_le, *] + end Arith diff --git a/backends/lean/Base/Arith/Int.lean b/backends/lean/Base/Arith/Int.lean index 3359ecdb..a57f8bb1 100644 --- a/backends/lean/Base/Arith/Int.lean +++ b/backends/lean/Base/Arith/Int.lean @@ -162,7 +162,7 @@ def introInstances (declToUnfold : Name) (lookup : Expr → MetaM (Option Expr)) -- Add a declaration let nval ← Utils.addDeclTac name e type (asLet := false) -- Simplify to unfold the declaration to unfold (i.e., the projector) - Utils.simpAt [declToUnfold] [] [] (Tactic.Location.targets #[mkIdent name] false) + Utils.simpAt true [declToUnfold] [] [] (Location.targets #[mkIdent name] false) -- Return the new value pure nval @@ -240,7 +240,7 @@ def intTac (splitGoalConjs : Bool) (extraPreprocess : Tactic.TacticM Unit) : Ta -- the goal. I think before leads to a smaller proof term? Tactic.allGoals (intTacPreprocess extraPreprocess) -- More preprocessing - Tactic.allGoals (Utils.tryTac (Utils.simpAt [] [``nat_zero_eq_int_zero] [] .wildcard)) + Tactic.allGoals (Utils.tryTac (Utils.simpAt true [] [``nat_zero_eq_int_zero] [] .wildcard)) -- Split the conjunctions in the goal if splitGoalConjs then Tactic.allGoals (Utils.repeatTac Utils.splitConjTarget) -- Call linarith @@ -270,6 +270,17 @@ elab "int_tac" args:(" split_goal"?): tactic => let split := args.raw.getArgs.size > 0 intTac split (do pure ()) +-- For termination proofs +syntax "int_decr_tac" : tactic +macro_rules + | `(tactic| int_decr_tac) => + `(tactic| + simp_wf; + -- TODO: don't use a macro (namespace problems) + (first | apply Arith.to_int_to_nat_lt + | apply Arith.to_int_sub_to_nat_lt) <;> + simp_all <;> int_tac) + example (x : Int) (h0: 0 ≤ x) (h1: x ≠ 0) : 0 < x := by int_tac_preprocess linarith diff --git a/backends/lean/Base/Arith/Scalar.lean b/backends/lean/Base/Arith/Scalar.lean index 47751c8a..2342cce6 100644 --- a/backends/lean/Base/Arith/Scalar.lean +++ b/backends/lean/Base/Arith/Scalar.lean @@ -17,7 +17,7 @@ def scalarTacExtraPreprocess : Tactic.TacticM Unit := do add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Usize []]) add (← mkAppM ``Scalar.cMax_bound #[.const ``ScalarTy.Isize []]) -- Reveal the concrete bounds, simplify calls to [ofInt] - Utils.simpAt [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, + Utils.simpAt true [``Scalar.min, ``Scalar.max, ``Scalar.cMin, ``Scalar.cMax, ``I8.min, ``I16.min, ``I32.min, ``I64.min, ``I128.min, ``I8.max, ``I16.max, ``I32.max, ``I64.max, ``I128.max, ``U8.min, ``U16.min, ``U32.min, ``U64.min, ``U128.min, @@ -36,6 +36,17 @@ def scalarTac (splitGoalConjs : Bool) : Tactic.TacticM Unit := do elab "scalar_tac" : tactic => scalarTac false +-- For termination proofs +syntax "scalar_decr_tac" : tactic +macro_rules + | `(tactic| scalar_decr_tac) => + `(tactic| + simp_wf; + -- TODO: don't use a macro (namespace problems) + (first | apply Arith.to_int_to_nat_lt + | apply Arith.to_int_sub_to_nat_lt) <;> + simp_all <;> scalar_tac) + instance (ty : ScalarTy) : HasIntProp (Scalar ty) where -- prop_ty is inferred prop := λ x => And.intro x.hmin x.hmax |