summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSon Ho2023-07-04 14:57:51 +0200
committerSon Ho2023-07-04 14:57:51 +0200
commit87d6f6c7c90bf7b427397d6bd2e2c70d610678e3 (patch)
treece6f570b8916db1877e505f719461241bafaed0d
parent4fd17e4bb91eb46d4704643dfbfbbf0874837b07 (diff)
Reorganize the Lean tests
-rw-r--r--Makefile32
-rw-r--r--backends/lean/Base.lean1
-rw-r--r--backends/lean/lake-manifest.json10
-rw-r--r--backends/lean/lean-toolchain2
-rw-r--r--compiler/Config.ml5
-rw-r--r--compiler/Driver.ml6
-rw-r--r--compiler/Extract.ml14
-rw-r--r--compiler/ExtractBase.ml10
-rw-r--r--compiler/Translate.ml70
-rw-r--r--tests/lean/.gitignore4
-rw-r--r--tests/lean/BetreeMain.lean1
-rw-r--r--tests/lean/BetreeMain/Funs.lean1071
-rw-r--r--tests/lean/BetreeMain/Opaque.lean31
-rw-r--r--tests/lean/BetreeMain/Types.lean62
-rw-r--r--tests/lean/Constants.lean (renamed from tests/lean/misc-constants/Constants.lean)3
-rw-r--r--tests/lean/External.lean (renamed from tests/lean/misc-external/External.lean)0
-rw-r--r--tests/lean/External/Funs.lean (renamed from tests/lean/misc-external/External/Funs.lean)8
-rw-r--r--tests/lean/External/Opaque.lean (renamed from tests/lean/misc-external/External/Opaque.lean)3
-rw-r--r--tests/lean/External/Types.lean (renamed from tests/lean/misc-external/External/Types.lean)3
-rw-r--r--tests/lean/Hashmap.lean (renamed from tests/lean/hashmap/Hashmap.lean)0
-rw-r--r--tests/lean/Hashmap/Funs.lean (renamed from tests/lean/hashmap/Hashmap/Funs.lean)137
-rw-r--r--tests/lean/Hashmap/Types.lean (renamed from tests/lean/hashmap/Hashmap/Types.lean)3
-rw-r--r--tests/lean/HashmapMain.lean (renamed from tests/lean/hashmap_on_disk/HashmapMain.lean)0
-rw-r--r--tests/lean/HashmapMain/Funs.lean (renamed from tests/lean/hashmap_on_disk/HashmapMain/Funs.lean)137
-rw-r--r--tests/lean/HashmapMain/Opaque.lean (renamed from tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean)3
-rw-r--r--tests/lean/HashmapMain/Types.lean (renamed from tests/lean/hashmap_on_disk/HashmapMain/Types.lean)3
-rw-r--r--tests/lean/Loops.lean (renamed from tests/lean/misc-loops/Loops.lean)0
-rw-r--r--tests/lean/Loops/Funs.lean (renamed from tests/lean/misc-loops/Loops/Funs.lean)255
-rw-r--r--tests/lean/Loops/Types.lean (renamed from tests/lean/misc-loops/Loops/Types.lean)3
-rw-r--r--tests/lean/Makefile31
-rw-r--r--tests/lean/NoNestedBorrows.lean (renamed from tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean)85
-rw-r--r--tests/lean/Paper.lean (renamed from tests/lean/misc-paper/Paper.lean)28
-rw-r--r--tests/lean/PoloniusList.lean (renamed from tests/lean/misc-polonius_list/PoloniusList.lean)12
-rw-r--r--tests/lean/Tests.lean9
-rw-r--r--tests/lean/hashmap/Base/Primitives.lean583
-rw-r--r--tests/lean/hashmap/Hashmap/Clauses/Clauses.lean107
-rw-r--r--tests/lean/hashmap/Hashmap/Clauses/Template.lean108
-rw-r--r--tests/lean/hashmap/lakefile.lean12
-rw-r--r--tests/lean/hashmap/lean-toolchain1
-rw-r--r--tests/lean/hashmap_on_disk/.gitignore5
-rw-r--r--tests/lean/hashmap_on_disk/Base/Primitives.lean583
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean110
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean112
-rw-r--r--tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean5
-rw-r--r--tests/lean/hashmap_on_disk/lake-manifest.json27
-rw-r--r--tests/lean/hashmap_on_disk/lakefile.lean12
-rw-r--r--tests/lean/hashmap_on_disk/lean-toolchain1
-rw-r--r--tests/lean/lake-manifest.json (renamed from tests/lean/hashmap/lake-manifest.json)17
-rw-r--r--tests/lean/lakefile.lean (renamed from tests/lean/misc-external/lakefile.lean)8
-rw-r--r--tests/lean/lean-toolchain2
-rw-r--r--tests/lean/misc-constants/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-constants/lake-manifest.json27
-rw-r--r--tests/lean/misc-constants/lakefile.lean12
-rw-r--r--tests/lean/misc-constants/lean-toolchain1
-rw-r--r--tests/lean/misc-external/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-external/External/ExternalFuns.lean5
-rw-r--r--tests/lean/misc-external/lake-manifest.json27
-rw-r--r--tests/lean/misc-external/lean-toolchain1
-rw-r--r--tests/lean/misc-loops/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-loops/Loops/Clauses/Clauses.lean205
-rw-r--r--tests/lean/misc-loops/Loops/Clauses/Template.lean205
-rw-r--r--tests/lean/misc-loops/lake-manifest.json27
-rw-r--r--tests/lean/misc-loops/lakefile.lean12
-rw-r--r--tests/lean/misc-loops/lean-toolchain1
-rw-r--r--tests/lean/misc-no_nested_borrows/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-no_nested_borrows/lake-manifest.json27
-rw-r--r--tests/lean/misc-no_nested_borrows/lakefile.lean12
-rw-r--r--tests/lean/misc-no_nested_borrows/lean-toolchain1
-rw-r--r--tests/lean/misc-paper/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-paper/lake-manifest.json27
-rw-r--r--tests/lean/misc-paper/lakefile.lean12
-rw-r--r--tests/lean/misc-paper/lean-toolchain1
-rw-r--r--tests/lean/misc-polonius_list/Base/Primitives.lean583
-rw-r--r--tests/lean/misc-polonius_list/lake-manifest.json27
-rw-r--r--tests/lean/misc-polonius_list/lakefile.lean12
-rw-r--r--tests/lean/misc-polonius_list/lean-toolchain1
76 files changed, 1565 insertions, 6311 deletions
diff --git a/Makefile b/Makefile
index a5d1fd09..1b11592f 100644
--- a/Makefile
+++ b/Makefile
@@ -117,8 +117,8 @@ trans-no_nested_borrows trans-paper: \
OPTIONS += -test-units -test-trans-units -no-split-files -no-state
trans-no_nested_borrows trans-paper: SUBDIR := misc
tfstar-no_nested_borrows tfstar-paper:
-tlean-no_nested_borrows: SUBDIR := misc-no_nested_borrows
-tlean-paper: SUBDIR := misc-paper
+tlean-no_nested_borrows: SUBDIR :=
+tlean-paper: SUBDIR :=
thol4-no_nested_borrows: SUBDIR := misc-no_nested_borrows
thol4-paper: SUBDIR := misc-paper
@@ -126,29 +126,29 @@ trans-loops: OPTIONS += -no-state
trans-loops: SUBDIR := misc
tfstar-loops: OPTIONS += -decreases-clauses -template-clauses
tcoq-loops: OPTIONS += -use-fuel -no-split-files
-tlean-loops: SUBDIR := misc-loops
-tlean-loops: OPTIONS += -decreases-clauses -template-clauses
+tlean-loops: SUBDIR :=
thol4-loops: SUBDIR := misc-loops
trans-hashmap: OPTIONS += -no-state
trans-hashmap: SUBDIR := hashmap
tfstar-hashmap: OPTIONS += -decreases-clauses -template-clauses
tcoq-hashmap: OPTIONS += -use-fuel
-tlean-hashmap: OPTIONS += -decreases-clauses -template-clauses
+tlean-hashmap: SUBDIR :=
+tlean-hashmap: OPTIONS +=
thol4-hashmap: OPTIONS +=
trans-hashmap_main: OPTIONS +=
trans-hashmap_main: SUBDIR := hashmap_on_disk
tfstar-hashmap_main: OPTIONS += -decreases-clauses -template-clauses
tcoq-hashmap_main: OPTIONS += -use-fuel
-tlean-hashmap_main: OPTIONS += -decreases-clauses -template-clauses
+tlean-hashmap_main: SUBDIR :=
thol4-hashmap_main: OPTIONS +=
transp-polonius_list: OPTIONS += -test-units -test-trans-units -no-split-files -no-state
transp-polonius_list: SUBDIR := misc
tfstarp-polonius_list: OPTIONS +=
tcoqp-polonius_list: OPTIONS +=
-tleanp-polonius_list: SUBDIR := misc-polonius_list
+tleanp-polonius_list: SUBDIR :=
tleanp-polonius_list: OPTIONS +=
thol4p-polonius_list: SUBDIR := misc-polonius_list
thol4p-polonius_list: OPTIONS +=
@@ -157,7 +157,7 @@ trans-constants: OPTIONS += -test-units -test-trans-units -no-split-files -no-st
trans-constants: SUBDIR := misc
tfstar-constants: OPTIONS +=
tcoq-constants: OPTIONS +=
-tlean-constants: SUBDIR := misc-constants
+tlean-constants: SUBDIR :=
tlean-constants: OPTIONS +=
thol4-constants: SUBDIR := misc-constants
thol4-constants: OPTIONS +=
@@ -166,7 +166,7 @@ trans-external: OPTIONS +=
trans-external: SUBDIR := misc
tfstar-external: OPTIONS +=
tcoq-external: OPTIONS +=
-tlean-external: SUBDIR := misc-external
+tlean-external: SUBDIR :=
tlean-external: OPTIONS +=
thol4-external: SUBDIR := misc-external
thol4-external: OPTIONS +=
@@ -176,7 +176,8 @@ transp-betree_main: OPTIONS += -backward-no-state-update
transp-betree_main: SUBDIR:=betree
tfstarp-betree_main: OPTIONS += $(BETREE_FSTAR_OPTIONS)
tcoqp-betree_main: OPTIONS += -use-fuel
-tleanp-betree_main: OPTIONS += $(BETREE_FSTAR_OPTIONS)
+tleanp-betree_main: SUBDIR :=
+tleanp-betree_main: OPTIONS +=
thol4-betree_main: OPTIONS +=
# Additional test on the betree: translate it without `-backward-no-state-update`.
@@ -249,8 +250,7 @@ tcoqp-%:
$(AENEAS_CMD)
.PHONY: tlean-%
-# TODO: add -test-trans-units once we remove all the sorry from Primitives.lean
-tlean-%: OPTIONS += -backend lean
+tlean-%: OPTIONS += -backend lean -test-trans-units
tlean-%: BACKEND_SUBDIR := lean
tlean-%:
$(AENEAS_CMD)
@@ -258,13 +258,7 @@ tlean-%:
# "p" stands for "Polonius"
.PHONY: tleanp-%
-# TODO: for now we don't extract the betree for Lean because we need to implement
-# proper support for the proofs of termination for the mutually recursive functions.
-tleanp-betree_main:
- echo "Ignoring Lean betree"
-
-# TODO: add -test-trans-units once we remove all the sorry from Primitives.lean
-tleanp-%: OPTIONS += -backend lean
+tleanp-%: OPTIONS += -backend lean -test-trans-units
tleanp-%: BACKEND_SUBDIR := lean
tleanp-%:
$(AENEAS_CMD)
diff --git a/backends/lean/Base.lean b/backends/lean/Base.lean
index 6e9ff873..1f8cbc8e 100644
--- a/backends/lean/Base.lean
+++ b/backends/lean/Base.lean
@@ -1,4 +1,3 @@
import Base.Primitives
import Base.Diverge
-import Base.TestTactics
import Base.Arith
diff --git a/backends/lean/lake-manifest.json b/backends/lean/lake-manifest.json
index e5d362fc..40eb1682 100644
--- a/backends/lean/lake-manifest.json
+++ b/backends/lean/lake-manifest.json
@@ -2,9 +2,15 @@
"packagesDir": "lake-packages",
"packages":
[{"git":
+ {"url": "https://github.com/EdAyers/ProofWidgets4",
+ "subDir?": null,
+ "rev": "c43db94a8f495dad37829e9d7ad65483d68c86b8",
+ "name": "proofwidgets",
+ "inputRev?": "v0.0.11"}},
+ {"git":
{"url": "https://github.com/leanprover-community/mathlib4.git",
"subDir?": null,
- "rev": "cdb1b898e4317567699181f27533182046ebc544",
+ "rev": "4f103b3696795c62e76fb89d177efb91c29afdf5",
"name": "mathlib",
"inputRev?": null}},
{"git":
@@ -22,6 +28,6 @@
{"git":
{"url": "https://github.com/leanprover/std4",
"subDir?": null,
- "rev": "6932c4ea52914dc6b0488944e367459ddc4d01a6",
+ "rev": "e68aa8f5fe47aad78987df45f99094afbcb5e936",
"name": "std",
"inputRev?": "main"}}]}
diff --git a/backends/lean/lean-toolchain b/backends/lean/lean-toolchain
index 1211e372..42e7d786 100644
--- a/backends/lean/lean-toolchain
+++ b/backends/lean/lean-toolchain
@@ -1 +1 @@
-leanprover/lean4:nightly-2023-05-31 \ No newline at end of file
+leanprover/lean4:nightly-2023-06-20 \ No newline at end of file
diff --git a/compiler/Config.ml b/compiler/Config.ml
index ce9b0e0c..bfb9d161 100644
--- a/compiler/Config.ml
+++ b/compiler/Config.ml
@@ -162,6 +162,11 @@ let backward_no_state_update = ref false
*)
let split_files = ref true
+(** For Lean, controls whether we generate a lakefile or not.
+
+ *)
+let lean_gen_lakefile = ref false
+
(** If true, treat the unit functions (function taking no inputs and returning
no outputs) as unit tests: evaluate them with the interpreter and check that
they don't panic.
diff --git a/compiler/Driver.ml b/compiler/Driver.ml
index 2ff9e295..f935a717 100644
--- a/compiler/Driver.ml
+++ b/compiler/Driver.ml
@@ -107,6 +107,9 @@ let () =
Arg.Clear check_invariants,
" Deactivate the invariant sanity checks performed at every evaluation \
step. Dramatically increases speed." );
+ ( "-lean-default-lakefile",
+ Arg.Clear lean_gen_lakefile,
+ " Generate a default lakefile.lean (Lean only)" );
]
in
@@ -130,6 +133,9 @@ let () =
(not !use_fuel)
|| (not !extract_decreases_clauses)
&& not !extract_template_decreases_clauses);
+ if !lean_gen_lakefile && not (!backend = Lean) then
+ log#error
+ "The -lean-default-lakefile option is valid only for the Lean backend";
(* Check that the user specified a backend *)
let _ =
diff --git a/compiler/Extract.ml b/compiler/Extract.ml
index d624d9ca..a54a2299 100644
--- a/compiler/Extract.ml
+++ b/compiler/Extract.ml
@@ -505,10 +505,10 @@ let fun_decl_kind_to_qualif (kind : decl_kind) : string option =
| Lean -> (
match kind with
| SingleNonRec -> Some "def"
- | SingleRec -> Some "def"
- | MutRecFirst -> Some "mutual def"
- | MutRecInner -> Some "def"
- | MutRecLast -> Some "def"
+ | SingleRec -> Some "divergent def"
+ | MutRecFirst -> Some "mutual divergent def"
+ | MutRecInner -> Some "divergent def"
+ | MutRecLast -> Some "divergent def"
| Assumed -> Some "axiom"
| Declared -> Some "axiom")
| HOL4 -> None
@@ -2327,9 +2327,7 @@ and extract_lets (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
match !backend with
| FStar -> "="
| Coq -> ":="
- | Lean ->
- (* TODO: switch to ⟵ once issues are fixed *)
- if monadic then "←" else ":="
+ | Lean -> if monadic then "←" else ":="
| HOL4 -> if monadic then "<-" else "="
in
F.pp_print_string fmt eq;
@@ -2409,7 +2407,7 @@ and extract_Switch (ctx : extraction_ctx) (fmt : F.formatter) (_inside : bool)
(* Open a box for the [if e] *)
F.pp_open_hovbox fmt ctx.indent_incr;
F.pp_print_string fmt "if";
- if !backend = Lean then F.pp_print_string fmt " h:";
+ if !backend = Lean && ctx.use_dep_ite then F.pp_print_string fmt " h:";
F.pp_print_space fmt ();
let scrut_inside = PureUtils.texpression_requires_parentheses scrut in
extract_texpression ctx fmt scrut_inside scrut;
diff --git a/compiler/ExtractBase.ml b/compiler/ExtractBase.ml
index 0a5d7df2..14ce4119 100644
--- a/compiler/ExtractBase.ml
+++ b/compiler/ExtractBase.ml
@@ -539,6 +539,16 @@ type extraction_ctx = {
use it.
Also see {!names_map.opaque_ids}.
*)
+ use_dep_ite : bool;
+ (** For Lean: do we use dependent-if then else expressions?
+
+ Example:
+ {[
+ if h: b then ... else ...
+ -- ^^
+ -- makes the if then else dependent
+ ]}
+ *)
}
(** Debugging function, used when communicating name collisions to the user,
diff --git a/compiler/Translate.ml b/compiler/Translate.ml
index 75fc7fe9..39b169c9 100644
--- a/compiler/Translate.ml
+++ b/compiler/Translate.ml
@@ -834,11 +834,13 @@ let extract_file (config : gen_config) (ctx : gen_ctx) (filename : string)
custom_includes;
Printf.fprintf out "Module %s.\n" module_name
| Lean ->
- Printf.fprintf out "import Base.Primitives\n";
+ Printf.fprintf out "import Base\n";
(* Add the custom imports *)
List.iter (fun m -> Printf.fprintf out "import %s\n" m) custom_imports;
(* Add the custom includes *)
- List.iter (fun m -> Printf.fprintf out "import %s\n" m) custom_includes
+ List.iter (fun m -> Printf.fprintf out "import %s\n" m) custom_includes;
+ (* Always open the Primitives namespace *)
+ Printf.fprintf out "open Primitives\n"
| HOL4 ->
Printf.fprintf out "open primitivesLib divDefLib\n";
(* Add the custom imports and includes *)
@@ -903,6 +905,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : A.crate) :
fmt;
indent_incr = 2;
use_opaque_pre = !Config.split_files;
+ use_dep_ite = !Config.backend = Lean && !Config.extract_decreases_clauses;
}
in
@@ -1019,7 +1022,6 @@ let translate_crate (filename : string) (dest_dir : string) (crate : A.crate) :
create more directories *)
if !Config.backend = Lean then (
let ( ^^ ) = Filename.concat in
- mkdir_if (dest_dir ^^ "Base");
if !Config.split_files then mkdir_if (dest_dir ^^ module_name);
if needs_clauses_module then (
assert !Config.split_files;
@@ -1033,7 +1035,7 @@ let translate_crate (filename : string) (dest_dir : string) (crate : A.crate) :
match !Config.backend with
| FStar -> Some ("/backends/fstar/Primitives.fst", "Primitives.fst")
| Coq -> Some ("/backends/coq/Primitives.v", "Primitives.v")
- | Lean -> Some ("/backends/lean/Primitives.lean", "Base/Primitives.lean")
+ | Lean -> None
| HOL4 -> None
in
match primitives_src_dest with
@@ -1265,38 +1267,36 @@ let translate_crate (filename : string) (dest_dir : string) (crate : A.crate) :
log#linfo (lazy ("Generated: " ^ filename)));
(*
- * Generate the lakefile.lean file
+ * Generate the lakefile.lean file, if the user asks for it
*)
+ if !Config.lean_gen_lakefile then (
+ (* Open the file *)
+ let filename = Filename.concat dest_dir "lakefile.lean" in
+ let out = open_out filename in
- (* Open the file *)
- let filename = Filename.concat dest_dir "lakefile.lean" in
- let out = open_out filename in
-
- (* Generate the content *)
- Printf.fprintf out "import Lake\nopen Lake DSL\n\n";
- Printf.fprintf out "require mathlib from git\n";
- Printf.fprintf out
- " \"https://github.com/leanprover-community/mathlib4.git\"\n\n";
-
- let package_name = StringUtils.to_snake_case module_name in
- Printf.fprintf out "package «%s» {}\n\n" package_name;
-
- Printf.fprintf out "lean_lib «Base» {}\n\n";
-
- Printf.fprintf out "@[default_target]\nlean_lib «%s» {}\n" module_name;
-
- (* No default target for now.
- Format would be:
- {[
- @[default_target]
- lean_exe «package_name» {
- root := `Main
- }
- ]}
- *)
+ (* Generate the content *)
+ Printf.fprintf out "import Lake\nopen Lake DSL\n\n";
+ Printf.fprintf out "require mathlib from git\n";
+ Printf.fprintf out
+ " \"https://github.com/leanprover-community/mathlib4.git\"\n\n";
+
+ let package_name = StringUtils.to_snake_case module_name in
+ Printf.fprintf out "package «%s» {}\n\n" package_name;
+
+ Printf.fprintf out "@[default_target]\nlean_lib «%s» {}\n" module_name;
+
+ (* No default target for now.
+ Format would be:
+ {[
+ @[default_target]
+ lean_exe «package_name» {
+ root := `Main
+ }
+ ]}
+ *)
- (* Flush and close the file *)
- close_out out;
+ (* Flush and close the file *)
+ close_out out;
- (* Logging *)
- log#linfo (lazy ("Generated: " ^ filename))
+ (* Logging *)
+ log#linfo (lazy ("Generated: " ^ filename)))
diff --git a/tests/lean/.gitignore b/tests/lean/.gitignore
index e74f9899..4d1c5853 100644
--- a/tests/lean/.gitignore
+++ b/tests/lean/.gitignore
@@ -1,2 +1,2 @@
-*/lake-packages/
-*/build/ \ No newline at end of file
+lake-packages
+build \ No newline at end of file
diff --git a/tests/lean/BetreeMain.lean b/tests/lean/BetreeMain.lean
new file mode 100644
index 00000000..5f307877
--- /dev/null
+++ b/tests/lean/BetreeMain.lean
@@ -0,0 +1 @@
+import BetreeMain.Funs
diff --git a/tests/lean/BetreeMain/Funs.lean b/tests/lean/BetreeMain/Funs.lean
new file mode 100644
index 00000000..fb48b3a6
--- /dev/null
+++ b/tests/lean/BetreeMain/Funs.lean
@@ -0,0 +1,1071 @@
+-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
+-- [betree_main]: function definitions
+import Base
+import BetreeMain.Types
+import BetreeMain.ExternalFuns
+open Primitives
+
+/- [betree_main::betree::load_internal_node] -/
+def betree_load_internal_node_fwd
+ (id : U64) (st : State) :
+ Result (State × (betree_list_t (U64 × betree_message_t)))
+ :=
+ opaque_defs.betree_utils_load_internal_node_fwd id st
+
+/- [betree_main::betree::store_internal_node] -/
+def betree_store_internal_node_fwd
+ (id : U64) (content : betree_list_t (U64 × betree_message_t)) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ←
+ opaque_defs.betree_utils_store_internal_node_fwd id content st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::load_leaf_node] -/
+def betree_load_leaf_node_fwd
+ (id : U64) (st : State) : Result (State × (betree_list_t (U64 × U64))) :=
+ opaque_defs.betree_utils_load_leaf_node_fwd id st
+
+/- [betree_main::betree::store_leaf_node] -/
+def betree_store_leaf_node_fwd
+ (id : U64) (content : betree_list_t (U64 × U64)) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ← opaque_defs.betree_utils_store_leaf_node_fwd id content st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::fresh_node_id] -/
+def betree_fresh_node_id_fwd (counter : U64) : Result U64 :=
+ do
+ let _ ← counter + (U64.ofInt 1 (by intlit))
+ Result.ret counter
+
+/- [betree_main::betree::fresh_node_id] -/
+def betree_fresh_node_id_back (counter : U64) : Result U64 :=
+ counter + (U64.ofInt 1 (by intlit))
+
+/- [betree_main::betree::NodeIdCounter::{0}::new] -/
+def betree_node_id_counter_new_fwd : Result betree_node_id_counter_t :=
+ Result.ret
+ { betree_node_id_counter_next_node_id := (U64.ofInt 0 (by intlit)) }
+
+/- [betree_main::betree::NodeIdCounter::{0}::fresh_id] -/
+def betree_node_id_counter_fresh_id_fwd
+ (self : betree_node_id_counter_t) : Result U64 :=
+ do
+ let _ ← self.betree_node_id_counter_next_node_id +
+ (U64.ofInt 1 (by intlit))
+ Result.ret self.betree_node_id_counter_next_node_id
+
+/- [betree_main::betree::NodeIdCounter::{0}::fresh_id] -/
+def betree_node_id_counter_fresh_id_back
+ (self : betree_node_id_counter_t) : Result betree_node_id_counter_t :=
+ do
+ let i ← self.betree_node_id_counter_next_node_id +
+ (U64.ofInt 1 (by intlit))
+ Result.ret { betree_node_id_counter_next_node_id := i }
+
+/- [core::num::u64::{10}::MAX] -/
+def core_num_u64_max_body : Result U64 :=
+ Result.ret (U64.ofInt 18446744073709551615 (by intlit))
+def core_num_u64_max_c : U64 := eval_global core_num_u64_max_body (by simp)
+
+/- [betree_main::betree::upsert_update] -/
+def betree_upsert_update_fwd
+ (prev : Option U64) (st : betree_upsert_fun_state_t) : Result U64 :=
+ match h: prev with
+ | Option.none =>
+ match h: st with
+ | betree_upsert_fun_state_t.Add v => Result.ret v
+ | betree_upsert_fun_state_t.Sub i => Result.ret (U64.ofInt 0 (by intlit))
+ | Option.some prev0 =>
+ match h: st with
+ | betree_upsert_fun_state_t.Add v =>
+ do
+ let margin ← core_num_u64_max_c - prev0
+ if margin >= v
+ then prev0 + v
+ else Result.ret core_num_u64_max_c
+ | betree_upsert_fun_state_t.Sub v =>
+ if prev0 >= v
+ then prev0 - v
+ else Result.ret (U64.ofInt 0 (by intlit))
+
+/- [betree_main::betree::List::{1}::len] -/
+divergent def betree_list_len_fwd
+ (T : Type) (self : betree_list_t T) : Result U64 :=
+ match h: self with
+ | betree_list_t.Cons t tl =>
+ do
+ let i ← betree_list_len_fwd T tl
+ (U64.ofInt 1 (by intlit)) + i
+ | betree_list_t.Nil => Result.ret (U64.ofInt 0 (by intlit))
+
+/- [betree_main::betree::List::{1}::split_at] -/
+divergent def betree_list_split_at_fwd
+ (T : Type) (self : betree_list_t T) (n : U64) :
+ Result ((betree_list_t T) × (betree_list_t T))
+ :=
+ if n = (U64.ofInt 0 (by intlit))
+ then Result.ret (betree_list_t.Nil, self)
+ else
+ match h: self with
+ | betree_list_t.Cons hd tl =>
+ do
+ let i ← n - (U64.ofInt 1 (by intlit))
+ let p ← betree_list_split_at_fwd T tl i
+ let (ls0, ls1) := p
+ let l := ls0
+ Result.ret (betree_list_t.Cons hd l, ls1)
+ | betree_list_t.Nil => Result.fail Error.panic
+
+/- [betree_main::betree::List::{1}::push_front] -/
+def betree_list_push_front_fwd_back
+ (T : Type) (self : betree_list_t T) (x : T) : Result (betree_list_t T) :=
+ let tl := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil
+ let l := tl
+ Result.ret (betree_list_t.Cons x l)
+
+/- [betree_main::betree::List::{1}::pop_front] -/
+def betree_list_pop_front_fwd (T : Type) (self : betree_list_t T) : Result T :=
+ let ls := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil
+ match h: ls with
+ | betree_list_t.Cons x tl => Result.ret x
+ | betree_list_t.Nil => Result.fail Error.panic
+
+/- [betree_main::betree::List::{1}::pop_front] -/
+def betree_list_pop_front_back
+ (T : Type) (self : betree_list_t T) : Result (betree_list_t T) :=
+ let ls := mem_replace_fwd (betree_list_t T) self betree_list_t.Nil
+ match h: ls with
+ | betree_list_t.Cons x tl => Result.ret tl
+ | betree_list_t.Nil => Result.fail Error.panic
+
+/- [betree_main::betree::List::{1}::hd] -/
+def betree_list_hd_fwd (T : Type) (self : betree_list_t T) : Result T :=
+ match h: self with
+ | betree_list_t.Cons hd l => Result.ret hd
+ | betree_list_t.Nil => Result.fail Error.panic
+
+/- [betree_main::betree::List::{2}::head_has_key] -/
+def betree_list_head_has_key_fwd
+ (T : Type) (self : betree_list_t (U64 × T)) (key : U64) : Result Bool :=
+ match h: self with
+ | betree_list_t.Cons hd l => let (i, _) := hd
+ Result.ret (i = key)
+ | betree_list_t.Nil => Result.ret false
+
+/- [betree_main::betree::List::{2}::partition_at_pivot] -/
+divergent def betree_list_partition_at_pivot_fwd
+ (T : Type) (self : betree_list_t (U64 × T)) (pivot : U64) :
+ Result ((betree_list_t (U64 × T)) × (betree_list_t (U64 × T)))
+ :=
+ match h: self with
+ | betree_list_t.Cons hd tl =>
+ let (i, t) := hd
+ if i >= pivot
+ then Result.ret (betree_list_t.Nil, betree_list_t.Cons (i, t) tl)
+ else
+ do
+ let p ← betree_list_partition_at_pivot_fwd T tl pivot
+ let (ls0, ls1) := p
+ let l := ls0
+ Result.ret (betree_list_t.Cons (i, t) l, ls1)
+ | betree_list_t.Nil => Result.ret (betree_list_t.Nil, betree_list_t.Nil)
+
+/- [betree_main::betree::Leaf::{3}::split] -/
+def betree_leaf_split_fwd
+ (self : betree_leaf_t) (content : betree_list_t (U64 × U64))
+ (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t)
+ (st : State) :
+ Result (State × betree_internal_t)
+ :=
+ do
+ let p ←
+ betree_list_split_at_fwd (U64 × U64) content
+ params.betree_params_split_size
+ let (content0, content1) := p
+ let p0 ← betree_list_hd_fwd (U64 × U64) content1
+ let (pivot, _) := p0
+ let id0 ← betree_node_id_counter_fresh_id_fwd node_id_cnt
+ let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt
+ let id1 ← betree_node_id_counter_fresh_id_fwd node_id_cnt0
+ let (st0, _) ← betree_store_leaf_node_fwd id0 content0 st
+ let (st1, _) ← betree_store_leaf_node_fwd id1 content1 st0
+ let n := betree_node_t.Leaf
+ {
+ betree_leaf_id := id0,
+ betree_leaf_size := params.betree_params_split_size
+ }
+ let n0 := betree_node_t.Leaf
+ {
+ betree_leaf_id := id1,
+ betree_leaf_size := params.betree_params_split_size
+ }
+ Result.ret (st1, mkbetree_internal_t self.betree_leaf_id pivot n n0)
+
+/- [betree_main::betree::Leaf::{3}::split] -/
+def betree_leaf_split_back
+ (self : betree_leaf_t) (content : betree_list_t (U64 × U64))
+ (params : betree_params_t) (node_id_cnt : betree_node_id_counter_t)
+ (st : State) :
+ Result betree_node_id_counter_t
+ :=
+ do
+ let p ←
+ betree_list_split_at_fwd (U64 × U64) content
+ params.betree_params_split_size
+ let (content0, content1) := p
+ let _ ← betree_list_hd_fwd (U64 × U64) content1
+ let id0 ← betree_node_id_counter_fresh_id_fwd node_id_cnt
+ let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt
+ let id1 ← betree_node_id_counter_fresh_id_fwd node_id_cnt0
+ let (st0, _) ← betree_store_leaf_node_fwd id0 content0 st
+ let _ ← betree_store_leaf_node_fwd id1 content1 st0
+ betree_node_id_counter_fresh_id_back node_id_cnt0
+
+/- [betree_main::betree::Node::{5}::lookup_in_bindings] -/
+divergent def betree_node_lookup_in_bindings_fwd
+ (key : U64) (bindings : betree_list_t (U64 × U64)) : Result (Option U64) :=
+ match h: bindings with
+ | betree_list_t.Cons hd tl =>
+ let (i, i0) := hd
+ if i = key
+ then Result.ret (Option.some i0)
+ else
+ if i > key
+ then Result.ret Option.none
+ else betree_node_lookup_in_bindings_fwd key tl
+ | betree_list_t.Nil => Result.ret Option.none
+
+/- [betree_main::betree::Node::{5}::lookup_first_message_for_key] -/
+divergent def betree_node_lookup_first_message_for_key_fwd
+ (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: msgs with
+ | betree_list_t.Cons x next_msgs =>
+ let (i, m) := x
+ if i >= key
+ then Result.ret (betree_list_t.Cons (i, m) next_msgs)
+ else betree_node_lookup_first_message_for_key_fwd key next_msgs
+ | betree_list_t.Nil => Result.ret betree_list_t.Nil
+
+/- [betree_main::betree::Node::{5}::lookup_first_message_for_key] -/
+divergent def betree_node_lookup_first_message_for_key_back
+ (key : U64) (msgs : betree_list_t (U64 × betree_message_t))
+ (ret0 : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: msgs with
+ | betree_list_t.Cons x next_msgs =>
+ let (i, m) := x
+ if i >= key
+ then Result.ret ret0
+ else
+ do
+ let next_msgs0 ←
+ betree_node_lookup_first_message_for_key_back key next_msgs ret0
+ Result.ret (betree_list_t.Cons (i, m) next_msgs0)
+ | betree_list_t.Nil => Result.ret ret0
+
+/- [betree_main::betree::Node::{5}::apply_upserts] -/
+divergent def betree_node_apply_upserts_fwd
+ (msgs : betree_list_t (U64 × betree_message_t)) (prev : Option U64)
+ (key : U64) (st : State) :
+ Result (State × U64)
+ :=
+ do
+ let b ← betree_list_head_has_key_fwd betree_message_t msgs key
+ if b
+ then
+ do
+ let msg ← betree_list_pop_front_fwd (U64 × betree_message_t) msgs
+ let (_, m) := msg
+ match h: m with
+ | betree_message_t.Insert i => Result.fail Error.panic
+ | betree_message_t.Delete => Result.fail Error.panic
+ | betree_message_t.Upsert s =>
+ do
+ let v ← betree_upsert_update_fwd prev s
+ let msgs0 ←
+ betree_list_pop_front_back (U64 × betree_message_t) msgs
+ betree_node_apply_upserts_fwd msgs0 (Option.some v) key st
+ else
+ do
+ let (st0, v) ← opaque_defs.core_option_option_unwrap_fwd U64 prev st
+ let _ ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs (key,
+ betree_message_t.Insert v)
+ Result.ret (st0, v)
+
+/- [betree_main::betree::Node::{5}::apply_upserts] -/
+divergent def betree_node_apply_upserts_back
+ (msgs : betree_list_t (U64 × betree_message_t)) (prev : Option U64)
+ (key : U64) (st : State) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ do
+ let b ← betree_list_head_has_key_fwd betree_message_t msgs key
+ if b
+ then
+ do
+ let msg ← betree_list_pop_front_fwd (U64 × betree_message_t) msgs
+ let (_, m) := msg
+ match h: m with
+ | betree_message_t.Insert i => Result.fail Error.panic
+ | betree_message_t.Delete => Result.fail Error.panic
+ | betree_message_t.Upsert s =>
+ do
+ let v ← betree_upsert_update_fwd prev s
+ let msgs0 ←
+ betree_list_pop_front_back (U64 × betree_message_t) msgs
+ betree_node_apply_upserts_back msgs0 (Option.some v) key st
+ else
+ do
+ let (_, v) ← opaque_defs.core_option_option_unwrap_fwd U64 prev st
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs (key,
+ betree_message_t.Insert v)
+
+/- [betree_main::betree::Node::{5}::lookup] -/
+mutual divergent def betree_node_lookup_fwd
+ (self : betree_node_t) (key : U64) (st : State) :
+ Result (State × (Option U64))
+ :=
+ match h: self with
+ | betree_node_t.Internal node =>
+ do
+ let (mkbetree_internal_t i i0 n n0) := node
+ let (st0, msgs) ← betree_load_internal_node_fwd i st
+ let pending ← betree_node_lookup_first_message_for_key_fwd key msgs
+ match h: pending with
+ | betree_list_t.Cons p l =>
+ let (k, msg) := p
+ if k != key
+ then
+ do
+ let (st1, opt) ←
+ betree_internal_lookup_in_children_fwd (mkbetree_internal_t i i0
+ n n0) key st0
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, msg) l)
+ Result.ret (st1, opt)
+ else
+ match h: msg with
+ | betree_message_t.Insert v =>
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, betree_message_t.Insert v) l)
+ Result.ret (st0, Option.some v)
+ | betree_message_t.Delete =>
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, betree_message_t.Delete) l)
+ Result.ret (st0, Option.none)
+ | betree_message_t.Upsert ufs =>
+ do
+ let (st1, v) ←
+ betree_internal_lookup_in_children_fwd (mkbetree_internal_t i
+ i0 n n0) key st0
+ let (st2, v0) ←
+ betree_node_apply_upserts_fwd (betree_list_t.Cons (k,
+ betree_message_t.Upsert ufs) l) v key st1
+ let node0 ←
+ betree_internal_lookup_in_children_back (mkbetree_internal_t i
+ i0 n n0) key st0
+ let (mkbetree_internal_t i1 _ _ _) := node0
+ let pending0 ←
+ betree_node_apply_upserts_back (betree_list_t.Cons (k,
+ betree_message_t.Upsert ufs) l) v key st1
+ let msgs0 ←
+ betree_node_lookup_first_message_for_key_back key msgs pending0
+ let (st3, _) ← betree_store_internal_node_fwd i1 msgs0 st2
+ Result.ret (st3, Option.some v0)
+ | betree_list_t.Nil =>
+ do
+ let (st1, opt) ←
+ betree_internal_lookup_in_children_fwd (mkbetree_internal_t i i0 n
+ n0) key st0
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ betree_list_t.Nil
+ Result.ret (st1, opt)
+ | betree_node_t.Leaf node =>
+ do
+ let (st0, bindings) ← betree_load_leaf_node_fwd node.betree_leaf_id st
+ let opt ← betree_node_lookup_in_bindings_fwd key bindings
+ Result.ret (st0, opt)
+
+/- [betree_main::betree::Node::{5}::lookup] -/
+divergent def betree_node_lookup_back
+ (self : betree_node_t) (key : U64) (st : State) : Result betree_node_t :=
+ match h: self with
+ | betree_node_t.Internal node =>
+ do
+ let (mkbetree_internal_t i i0 n n0) := node
+ let (st0, msgs) ← betree_load_internal_node_fwd i st
+ let pending ← betree_node_lookup_first_message_for_key_fwd key msgs
+ match h: pending with
+ | betree_list_t.Cons p l =>
+ let (k, msg) := p
+ if k != key
+ then
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, msg) l)
+ let node0 ←
+ betree_internal_lookup_in_children_back (mkbetree_internal_t i i0
+ n n0) key st0
+ Result.ret (betree_node_t.Internal node0)
+ else
+ match h: msg with
+ | betree_message_t.Insert v =>
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, betree_message_t.Insert v) l)
+ Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n
+ n0))
+ | betree_message_t.Delete =>
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ (betree_list_t.Cons (k, betree_message_t.Delete) l)
+ Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n
+ n0))
+ | betree_message_t.Upsert ufs =>
+ do
+ let (st1, v) ←
+ betree_internal_lookup_in_children_fwd (mkbetree_internal_t i
+ i0 n n0) key st0
+ let (st2, _) ←
+ betree_node_apply_upserts_fwd (betree_list_t.Cons (k,
+ betree_message_t.Upsert ufs) l) v key st1
+ let node0 ←
+ betree_internal_lookup_in_children_back (mkbetree_internal_t i
+ i0 n n0) key st0
+ let (mkbetree_internal_t i1 i2 n1 n2) := node0
+ let pending0 ←
+ betree_node_apply_upserts_back (betree_list_t.Cons (k,
+ betree_message_t.Upsert ufs) l) v key st1
+ let msgs0 ←
+ betree_node_lookup_first_message_for_key_back key msgs pending0
+ let _ ← betree_store_internal_node_fwd i1 msgs0 st2
+ Result.ret (betree_node_t.Internal (mkbetree_internal_t i1 i2 n1
+ n2))
+ | betree_list_t.Nil =>
+ do
+ let _ ←
+ betree_node_lookup_first_message_for_key_back key msgs
+ betree_list_t.Nil
+ let node0 ←
+ betree_internal_lookup_in_children_back (mkbetree_internal_t i i0 n
+ n0) key st0
+ Result.ret (betree_node_t.Internal node0)
+ | betree_node_t.Leaf node =>
+ do
+ let (_, bindings) ← betree_load_leaf_node_fwd node.betree_leaf_id st
+ let _ ← betree_node_lookup_in_bindings_fwd key bindings
+ Result.ret (betree_node_t.Leaf node)
+
+/- [betree_main::betree::Internal::{4}::lookup_in_children] -/
+divergent def betree_internal_lookup_in_children_fwd
+ (self : betree_internal_t) (key : U64) (st : State) :
+ Result (State × (Option U64))
+ :=
+ let (mkbetree_internal_t _ i n n0) := self
+ if key < i
+ then betree_node_lookup_fwd n key st
+ else betree_node_lookup_fwd n0 key st
+
+/- [betree_main::betree::Internal::{4}::lookup_in_children] -/
+divergent def betree_internal_lookup_in_children_back
+ (self : betree_internal_t) (key : U64) (st : State) :
+ Result betree_internal_t
+ :=
+ let (mkbetree_internal_t i i0 n n0) := self
+ if key < i0
+ then
+ do
+ let n1 ← betree_node_lookup_back n key st
+ Result.ret (mkbetree_internal_t i i0 n1 n0)
+ else
+ do
+ let n1 ← betree_node_lookup_back n0 key st
+ Result.ret (mkbetree_internal_t i i0 n n1)
+
+end
+
+/- [betree_main::betree::Node::{5}::lookup_mut_in_bindings] -/
+divergent def betree_node_lookup_mut_in_bindings_fwd
+ (key : U64) (bindings : betree_list_t (U64 × U64)) :
+ Result (betree_list_t (U64 × U64))
+ :=
+ match h: bindings with
+ | betree_list_t.Cons hd tl =>
+ let (i, i0) := hd
+ if i >= key
+ then Result.ret (betree_list_t.Cons (i, i0) tl)
+ else betree_node_lookup_mut_in_bindings_fwd key tl
+ | betree_list_t.Nil => Result.ret betree_list_t.Nil
+
+/- [betree_main::betree::Node::{5}::lookup_mut_in_bindings] -/
+divergent def betree_node_lookup_mut_in_bindings_back
+ (key : U64) (bindings : betree_list_t (U64 × U64))
+ (ret0 : betree_list_t (U64 × U64)) :
+ Result (betree_list_t (U64 × U64))
+ :=
+ match h: bindings with
+ | betree_list_t.Cons hd tl =>
+ let (i, i0) := hd
+ if i >= key
+ then Result.ret ret0
+ else
+ do
+ let tl0 ← betree_node_lookup_mut_in_bindings_back key tl ret0
+ Result.ret (betree_list_t.Cons (i, i0) tl0)
+ | betree_list_t.Nil => Result.ret ret0
+
+/- [betree_main::betree::Node::{5}::apply_to_leaf] -/
+def betree_node_apply_to_leaf_fwd_back
+ (bindings : betree_list_t (U64 × U64)) (key : U64)
+ (new_msg : betree_message_t) :
+ Result (betree_list_t (U64 × U64))
+ :=
+ do
+ let bindings0 ← betree_node_lookup_mut_in_bindings_fwd key bindings
+ let b ← betree_list_head_has_key_fwd U64 bindings0 key
+ if b
+ then
+ do
+ let hd ← betree_list_pop_front_fwd (U64 × U64) bindings0
+ match h: new_msg with
+ | betree_message_t.Insert v =>
+ do
+ let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0
+ let bindings2 ←
+ betree_list_push_front_fwd_back (U64 × U64) bindings1 (key, v)
+ betree_node_lookup_mut_in_bindings_back key bindings bindings2
+ | betree_message_t.Delete =>
+ do
+ let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0
+ betree_node_lookup_mut_in_bindings_back key bindings bindings1
+ | betree_message_t.Upsert s =>
+ do
+ let (_, i) := hd
+ let v ← betree_upsert_update_fwd (Option.some i) s
+ let bindings1 ← betree_list_pop_front_back (U64 × U64) bindings0
+ let bindings2 ←
+ betree_list_push_front_fwd_back (U64 × U64) bindings1 (key, v)
+ betree_node_lookup_mut_in_bindings_back key bindings bindings2
+ else
+ match h: new_msg with
+ | betree_message_t.Insert v =>
+ do
+ let bindings1 ←
+ betree_list_push_front_fwd_back (U64 × U64) bindings0 (key, v)
+ betree_node_lookup_mut_in_bindings_back key bindings bindings1
+ | betree_message_t.Delete =>
+ betree_node_lookup_mut_in_bindings_back key bindings bindings0
+ | betree_message_t.Upsert s =>
+ do
+ let v ← betree_upsert_update_fwd Option.none s
+ let bindings1 ←
+ betree_list_push_front_fwd_back (U64 × U64) bindings0 (key, v)
+ betree_node_lookup_mut_in_bindings_back key bindings bindings1
+
+/- [betree_main::betree::Node::{5}::apply_messages_to_leaf] -/
+divergent def betree_node_apply_messages_to_leaf_fwd_back
+ (bindings : betree_list_t (U64 × U64))
+ (new_msgs : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × U64))
+ :=
+ match h: new_msgs with
+ | betree_list_t.Cons new_msg new_msgs_tl =>
+ do
+ let (i, m) := new_msg
+ let bindings0 ← betree_node_apply_to_leaf_fwd_back bindings i m
+ betree_node_apply_messages_to_leaf_fwd_back bindings0 new_msgs_tl
+ | betree_list_t.Nil => Result.ret bindings
+
+/- [betree_main::betree::Node::{5}::filter_messages_for_key] -/
+divergent def betree_node_filter_messages_for_key_fwd_back
+ (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: msgs with
+ | betree_list_t.Cons p l =>
+ let (k, m) := p
+ if k = key
+ then
+ do
+ let msgs0 ←
+ betree_list_pop_front_back (U64 × betree_message_t)
+ (betree_list_t.Cons (k, m) l)
+ betree_node_filter_messages_for_key_fwd_back key msgs0
+ else Result.ret (betree_list_t.Cons (k, m) l)
+ | betree_list_t.Nil => Result.ret betree_list_t.Nil
+
+/- [betree_main::betree::Node::{5}::lookup_first_message_after_key] -/
+divergent def betree_node_lookup_first_message_after_key_fwd
+ (key : U64) (msgs : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: msgs with
+ | betree_list_t.Cons p next_msgs =>
+ let (k, m) := p
+ if k = key
+ then betree_node_lookup_first_message_after_key_fwd key next_msgs
+ else Result.ret (betree_list_t.Cons (k, m) next_msgs)
+ | betree_list_t.Nil => Result.ret betree_list_t.Nil
+
+/- [betree_main::betree::Node::{5}::lookup_first_message_after_key] -/
+divergent def betree_node_lookup_first_message_after_key_back
+ (key : U64) (msgs : betree_list_t (U64 × betree_message_t))
+ (ret0 : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: msgs with
+ | betree_list_t.Cons p next_msgs =>
+ let (k, m) := p
+ if k = key
+ then
+ do
+ let next_msgs0 ←
+ betree_node_lookup_first_message_after_key_back key next_msgs ret0
+ Result.ret (betree_list_t.Cons (k, m) next_msgs0)
+ else Result.ret ret0
+ | betree_list_t.Nil => Result.ret ret0
+
+/- [betree_main::betree::Node::{5}::apply_to_internal] -/
+def betree_node_apply_to_internal_fwd_back
+ (msgs : betree_list_t (U64 × betree_message_t)) (key : U64)
+ (new_msg : betree_message_t) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ do
+ let msgs0 ← betree_node_lookup_first_message_for_key_fwd key msgs
+ let b ← betree_list_head_has_key_fwd betree_message_t msgs0 key
+ if b
+ then
+ match h: new_msg with
+ | betree_message_t.Insert i =>
+ do
+ let msgs1 ← betree_node_filter_messages_for_key_fwd_back key msgs0
+ let msgs2 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1
+ (key, betree_message_t.Insert i)
+ betree_node_lookup_first_message_for_key_back key msgs msgs2
+ | betree_message_t.Delete =>
+ do
+ let msgs1 ← betree_node_filter_messages_for_key_fwd_back key msgs0
+ let msgs2 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1
+ (key, betree_message_t.Delete)
+ betree_node_lookup_first_message_for_key_back key msgs msgs2
+ | betree_message_t.Upsert s =>
+ do
+ let p ← betree_list_hd_fwd (U64 × betree_message_t) msgs0
+ let (_, m) := p
+ match h: m with
+ | betree_message_t.Insert prev =>
+ do
+ let v ← betree_upsert_update_fwd (Option.some prev) s
+ let msgs1 ←
+ betree_list_pop_front_back (U64 × betree_message_t) msgs0
+ let msgs2 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1
+ (key, betree_message_t.Insert v)
+ betree_node_lookup_first_message_for_key_back key msgs msgs2
+ | betree_message_t.Delete =>
+ do
+ let v ← betree_upsert_update_fwd Option.none s
+ let msgs1 ←
+ betree_list_pop_front_back (U64 × betree_message_t) msgs0
+ let msgs2 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1
+ (key, betree_message_t.Insert v)
+ betree_node_lookup_first_message_for_key_back key msgs msgs2
+ | betree_message_t.Upsert ufs =>
+ do
+ let msgs1 ←
+ betree_node_lookup_first_message_after_key_fwd key msgs0
+ let msgs2 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs1
+ (key, betree_message_t.Upsert s)
+ let msgs3 ←
+ betree_node_lookup_first_message_after_key_back key msgs0 msgs2
+ betree_node_lookup_first_message_for_key_back key msgs msgs3
+ else
+ do
+ let msgs1 ←
+ betree_list_push_front_fwd_back (U64 × betree_message_t) msgs0 (key,
+ new_msg)
+ betree_node_lookup_first_message_for_key_back key msgs msgs1
+
+/- [betree_main::betree::Node::{5}::apply_messages_to_internal] -/
+divergent def betree_node_apply_messages_to_internal_fwd_back
+ (msgs : betree_list_t (U64 × betree_message_t))
+ (new_msgs : betree_list_t (U64 × betree_message_t)) :
+ Result (betree_list_t (U64 × betree_message_t))
+ :=
+ match h: new_msgs with
+ | betree_list_t.Cons new_msg new_msgs_tl =>
+ do
+ let (i, m) := new_msg
+ let msgs0 ← betree_node_apply_to_internal_fwd_back msgs i m
+ betree_node_apply_messages_to_internal_fwd_back msgs0 new_msgs_tl
+ | betree_list_t.Nil => Result.ret msgs
+
+/- [betree_main::betree::Node::{5}::apply_messages] -/
+mutual divergent def betree_node_apply_messages_fwd
+ (self : betree_node_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t)
+ (msgs : betree_list_t (U64 × betree_message_t)) (st : State) :
+ Result (State × Unit)
+ :=
+ match h: self with
+ | betree_node_t.Internal node =>
+ do
+ let (mkbetree_internal_t i i0 n n0) := node
+ let (st0, content) ← betree_load_internal_node_fwd i st
+ let content0 ←
+ betree_node_apply_messages_to_internal_fwd_back content msgs
+ let num_msgs ← betree_list_len_fwd (U64 × betree_message_t) content0
+ if num_msgs >= params.betree_params_min_flush_size
+ then
+ do
+ let (st1, content1) ←
+ betree_internal_flush_fwd (mkbetree_internal_t i i0 n n0) params
+ node_id_cnt content0 st0
+ let (node0, _) ←
+ betree_internal_flush_back (mkbetree_internal_t i i0 n n0) params
+ node_id_cnt content0 st0
+ let (mkbetree_internal_t i1 _ _ _) := node0
+ let (st2, _) ← betree_store_internal_node_fwd i1 content1 st1
+ Result.ret (st2, ())
+ else
+ do
+ let (st1, _) ← betree_store_internal_node_fwd i content0 st0
+ Result.ret (st1, ())
+ | betree_node_t.Leaf node =>
+ do
+ let (st0, content) ← betree_load_leaf_node_fwd node.betree_leaf_id st
+ let content0 ← betree_node_apply_messages_to_leaf_fwd_back content msgs
+ let len ← betree_list_len_fwd (U64 × U64) content0
+ let i ← (U64.ofInt 2 (by intlit)) * params.betree_params_split_size
+ if len >= i
+ then
+ do
+ let (st1, _) ←
+ betree_leaf_split_fwd node content0 params node_id_cnt st0
+ let (st2, _) ←
+ betree_store_leaf_node_fwd node.betree_leaf_id betree_list_t.Nil
+ st1
+ Result.ret (st2, ())
+ else
+ do
+ let (st1, _) ←
+ betree_store_leaf_node_fwd node.betree_leaf_id content0 st0
+ Result.ret (st1, ())
+
+/- [betree_main::betree::Node::{5}::apply_messages] -/
+divergent def betree_node_apply_messages_back
+ (self : betree_node_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t)
+ (msgs : betree_list_t (U64 × betree_message_t)) (st : State) :
+ Result (betree_node_t × betree_node_id_counter_t)
+ :=
+ match h: self with
+ | betree_node_t.Internal node =>
+ do
+ let (mkbetree_internal_t i i0 n n0) := node
+ let (st0, content) ← betree_load_internal_node_fwd i st
+ let content0 ←
+ betree_node_apply_messages_to_internal_fwd_back content msgs
+ let num_msgs ← betree_list_len_fwd (U64 × betree_message_t) content0
+ if num_msgs >= params.betree_params_min_flush_size
+ then
+ do
+ let (st1, content1) ←
+ betree_internal_flush_fwd (mkbetree_internal_t i i0 n n0) params
+ node_id_cnt content0 st0
+ let (node0, node_id_cnt0) ←
+ betree_internal_flush_back (mkbetree_internal_t i i0 n n0) params
+ node_id_cnt content0 st0
+ let (mkbetree_internal_t i1 i2 n1 n2) := node0
+ let _ ← betree_store_internal_node_fwd i1 content1 st1
+ Result.ret (betree_node_t.Internal (mkbetree_internal_t i1 i2 n1 n2),
+ node_id_cnt0)
+ else
+ do
+ let _ ← betree_store_internal_node_fwd i content0 st0
+ Result.ret (betree_node_t.Internal (mkbetree_internal_t i i0 n n0),
+ node_id_cnt)
+ | betree_node_t.Leaf node =>
+ do
+ let (st0, content) ← betree_load_leaf_node_fwd node.betree_leaf_id st
+ let content0 ← betree_node_apply_messages_to_leaf_fwd_back content msgs
+ let len ← betree_list_len_fwd (U64 × U64) content0
+ let i ← (U64.ofInt 2 (by intlit)) * params.betree_params_split_size
+ if len >= i
+ then
+ do
+ let (st1, new_node) ←
+ betree_leaf_split_fwd node content0 params node_id_cnt st0
+ let _ ←
+ betree_store_leaf_node_fwd node.betree_leaf_id betree_list_t.Nil
+ st1
+ let node_id_cnt0 ←
+ betree_leaf_split_back node content0 params node_id_cnt st0
+ Result.ret (betree_node_t.Internal new_node, node_id_cnt0)
+ else
+ do
+ let _ ← betree_store_leaf_node_fwd node.betree_leaf_id content0 st0
+ Result.ret (betree_node_t.Leaf { node with betree_leaf_size := len },
+ node_id_cnt)
+
+/- [betree_main::betree::Internal::{4}::flush] -/
+divergent def betree_internal_flush_fwd
+ (self : betree_internal_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t)
+ (content : betree_list_t (U64 × betree_message_t)) (st : State) :
+ Result (State × (betree_list_t (U64 × betree_message_t)))
+ :=
+ do
+ let (mkbetree_internal_t _ i n n0) := self
+ let p ← betree_list_partition_at_pivot_fwd betree_message_t content i
+ let (msgs_left, msgs_right) := p
+ let len_left ← betree_list_len_fwd (U64 × betree_message_t) msgs_left
+ if len_left >= params.betree_params_min_flush_size
+ then
+ do
+ let (st0, _) ←
+ betree_node_apply_messages_fwd n params node_id_cnt msgs_left st
+ let (_, node_id_cnt0) ←
+ betree_node_apply_messages_back n params node_id_cnt msgs_left st
+ let len_right ←
+ betree_list_len_fwd (U64 × betree_message_t) msgs_right
+ if len_right >= params.betree_params_min_flush_size
+ then
+ do
+ let (st1, _) ←
+ betree_node_apply_messages_fwd n0 params node_id_cnt0 msgs_right
+ st0
+ let _ ←
+ betree_node_apply_messages_back n0 params node_id_cnt0 msgs_right
+ st0
+ Result.ret (st1, betree_list_t.Nil)
+ else Result.ret (st0, msgs_right)
+ else
+ do
+ let (st0, _) ←
+ betree_node_apply_messages_fwd n0 params node_id_cnt msgs_right st
+ let _ ←
+ betree_node_apply_messages_back n0 params node_id_cnt msgs_right st
+ Result.ret (st0, msgs_left)
+
+/- [betree_main::betree::Internal::{4}::flush] -/
+divergent def betree_internal_flush_back
+ (self : betree_internal_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t)
+ (content : betree_list_t (U64 × betree_message_t)) (st : State) :
+ Result (betree_internal_t × betree_node_id_counter_t)
+ :=
+ do
+ let (mkbetree_internal_t i i0 n n0) := self
+ let p ← betree_list_partition_at_pivot_fwd betree_message_t content i0
+ let (msgs_left, msgs_right) := p
+ let len_left ← betree_list_len_fwd (U64 × betree_message_t) msgs_left
+ if len_left >= params.betree_params_min_flush_size
+ then
+ do
+ let (st0, _) ←
+ betree_node_apply_messages_fwd n params node_id_cnt msgs_left st
+ let (n1, node_id_cnt0) ←
+ betree_node_apply_messages_back n params node_id_cnt msgs_left st
+ let len_right ←
+ betree_list_len_fwd (U64 × betree_message_t) msgs_right
+ if len_right >= params.betree_params_min_flush_size
+ then
+ do
+ let (n2, node_id_cnt1) ←
+ betree_node_apply_messages_back n0 params node_id_cnt0 msgs_right
+ st0
+ Result.ret (mkbetree_internal_t i i0 n1 n2, node_id_cnt1)
+ else Result.ret (mkbetree_internal_t i i0 n1 n0, node_id_cnt0)
+ else
+ do
+ let (n1, node_id_cnt0) ←
+ betree_node_apply_messages_back n0 params node_id_cnt msgs_right st
+ Result.ret (mkbetree_internal_t i i0 n n1, node_id_cnt0)
+
+end
+
+/- [betree_main::betree::Node::{5}::apply] -/
+def betree_node_apply_fwd
+ (self : betree_node_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t) (key : U64)
+ (new_msg : betree_message_t) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let l := betree_list_t.Nil
+ let (st0, _) ←
+ betree_node_apply_messages_fwd self params node_id_cnt
+ (betree_list_t.Cons (key, new_msg) l) st
+ let _ ←
+ betree_node_apply_messages_back self params node_id_cnt
+ (betree_list_t.Cons (key, new_msg) l) st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::Node::{5}::apply] -/
+def betree_node_apply_back
+ (self : betree_node_t) (params : betree_params_t)
+ (node_id_cnt : betree_node_id_counter_t) (key : U64)
+ (new_msg : betree_message_t) (st : State) :
+ Result (betree_node_t × betree_node_id_counter_t)
+ :=
+ let l := betree_list_t.Nil
+ betree_node_apply_messages_back self params node_id_cnt (betree_list_t.Cons
+ (key, new_msg) l) st
+
+/- [betree_main::betree::BeTree::{6}::new] -/
+def betree_be_tree_new_fwd
+ (min_flush_size : U64) (split_size : U64) (st : State) :
+ Result (State × betree_be_tree_t)
+ :=
+ do
+ let node_id_cnt ← betree_node_id_counter_new_fwd
+ let id ← betree_node_id_counter_fresh_id_fwd node_id_cnt
+ let (st0, _) ← betree_store_leaf_node_fwd id betree_list_t.Nil st
+ let node_id_cnt0 ← betree_node_id_counter_fresh_id_back node_id_cnt
+ Result.ret (st0,
+ {
+ betree_be_tree_params :=
+ {
+ betree_params_min_flush_size := min_flush_size,
+ betree_params_split_size := split_size
+ },
+ betree_be_tree_node_id_cnt := node_id_cnt0,
+ betree_be_tree_root :=
+ (betree_node_t.Leaf
+ {
+ betree_leaf_id := id,
+ betree_leaf_size := (U64.ofInt 0 (by intlit))
+ })
+ })
+
+/- [betree_main::betree::BeTree::{6}::apply] -/
+def betree_be_tree_apply_fwd
+ (self : betree_be_tree_t) (key : U64) (msg : betree_message_t) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ←
+ betree_node_apply_fwd self.betree_be_tree_root self.betree_be_tree_params
+ self.betree_be_tree_node_id_cnt key msg st
+ let _ ←
+ betree_node_apply_back self.betree_be_tree_root
+ self.betree_be_tree_params self.betree_be_tree_node_id_cnt key msg st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::BeTree::{6}::apply] -/
+def betree_be_tree_apply_back
+ (self : betree_be_tree_t) (key : U64) (msg : betree_message_t) (st : State) :
+ Result betree_be_tree_t
+ :=
+ do
+ let (n, nic) ←
+ betree_node_apply_back self.betree_be_tree_root
+ self.betree_be_tree_params self.betree_be_tree_node_id_cnt key msg st
+ Result.ret
+ { self with betree_be_tree_node_id_cnt := nic, betree_be_tree_root := n }
+
+/- [betree_main::betree::BeTree::{6}::insert] -/
+def betree_be_tree_insert_fwd
+ (self : betree_be_tree_t) (key : U64) (value : U64) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ←
+ betree_be_tree_apply_fwd self key (betree_message_t.Insert value) st
+ let _ ←
+ betree_be_tree_apply_back self key (betree_message_t.Insert value) st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::BeTree::{6}::insert] -/
+def betree_be_tree_insert_back
+ (self : betree_be_tree_t) (key : U64) (value : U64) (st : State) :
+ Result betree_be_tree_t
+ :=
+ betree_be_tree_apply_back self key (betree_message_t.Insert value) st
+
+/- [betree_main::betree::BeTree::{6}::delete] -/
+def betree_be_tree_delete_fwd
+ (self : betree_be_tree_t) (key : U64) (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ←
+ betree_be_tree_apply_fwd self key betree_message_t.Delete st
+ let _ ← betree_be_tree_apply_back self key betree_message_t.Delete st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::BeTree::{6}::delete] -/
+def betree_be_tree_delete_back
+ (self : betree_be_tree_t) (key : U64) (st : State) :
+ Result betree_be_tree_t
+ :=
+ betree_be_tree_apply_back self key betree_message_t.Delete st
+
+/- [betree_main::betree::BeTree::{6}::upsert] -/
+def betree_be_tree_upsert_fwd
+ (self : betree_be_tree_t) (key : U64) (upd : betree_upsert_fun_state_t)
+ (st : State) :
+ Result (State × Unit)
+ :=
+ do
+ let (st0, _) ←
+ betree_be_tree_apply_fwd self key (betree_message_t.Upsert upd) st
+ let _ ←
+ betree_be_tree_apply_back self key (betree_message_t.Upsert upd) st
+ Result.ret (st0, ())
+
+/- [betree_main::betree::BeTree::{6}::upsert] -/
+def betree_be_tree_upsert_back
+ (self : betree_be_tree_t) (key : U64) (upd : betree_upsert_fun_state_t)
+ (st : State) :
+ Result betree_be_tree_t
+ :=
+ betree_be_tree_apply_back self key (betree_message_t.Upsert upd) st
+
+/- [betree_main::betree::BeTree::{6}::lookup] -/
+def betree_be_tree_lookup_fwd
+ (self : betree_be_tree_t) (key : U64) (st : State) :
+ Result (State × (Option U64))
+ :=
+ betree_node_lookup_fwd self.betree_be_tree_root key st
+
+/- [betree_main::betree::BeTree::{6}::lookup] -/
+def betree_be_tree_lookup_back
+ (self : betree_be_tree_t) (key : U64) (st : State) :
+ Result betree_be_tree_t
+ :=
+ do
+ let n ← betree_node_lookup_back self.betree_be_tree_root key st
+ Result.ret { self with betree_be_tree_root := n }
+
+/- [betree_main::main] -/
+def main_fwd : Result Unit :=
+ Result.ret ()
+
+/- Unit test for [betree_main::main] -/
+#assert (main_fwd == .ret ())
+
diff --git a/tests/lean/BetreeMain/Opaque.lean b/tests/lean/BetreeMain/Opaque.lean
new file mode 100644
index 00000000..c8226d4e
--- /dev/null
+++ b/tests/lean/BetreeMain/Opaque.lean
@@ -0,0 +1,31 @@
+-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
+-- [betree_main]: opaque function definitions
+import Base
+import BetreeMain.Types
+open Primitives
+
+structure OpaqueDefs where
+
+ /- [betree_main::betree_utils::load_internal_node] -/
+ betree_utils_load_internal_node_fwd
+ :
+ U64 -> State -> Result (State × (betree_list_t (U64 × betree_message_t)))
+
+ /- [betree_main::betree_utils::store_internal_node] -/
+ betree_utils_store_internal_node_fwd
+ :
+ U64 -> betree_list_t (U64 × betree_message_t) -> State -> Result (State ×
+ Unit)
+
+ /- [betree_main::betree_utils::load_leaf_node] -/
+ betree_utils_load_leaf_node_fwd
+ : U64 -> State -> Result (State × (betree_list_t (U64 × U64)))
+
+ /- [betree_main::betree_utils::store_leaf_node] -/
+ betree_utils_store_leaf_node_fwd
+ : U64 -> betree_list_t (U64 × U64) -> State -> Result (State × Unit)
+
+ /- [core::option::Option::{0}::unwrap] -/
+ core_option_option_unwrap_fwd
+ (T : Type) : Option T -> State -> Result (State × T)
+
diff --git a/tests/lean/BetreeMain/Types.lean b/tests/lean/BetreeMain/Types.lean
new file mode 100644
index 00000000..4875a8ba
--- /dev/null
+++ b/tests/lean/BetreeMain/Types.lean
@@ -0,0 +1,62 @@
+-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
+-- [betree_main]: type definitions
+import Base
+open Primitives
+
+/- [betree_main::betree::List] -/
+inductive betree_list_t (T : Type) :=
+| Cons : T -> betree_list_t T -> betree_list_t T
+| Nil : betree_list_t T
+
+/- [betree_main::betree::UpsertFunState] -/
+inductive betree_upsert_fun_state_t :=
+| Add : U64 -> betree_upsert_fun_state_t
+| Sub : U64 -> betree_upsert_fun_state_t
+
+/- [betree_main::betree::Message] -/
+inductive betree_message_t :=
+| Insert : U64 -> betree_message_t
+| Delete : betree_message_t
+| Upsert : betree_upsert_fun_state_t -> betree_message_t
+
+/- [betree_main::betree::Leaf] -/
+structure betree_leaf_t where
+ betree_leaf_id : U64
+ betree_leaf_size : U64
+
+mutual
+
+/- [betree_main::betree::Node] -/
+inductive betree_node_t :=
+| Internal : betree_internal_t -> betree_node_t
+| Leaf : betree_leaf_t -> betree_node_t
+
+/- [betree_main::betree::Internal] -/
+inductive betree_internal_t :=
+| mkbetree_internal_t :
+ U64 ->
+ U64 ->
+ betree_node_t ->
+ betree_node_t ->
+ betree_internal_t
+
+end
+
+/- [betree_main::betree::Params] -/
+structure betree_params_t where
+ betree_params_min_flush_size : U64
+ betree_params_split_size : U64
+
+/- [betree_main::betree::NodeIdCounter] -/
+structure betree_node_id_counter_t where
+ betree_node_id_counter_next_node_id : U64
+
+/- [betree_main::betree::BeTree] -/
+structure betree_be_tree_t where
+ betree_be_tree_params : betree_params_t
+ betree_be_tree_node_id_cnt : betree_node_id_counter_t
+ betree_be_tree_root : betree_node_t
+
+/- The state type used in the state-error monad -/
+axiom State : Type
+
diff --git a/tests/lean/misc-constants/Constants.lean b/tests/lean/Constants.lean
index 8306ed85..cd2f88f5 100644
--- a/tests/lean/misc-constants/Constants.lean
+++ b/tests/lean/Constants.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [constants]
-import Base.Primitives
+import Base
+open Primitives
/- [constants::X0] -/
def x0_body : Result U32 := Result.ret (U32.ofInt 0 (by intlit))
diff --git a/tests/lean/misc-external/External.lean b/tests/lean/External.lean
index b95db309..b95db309 100644
--- a/tests/lean/misc-external/External.lean
+++ b/tests/lean/External.lean
diff --git a/tests/lean/misc-external/External/Funs.lean b/tests/lean/External/Funs.lean
index eeb83989..73e45938 100644
--- a/tests/lean/misc-external/External/Funs.lean
+++ b/tests/lean/External/Funs.lean
@@ -1,8 +1,9 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [external]: function definitions
-import Base.Primitives
+import Base
import External.Types
import External.ExternalFuns
+open Primitives
/- [external::swap] -/
def swap_fwd
@@ -39,6 +40,9 @@ def test_vec_fwd : Result Unit :=
let _ ← vec_push_back U32 v (U32.ofInt 0 (by intlit))
Result.ret ()
+/- Unit test for [external::test_vec] -/
+#assert (test_vec_fwd == .ret ())
+
/- [external::custom_swap] -/
def custom_swap_fwd
(T : Type) (x : T) (y : T) (st : State) : Result (State × T) :=
@@ -78,7 +82,7 @@ def test_swap_non_zero_fwd (x : U32) (st : State) : Result (State × U32) :=
do
let (st0, _) ← swap_fwd U32 x (U32.ofInt 0 (by intlit)) st
let (st1, (x0, _)) ← swap_back U32 x (U32.ofInt 0 (by intlit)) st st0
- if h: x0 = (U32.ofInt 0 (by intlit))
+ if x0 = (U32.ofInt 0 (by intlit))
then Result.fail Error.panic
else Result.ret (st1, x0)
diff --git a/tests/lean/misc-external/External/Opaque.lean b/tests/lean/External/Opaque.lean
index d641912b..5483c3a9 100644
--- a/tests/lean/misc-external/External/Opaque.lean
+++ b/tests/lean/External/Opaque.lean
@@ -1,7 +1,8 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [external]: opaque function definitions
-import Base.Primitives
+import Base
import External.Types
+open Primitives
structure OpaqueDefs where
diff --git a/tests/lean/misc-external/External/Types.lean b/tests/lean/External/Types.lean
index ed1842be..25907da2 100644
--- a/tests/lean/misc-external/External/Types.lean
+++ b/tests/lean/External/Types.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [external]: type definitions
-import Base.Primitives
+import Base
+open Primitives
/- [core::num::nonzero::NonZeroU32] -/
axiom core_num_nonzero_non_zero_u32_t : Type
diff --git a/tests/lean/hashmap/Hashmap.lean b/tests/lean/Hashmap.lean
index 41630205..41630205 100644
--- a/tests/lean/hashmap/Hashmap.lean
+++ b/tests/lean/Hashmap.lean
diff --git a/tests/lean/hashmap/Hashmap/Funs.lean b/tests/lean/Hashmap/Funs.lean
index 77b1a157..26742d5d 100644
--- a/tests/lean/hashmap/Hashmap/Funs.lean
+++ b/tests/lean/Hashmap/Funs.lean
@@ -1,28 +1,23 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap]: function definitions
-import Base.Primitives
+import Base
import Hashmap.Types
-import Hashmap.Clauses.Clauses
+open Primitives
/- [hashmap::hash_key] -/
def hash_key_fwd (k : Usize) : Result Usize :=
Result.ret k
/- [hashmap::HashMap::{0}::allocate_slots] -/
-def hash_map_allocate_slots_loop_fwd
- (T : Type) (slots : Vec (list_t T)) (n : Usize) :
- (Result (Vec (list_t T)))
- :=
- if h: n > (Usize.ofInt 0 (by intlit))
+divergent def hash_map_allocate_slots_loop_fwd
+ (T : Type) (slots : Vec (list_t T)) (n : Usize) : Result (Vec (list_t T)) :=
+ if n > (Usize.ofInt 0 (by intlit))
then
do
let slots0 ← vec_push_back (list_t T) slots list_t.Nil
let n0 ← n - (Usize.ofInt 1 (by intlit))
hash_map_allocate_slots_loop_fwd T slots0 n0
else Result.ret slots
-termination_by hash_map_allocate_slots_loop_fwd slots n =>
- hash_map_allocate_slots_loop_terminates T slots n
-decreasing_by hash_map_allocate_slots_loop_decreases slots n
/- [hashmap::HashMap::{0}::allocate_slots] -/
def hash_map_allocate_slots_fwd
@@ -54,21 +49,16 @@ def hash_map_new_fwd (T : Type) : Result (hash_map_t T) :=
(Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit))
/- [hashmap::HashMap::{0}::clear] -/
-def hash_map_clear_loop_fwd_back
- (T : Type) (slots : Vec (list_t T)) (i : Usize) :
- (Result (Vec (list_t T)))
- :=
+divergent def hash_map_clear_loop_fwd_back
+ (T : Type) (slots : Vec (list_t T)) (i : Usize) : Result (Vec (list_t T)) :=
let i0 := vec_len (list_t T) slots
- if h: i < i0
+ if i < i0
then
do
let i1 ← i + (Usize.ofInt 1 (by intlit))
let slots0 ← vec_index_mut_back (list_t T) slots i list_t.Nil
hash_map_clear_loop_fwd_back T slots0 i1
else Result.ret slots
-termination_by hash_map_clear_loop_fwd_back slots i =>
- hash_map_clear_loop_terminates T slots i
-decreasing_by hash_map_clear_loop_decreases slots i
/- [hashmap::HashMap::{0}::clear] -/
def hash_map_clear_fwd_back
@@ -90,17 +80,14 @@ def hash_map_len_fwd (T : Type) (self : hash_map_t T) : Result Usize :=
Result.ret self.hash_map_num_entries
/- [hashmap::HashMap::{0}::insert_in_list] -/
-def hash_map_insert_in_list_loop_fwd
- (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result Bool) :=
+divergent def hash_map_insert_in_list_loop_fwd
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result Bool :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret false
else hash_map_insert_in_list_loop_fwd T key value tl
| list_t.Nil => Result.ret true
-termination_by hash_map_insert_in_list_loop_fwd key value ls =>
- hash_map_insert_in_list_loop_terminates T key value ls
-decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_fwd
@@ -108,11 +95,11 @@ def hash_map_insert_in_list_fwd
hash_map_insert_in_list_loop_fwd T key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
-def hash_map_insert_in_list_loop_back
- (T : Type) (key : Usize) (value : T) (ls : list_t T) : (Result (list_t T)) :=
+divergent def hash_map_insert_in_list_loop_back
+ (T : Type) (key : Usize) (value : T) (ls : list_t T) : Result (list_t T) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret (list_t.Cons ckey value tl)
else
do
@@ -120,9 +107,6 @@ def hash_map_insert_in_list_loop_back
Result.ret (list_t.Cons ckey cvalue tl0)
| list_t.Nil => let l := list_t.Nil
Result.ret (list_t.Cons key value l)
-termination_by hash_map_insert_in_list_loop_back key value ls =>
- hash_map_insert_in_list_loop_terminates T key value ls
-decreasing_by hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap::HashMap::{0}::insert_in_list] -/
def hash_map_insert_in_list_back
@@ -140,7 +124,7 @@ def hash_map_insert_no_resize_fwd_back
let hash_mod ← hash % i
let l ← vec_index_mut_fwd (list_t T) self.hash_map_slots hash_mod
let inserted ← hash_map_insert_in_list_fwd T key value l
- if h: inserted
+ if inserted
then
do
let i0 ← self.hash_map_num_entries + (Usize.ofInt 1 (by intlit))
@@ -160,19 +144,14 @@ def core_num_u32_max_body : Result U32 :=
def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap::HashMap::{0}::move_elements_from_list] -/
-def hash_map_move_elements_from_list_loop_fwd_back
- (T : Type) (ntable : hash_map_t T) (ls : list_t T) :
- (Result (hash_map_t T))
- :=
+divergent def hash_map_move_elements_from_list_loop_fwd_back
+ (T : Type) (ntable : hash_map_t T) (ls : list_t T) : Result (hash_map_t T) :=
match h: ls with
| list_t.Cons k v tl =>
do
let ntable0 ← hash_map_insert_no_resize_fwd_back T ntable k v
hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl
| list_t.Nil => Result.ret ntable
-termination_by hash_map_move_elements_from_list_loop_fwd_back ntable ls =>
- hash_map_move_elements_from_list_loop_terminates T ntable ls
-decreasing_by hash_map_move_elements_from_list_loop_decreases ntable ls
/- [hashmap::HashMap::{0}::move_elements_from_list] -/
def hash_map_move_elements_from_list_fwd_back
@@ -180,12 +159,12 @@ def hash_map_move_elements_from_list_fwd_back
hash_map_move_elements_from_list_loop_fwd_back T ntable ls
/- [hashmap::HashMap::{0}::move_elements] -/
-def hash_map_move_elements_loop_fwd_back
+divergent def hash_map_move_elements_loop_fwd_back
(T : Type) (ntable : hash_map_t T) (slots : Vec (list_t T)) (i : Usize) :
- (Result ((hash_map_t T) × (Vec (list_t T))))
+ Result ((hash_map_t T) × (Vec (list_t T)))
:=
let i0 := vec_len (list_t T) slots
- if h: i < i0
+ if i < i0
then
do
let l ← vec_index_mut_fwd (list_t T) slots i
@@ -196,9 +175,6 @@ def hash_map_move_elements_loop_fwd_back
let slots0 ← vec_index_mut_back (list_t T) slots i l0
hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1
else Result.ret (ntable, slots)
-termination_by hash_map_move_elements_loop_fwd_back ntable slots i =>
- hash_map_move_elements_loop_terminates T ntable slots i
-decreasing_by hash_map_move_elements_loop_decreases ntable slots i
/- [hashmap::HashMap::{0}::move_elements] -/
def hash_map_move_elements_fwd_back
@@ -216,7 +192,7 @@ def hash_map_try_resize_fwd_back
let n1 ← max_usize / (Usize.ofInt 2 (by intlit))
let (i, i0) := self.hash_map_max_load_factor
let i1 ← n1 / i
- if h: capacity <= i1
+ if capacity <= i1
then
do
let i2 ← capacity * (Usize.ofInt 2 (by intlit))
@@ -241,22 +217,19 @@ def hash_map_insert_fwd_back
do
let self0 ← hash_map_insert_no_resize_fwd_back T self key value
let i ← hash_map_len_fwd T self0
- if h: i > self0.hash_map_max_load
+ if i > self0.hash_map_max_load
then hash_map_try_resize_fwd_back T self0
else Result.ret self0
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
-def hash_map_contains_key_in_list_loop_fwd
- (T : Type) (key : Usize) (ls : list_t T) : (Result Bool) :=
+divergent def hash_map_contains_key_in_list_loop_fwd
+ (T : Type) (key : Usize) (ls : list_t T) : Result Bool :=
match h: ls with
| list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret true
else hash_map_contains_key_in_list_loop_fwd T key tl
| list_t.Nil => Result.ret false
-termination_by hash_map_contains_key_in_list_loop_fwd key ls =>
- hash_map_contains_key_in_list_loop_terminates T key ls
-decreasing_by hash_map_contains_key_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::contains_key_in_list] -/
def hash_map_contains_key_in_list_fwd
@@ -274,17 +247,14 @@ def hash_map_contains_key_fwd
hash_map_contains_key_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_in_list] -/
-def hash_map_get_in_list_loop_fwd
- (T : Type) (key : Usize) (ls : list_t T) : (Result T) :=
+divergent def hash_map_get_in_list_loop_fwd
+ (T : Type) (key : Usize) (ls : list_t T) : Result T :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret cvalue
else hash_map_get_in_list_loop_fwd T key tl
| list_t.Nil => Result.fail Error.panic
-termination_by hash_map_get_in_list_loop_fwd key ls =>
- hash_map_get_in_list_loop_terminates T key ls
-decreasing_by hash_map_get_in_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::get_in_list] -/
def hash_map_get_in_list_fwd
@@ -302,17 +272,14 @@ def hash_map_get_fwd
hash_map_get_in_list_fwd T key l
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
-def hash_map_get_mut_in_list_loop_fwd
- (T : Type) (ls : list_t T) (key : Usize) : (Result T) :=
+divergent def hash_map_get_mut_in_list_loop_fwd
+ (T : Type) (ls : list_t T) (key : Usize) : Result T :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret cvalue
else hash_map_get_mut_in_list_loop_fwd T tl key
| list_t.Nil => Result.fail Error.panic
-termination_by hash_map_get_mut_in_list_loop_fwd ls key =>
- hash_map_get_mut_in_list_loop_terminates T ls key
-decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_fwd
@@ -320,20 +287,17 @@ def hash_map_get_mut_in_list_fwd
hash_map_get_mut_in_list_loop_fwd T ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
-def hash_map_get_mut_in_list_loop_back
- (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : (Result (list_t T)) :=
+divergent def hash_map_get_mut_in_list_loop_back
+ (T : Type) (ls : list_t T) (key : Usize) (ret0 : T) : Result (list_t T) :=
match h: ls with
| list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret (list_t.Cons ckey ret0 tl)
else
do
let tl0 ← hash_map_get_mut_in_list_loop_back T tl key ret0
Result.ret (list_t.Cons ckey cvalue tl0)
| list_t.Nil => Result.fail Error.panic
-termination_by hash_map_get_mut_in_list_loop_back ls key ret0 =>
- hash_map_get_mut_in_list_loop_terminates T ls key
-decreasing_by hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap::HashMap::{0}::get_mut_in_list] -/
def hash_map_get_mut_in_list_back
@@ -365,11 +329,11 @@ def hash_map_get_mut_back
Result.ret { self with hash_map_slots := v }
/- [hashmap::HashMap::{0}::remove_from_list] -/
-def hash_map_remove_from_list_loop_fwd
- (T : Type) (key : Usize) (ls : list_t T) : (Result (Option T)) :=
+divergent def hash_map_remove_from_list_loop_fwd
+ (T : Type) (key : Usize) (ls : list_t T) : Result (Option T) :=
match h: ls with
| list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then
let mv_ls :=
mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil
@@ -378,9 +342,6 @@ def hash_map_remove_from_list_loop_fwd
| list_t.Nil => Result.fail Error.panic
else hash_map_remove_from_list_loop_fwd T key tl
| list_t.Nil => Result.ret Option.none
-termination_by hash_map_remove_from_list_loop_fwd key ls =>
- hash_map_remove_from_list_loop_terminates T key ls
-decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_fwd
@@ -388,11 +349,11 @@ def hash_map_remove_from_list_fwd
hash_map_remove_from_list_loop_fwd T key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
-def hash_map_remove_from_list_loop_back
- (T : Type) (key : Usize) (ls : list_t T) : (Result (list_t T)) :=
+divergent def hash_map_remove_from_list_loop_back
+ (T : Type) (key : Usize) (ls : list_t T) : Result (list_t T) :=
match h: ls with
| list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then
let mv_ls :=
mem_replace_fwd (list_t T) (list_t.Cons ckey t tl) list_t.Nil
@@ -404,9 +365,6 @@ def hash_map_remove_from_list_loop_back
let tl0 ← hash_map_remove_from_list_loop_back T key tl
Result.ret (list_t.Cons ckey t tl0)
| list_t.Nil => Result.ret list_t.Nil
-termination_by hash_map_remove_from_list_loop_back key ls =>
- hash_map_remove_from_list_loop_terminates T key ls
-decreasing_by hash_map_remove_from_list_loop_decreases key ls
/- [hashmap::HashMap::{0}::remove_from_list] -/
def hash_map_remove_from_list_back
@@ -469,7 +427,7 @@ def test1_fwd : Result Unit :=
hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit))
(U64.ofInt 256 (by intlit))
let i ← hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit))
- if h: not (i = (U64.ofInt 18 (by intlit)))
+ if not (i = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
@@ -477,7 +435,7 @@ def test1_fwd : Result Unit :=
hash_map_get_mut_back U64 hm3 (Usize.ofInt 1024 (by intlit))
(U64.ofInt 56 (by intlit))
let i0 ← hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit))
- if h: not (i0 = (U64.ofInt 56 (by intlit)))
+ if not (i0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
@@ -486,7 +444,7 @@ def test1_fwd : Result Unit :=
match h: x with
| Option.none => Result.fail Error.panic
| Option.some x0 =>
- if h: not (x0 = (U64.ofInt 56 (by intlit)))
+ if not (x0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
@@ -494,20 +452,23 @@ def test1_fwd : Result Unit :=
hash_map_remove_back U64 hm4 (Usize.ofInt 1024 (by intlit))
let i1 ←
hash_map_get_fwd U64 hm5 (Usize.ofInt 0 (by intlit))
- if h: not (i1 = (U64.ofInt 42 (by intlit)))
+ if not (i1 = (U64.ofInt 42 (by intlit)))
then Result.fail Error.panic
else
do
let i2 ←
hash_map_get_fwd U64 hm5 (Usize.ofInt 128 (by intlit))
- if h: not (i2 = (U64.ofInt 18 (by intlit)))
+ if not (i2 = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let i3 ←
hash_map_get_fwd U64 hm5
(Usize.ofInt 1056 (by intlit))
- if h: not (i3 = (U64.ofInt 256 (by intlit)))
+ if not (i3 = (U64.ofInt 256 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
+/- Unit test for [hashmap::test1] -/
+#assert (test1_fwd == .ret ())
+
diff --git a/tests/lean/hashmap/Hashmap/Types.lean b/tests/lean/Hashmap/Types.lean
index 6eabf7da..af26f363 100644
--- a/tests/lean/hashmap/Hashmap/Types.lean
+++ b/tests/lean/Hashmap/Types.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap]: type definitions
-import Base.Primitives
+import Base
+open Primitives
/- [hashmap::List] -/
inductive list_t (T : Type) :=
diff --git a/tests/lean/hashmap_on_disk/HashmapMain.lean b/tests/lean/HashmapMain.lean
index 1a4e7f82..1a4e7f82 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain.lean
+++ b/tests/lean/HashmapMain.lean
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean b/tests/lean/HashmapMain/Funs.lean
index 342c3833..a59a9f26 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Funs.lean
+++ b/tests/lean/HashmapMain/Funs.lean
@@ -1,29 +1,26 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap_main]: function definitions
-import Base.Primitives
+import Base
import HashmapMain.Types
import HashmapMain.ExternalFuns
-import HashmapMain.Clauses.Clauses
+open Primitives
/- [hashmap_main::hashmap::hash_key] -/
def hashmap_hash_key_fwd (k : Usize) : Result Usize :=
Result.ret k
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/
-def hashmap_hash_map_allocate_slots_loop_fwd
+divergent def hashmap_hash_map_allocate_slots_loop_fwd
(T : Type) (slots : Vec (hashmap_list_t T)) (n : Usize) :
- (Result (Vec (hashmap_list_t T)))
+ Result (Vec (hashmap_list_t T))
:=
- if h: n > (Usize.ofInt 0 (by intlit))
+ if n > (Usize.ofInt 0 (by intlit))
then
do
let slots0 ← vec_push_back (hashmap_list_t T) slots hashmap_list_t.Nil
let n0 ← n - (Usize.ofInt 1 (by intlit))
hashmap_hash_map_allocate_slots_loop_fwd T slots0 n0
else Result.ret slots
-termination_by hashmap_hash_map_allocate_slots_loop_fwd slots n =>
- hashmap_hash_map_allocate_slots_loop_terminates T slots n
-decreasing_by hashmap_hash_map_allocate_slots_loop_decreases slots n
/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots] -/
def hashmap_hash_map_allocate_slots_fwd
@@ -58,12 +55,12 @@ def hashmap_hash_map_new_fwd (T : Type) : Result (hashmap_hash_map_t T) :=
(Usize.ofInt 4 (by intlit)) (Usize.ofInt 5 (by intlit))
/- [hashmap_main::hashmap::HashMap::{0}::clear] -/
-def hashmap_hash_map_clear_loop_fwd_back
+divergent def hashmap_hash_map_clear_loop_fwd_back
(T : Type) (slots : Vec (hashmap_list_t T)) (i : Usize) :
- (Result (Vec (hashmap_list_t T)))
+ Result (Vec (hashmap_list_t T))
:=
let i0 := vec_len (hashmap_list_t T) slots
- if h: i < i0
+ if i < i0
then
do
let i1 ← i + (Usize.ofInt 1 (by intlit))
@@ -71,9 +68,6 @@ def hashmap_hash_map_clear_loop_fwd_back
vec_index_mut_back (hashmap_list_t T) slots i hashmap_list_t.Nil
hashmap_hash_map_clear_loop_fwd_back T slots0 i1
else Result.ret slots
-termination_by hashmap_hash_map_clear_loop_fwd_back slots i =>
- hashmap_hash_map_clear_loop_terminates T slots i
-decreasing_by hashmap_hash_map_clear_loop_decreases slots i
/- [hashmap_main::hashmap::HashMap::{0}::clear] -/
def hashmap_hash_map_clear_fwd_back
@@ -96,19 +90,14 @@ def hashmap_hash_map_len_fwd
Result.ret self.hashmap_hash_map_num_entries
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
-def hashmap_hash_map_insert_in_list_loop_fwd
- (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) :
- (Result Bool)
- :=
+divergent def hashmap_hash_map_insert_in_list_loop_fwd
+ (T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) : Result Bool :=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret false
else hashmap_hash_map_insert_in_list_loop_fwd T key value tl
| hashmap_list_t.Nil => Result.ret true
-termination_by hashmap_hash_map_insert_in_list_loop_fwd key value ls =>
- hashmap_hash_map_insert_in_list_loop_terminates T key value ls
-decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_fwd
@@ -116,13 +105,13 @@ def hashmap_hash_map_insert_in_list_fwd
hashmap_hash_map_insert_in_list_loop_fwd T key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
-def hashmap_hash_map_insert_in_list_loop_back
+divergent def hashmap_hash_map_insert_in_list_loop_back
(T : Type) (key : Usize) (value : T) (ls : hashmap_list_t T) :
- (Result (hashmap_list_t T))
+ Result (hashmap_list_t T)
:=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret (hashmap_list_t.Cons ckey value tl)
else
do
@@ -131,9 +120,6 @@ def hashmap_hash_map_insert_in_list_loop_back
| hashmap_list_t.Nil =>
let l := hashmap_list_t.Nil
Result.ret (hashmap_list_t.Cons key value l)
-termination_by hashmap_hash_map_insert_in_list_loop_back key value ls =>
- hashmap_hash_map_insert_in_list_loop_terminates T key value ls
-decreasing_by hashmap_hash_map_insert_in_list_loop_decreases key value ls
/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list] -/
def hashmap_hash_map_insert_in_list_back
@@ -154,7 +140,7 @@ def hashmap_hash_map_insert_no_resize_fwd_back
let l ←
vec_index_mut_fwd (hashmap_list_t T) self.hashmap_hash_map_slots hash_mod
let inserted ← hashmap_hash_map_insert_in_list_fwd T key value l
- if h: inserted
+ if inserted
then
do
let i0 ← self.hashmap_hash_map_num_entries +
@@ -183,9 +169,9 @@ def core_num_u32_max_body : Result U32 :=
def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/
-def hashmap_hash_map_move_elements_from_list_loop_fwd_back
+divergent def hashmap_hash_map_move_elements_from_list_loop_fwd_back
(T : Type) (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) :
- (Result (hashmap_hash_map_t T))
+ Result (hashmap_hash_map_t T)
:=
match h: ls with
| hashmap_list_t.Cons k v tl =>
@@ -193,10 +179,6 @@ def hashmap_hash_map_move_elements_from_list_loop_fwd_back
let ntable0 ← hashmap_hash_map_insert_no_resize_fwd_back T ntable k v
hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable0 tl
| hashmap_list_t.Nil => Result.ret ntable
-termination_by hashmap_hash_map_move_elements_from_list_loop_fwd_back ntable ls
- =>
- hashmap_hash_map_move_elements_from_list_loop_terminates T ntable ls
-decreasing_by hashmap_hash_map_move_elements_from_list_loop_decreases ntable ls
/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list] -/
def hashmap_hash_map_move_elements_from_list_fwd_back
@@ -206,13 +188,13 @@ def hashmap_hash_map_move_elements_from_list_fwd_back
hashmap_hash_map_move_elements_from_list_loop_fwd_back T ntable ls
/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/
-def hashmap_hash_map_move_elements_loop_fwd_back
+divergent def hashmap_hash_map_move_elements_loop_fwd_back
(T : Type) (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T))
(i : Usize) :
- (Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T))))
+ Result ((hashmap_hash_map_t T) × (Vec (hashmap_list_t T)))
:=
let i0 := vec_len (hashmap_list_t T) slots
- if h: i < i0
+ if i < i0
then
do
let l ← vec_index_mut_fwd (hashmap_list_t T) slots i
@@ -224,9 +206,6 @@ def hashmap_hash_map_move_elements_loop_fwd_back
let slots0 ← vec_index_mut_back (hashmap_list_t T) slots i l0
hashmap_hash_map_move_elements_loop_fwd_back T ntable0 slots0 i1
else Result.ret (ntable, slots)
-termination_by hashmap_hash_map_move_elements_loop_fwd_back ntable slots i =>
- hashmap_hash_map_move_elements_loop_terminates T ntable slots i
-decreasing_by hashmap_hash_map_move_elements_loop_decreases ntable slots i
/- [hashmap_main::hashmap::HashMap::{0}::move_elements] -/
def hashmap_hash_map_move_elements_fwd_back
@@ -245,7 +224,7 @@ def hashmap_hash_map_try_resize_fwd_back
let n1 ← max_usize / (Usize.ofInt 2 (by intlit))
let (i, i0) := self.hashmap_hash_map_max_load_factor
let i1 ← n1 / i
- if h: capacity <= i1
+ if capacity <= i1
then
do
let i2 ← capacity * (Usize.ofInt 2 (by intlit))
@@ -270,22 +249,19 @@ def hashmap_hash_map_insert_fwd_back
do
let self0 ← hashmap_hash_map_insert_no_resize_fwd_back T self key value
let i ← hashmap_hash_map_len_fwd T self0
- if h: i > self0.hashmap_hash_map_max_load
+ if i > self0.hashmap_hash_map_max_load
then hashmap_hash_map_try_resize_fwd_back T self0
else Result.ret self0
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/
-def hashmap_hash_map_contains_key_in_list_loop_fwd
- (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result Bool) :=
+divergent def hashmap_hash_map_contains_key_in_list_loop_fwd
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result Bool :=
match h: ls with
| hashmap_list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret true
else hashmap_hash_map_contains_key_in_list_loop_fwd T key tl
| hashmap_list_t.Nil => Result.ret false
-termination_by hashmap_hash_map_contains_key_in_list_loop_fwd key ls =>
- hashmap_hash_map_contains_key_in_list_loop_terminates T key ls
-decreasing_by hashmap_hash_map_contains_key_in_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list] -/
def hashmap_hash_map_contains_key_in_list_fwd
@@ -304,17 +280,14 @@ def hashmap_hash_map_contains_key_fwd
hashmap_hash_map_contains_key_in_list_fwd T key l
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/
-def hashmap_hash_map_get_in_list_loop_fwd
- (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result T) :=
+divergent def hashmap_hash_map_get_in_list_loop_fwd
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result T :=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret cvalue
else hashmap_hash_map_get_in_list_loop_fwd T key tl
| hashmap_list_t.Nil => Result.fail Error.panic
-termination_by hashmap_hash_map_get_in_list_loop_fwd key ls =>
- hashmap_hash_map_get_in_list_loop_terminates T key ls
-decreasing_by hashmap_hash_map_get_in_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::get_in_list] -/
def hashmap_hash_map_get_in_list_fwd
@@ -333,17 +306,14 @@ def hashmap_hash_map_get_fwd
hashmap_hash_map_get_in_list_fwd T key l
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
-def hashmap_hash_map_get_mut_in_list_loop_fwd
- (T : Type) (ls : hashmap_list_t T) (key : Usize) : (Result T) :=
+divergent def hashmap_hash_map_get_mut_in_list_loop_fwd
+ (T : Type) (ls : hashmap_list_t T) (key : Usize) : Result T :=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret cvalue
else hashmap_hash_map_get_mut_in_list_loop_fwd T tl key
| hashmap_list_t.Nil => Result.fail Error.panic
-termination_by hashmap_hash_map_get_mut_in_list_loop_fwd ls key =>
- hashmap_hash_map_get_mut_in_list_loop_terminates T ls key
-decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_fwd
@@ -351,22 +321,19 @@ def hashmap_hash_map_get_mut_in_list_fwd
hashmap_hash_map_get_mut_in_list_loop_fwd T ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
-def hashmap_hash_map_get_mut_in_list_loop_back
+divergent def hashmap_hash_map_get_mut_in_list_loop_back
(T : Type) (ls : hashmap_list_t T) (key : Usize) (ret0 : T) :
- (Result (hashmap_list_t T))
+ Result (hashmap_list_t T)
:=
match h: ls with
| hashmap_list_t.Cons ckey cvalue tl =>
- if h: ckey = key
+ if ckey = key
then Result.ret (hashmap_list_t.Cons ckey ret0 tl)
else
do
let tl0 ← hashmap_hash_map_get_mut_in_list_loop_back T tl key ret0
Result.ret (hashmap_list_t.Cons ckey cvalue tl0)
| hashmap_list_t.Nil => Result.fail Error.panic
-termination_by hashmap_hash_map_get_mut_in_list_loop_back ls key ret0 =>
- hashmap_hash_map_get_mut_in_list_loop_terminates T ls key
-decreasing_by hashmap_hash_map_get_mut_in_list_loop_decreases ls key
/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list] -/
def hashmap_hash_map_get_mut_in_list_back
@@ -404,11 +371,11 @@ def hashmap_hash_map_get_mut_back
Result.ret { self with hashmap_hash_map_slots := v }
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
-def hashmap_hash_map_remove_from_list_loop_fwd
- (T : Type) (key : Usize) (ls : hashmap_list_t T) : (Result (Option T)) :=
+divergent def hashmap_hash_map_remove_from_list_loop_fwd
+ (T : Type) (key : Usize) (ls : hashmap_list_t T) : Result (Option T) :=
match h: ls with
| hashmap_list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then
let mv_ls :=
mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl)
@@ -418,9 +385,6 @@ def hashmap_hash_map_remove_from_list_loop_fwd
| hashmap_list_t.Nil => Result.fail Error.panic
else hashmap_hash_map_remove_from_list_loop_fwd T key tl
| hashmap_list_t.Nil => Result.ret Option.none
-termination_by hashmap_hash_map_remove_from_list_loop_fwd key ls =>
- hashmap_hash_map_remove_from_list_loop_terminates T key ls
-decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_fwd
@@ -428,13 +392,13 @@ def hashmap_hash_map_remove_from_list_fwd
hashmap_hash_map_remove_from_list_loop_fwd T key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
-def hashmap_hash_map_remove_from_list_loop_back
+divergent def hashmap_hash_map_remove_from_list_loop_back
(T : Type) (key : Usize) (ls : hashmap_list_t T) :
- (Result (hashmap_list_t T))
+ Result (hashmap_list_t T)
:=
match h: ls with
| hashmap_list_t.Cons ckey t tl =>
- if h: ckey = key
+ if ckey = key
then
let mv_ls :=
mem_replace_fwd (hashmap_list_t T) (hashmap_list_t.Cons ckey t tl)
@@ -447,9 +411,6 @@ def hashmap_hash_map_remove_from_list_loop_back
let tl0 ← hashmap_hash_map_remove_from_list_loop_back T key tl
Result.ret (hashmap_list_t.Cons ckey t tl0)
| hashmap_list_t.Nil => Result.ret hashmap_list_t.Nil
-termination_by hashmap_hash_map_remove_from_list_loop_back key ls =>
- hashmap_hash_map_remove_from_list_loop_terminates T key ls
-decreasing_by hashmap_hash_map_remove_from_list_loop_decreases key ls
/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list] -/
def hashmap_hash_map_remove_from_list_back
@@ -528,7 +489,7 @@ def hashmap_test1_fwd : Result Unit :=
hashmap_hash_map_insert_fwd_back U64 hm2 (Usize.ofInt 1056 (by intlit))
(U64.ofInt 256 (by intlit))
let i ← hashmap_hash_map_get_fwd U64 hm3 (Usize.ofInt 128 (by intlit))
- if h: not (i = (U64.ofInt 18 (by intlit)))
+ if not (i = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
@@ -537,7 +498,7 @@ def hashmap_test1_fwd : Result Unit :=
(U64.ofInt 56 (by intlit))
let i0 ←
hashmap_hash_map_get_fwd U64 hm4 (Usize.ofInt 1024 (by intlit))
- if h: not (i0 = (U64.ofInt 56 (by intlit)))
+ if not (i0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
@@ -547,7 +508,7 @@ def hashmap_test1_fwd : Result Unit :=
match h: x with
| Option.none => Result.fail Error.panic
| Option.some x0 =>
- if h: not (x0 = (U64.ofInt 56 (by intlit)))
+ if not (x0 = (U64.ofInt 56 (by intlit)))
then Result.fail Error.panic
else
do
@@ -557,24 +518,27 @@ def hashmap_test1_fwd : Result Unit :=
let i1 ←
hashmap_hash_map_get_fwd U64 hm5
(Usize.ofInt 0 (by intlit))
- if h: not (i1 = (U64.ofInt 42 (by intlit)))
+ if not (i1 = (U64.ofInt 42 (by intlit)))
then Result.fail Error.panic
else
do
let i2 ←
hashmap_hash_map_get_fwd U64 hm5
(Usize.ofInt 128 (by intlit))
- if h: not (i2 = (U64.ofInt 18 (by intlit)))
+ if not (i2 = (U64.ofInt 18 (by intlit)))
then Result.fail Error.panic
else
do
let i3 ←
hashmap_hash_map_get_fwd U64 hm5
(Usize.ofInt 1056 (by intlit))
- if h: not (i3 = (U64.ofInt 256 (by intlit)))
+ if not (i3 = (U64.ofInt 256 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
+/- Unit test for [hashmap_main::hashmap::test1] -/
+#assert (hashmap_test1_fwd == .ret ())
+
/- [hashmap_main::insert_on_disk] -/
def insert_on_disk_fwd
(key : Usize) (value : U64) (st : State) : Result (State × Unit) :=
@@ -588,3 +552,6 @@ def insert_on_disk_fwd
def main_fwd : Result Unit :=
Result.ret ()
+/- Unit test for [hashmap_main::main] -/
+#assert (main_fwd == .ret ())
+
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean b/tests/lean/HashmapMain/Opaque.lean
index d98f431a..bef4f3fb 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Opaque.lean
+++ b/tests/lean/HashmapMain/Opaque.lean
@@ -1,7 +1,8 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap_main]: opaque function definitions
-import Base.Primitives
+import Base
import HashmapMain.Types
+open Primitives
structure OpaqueDefs where
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean b/tests/lean/HashmapMain/Types.lean
index 0509fbbd..858e1c51 100644
--- a/tests/lean/hashmap_on_disk/HashmapMain/Types.lean
+++ b/tests/lean/HashmapMain/Types.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap_main]: type definitions
-import Base.Primitives
+import Base
+open Primitives
/- [hashmap_main::hashmap::List] -/
inductive hashmap_list_t (T : Type) :=
diff --git a/tests/lean/misc-loops/Loops.lean b/tests/lean/Loops.lean
index 60c73776..60c73776 100644
--- a/tests/lean/misc-loops/Loops.lean
+++ b/tests/lean/Loops.lean
diff --git a/tests/lean/misc-loops/Loops/Funs.lean b/tests/lean/Loops/Funs.lean
index fd8d62d7..7d5f7595 100644
--- a/tests/lean/misc-loops/Loops/Funs.lean
+++ b/tests/lean/Loops/Funs.lean
@@ -1,38 +1,33 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [loops]: function definitions
-import Base.Primitives
+import Base
import Loops.Types
-import Loops.Clauses.Clauses
+open Primitives
/- [loops::sum] -/
-def sum_loop_fwd (max : U32) (i : U32) (s : U32) : (Result U32) :=
- if h: i < max
+divergent def sum_loop_fwd (max : U32) (i : U32) (s : U32) : Result U32 :=
+ if i < max
then
do
let s0 ← s + i
let i0 ← i + (U32.ofInt 1 (by intlit))
sum_loop_fwd max i0 s0
else s * (U32.ofInt 2 (by intlit))
-termination_by sum_loop_fwd max i s => sum_loop_terminates max i s
-decreasing_by sum_loop_decreases max i s
/- [loops::sum] -/
def sum_fwd (max : U32) : Result U32 :=
sum_loop_fwd max (U32.ofInt 0 (by intlit)) (U32.ofInt 0 (by intlit))
/- [loops::sum_with_mut_borrows] -/
-def sum_with_mut_borrows_loop_fwd
- (max : U32) (mi : U32) (ms : U32) : (Result U32) :=
- if h: mi < max
+divergent def sum_with_mut_borrows_loop_fwd
+ (max : U32) (mi : U32) (ms : U32) : Result U32 :=
+ if mi < max
then
do
let ms0 ← ms + mi
let mi0 ← mi + (U32.ofInt 1 (by intlit))
sum_with_mut_borrows_loop_fwd max mi0 ms0
else ms * (U32.ofInt 2 (by intlit))
-termination_by sum_with_mut_borrows_loop_fwd max mi ms =>
- sum_with_mut_borrows_loop_terminates max mi ms
-decreasing_by sum_with_mut_borrows_loop_decreases max mi ms
/- [loops::sum_with_mut_borrows] -/
def sum_with_mut_borrows_fwd (max : U32) : Result U32 :=
@@ -40,18 +35,15 @@ def sum_with_mut_borrows_fwd (max : U32) : Result U32 :=
(U32.ofInt 0 (by intlit))
/- [loops::sum_with_shared_borrows] -/
-def sum_with_shared_borrows_loop_fwd
- (max : U32) (i : U32) (s : U32) : (Result U32) :=
- if h: i < max
+divergent def sum_with_shared_borrows_loop_fwd
+ (max : U32) (i : U32) (s : U32) : Result U32 :=
+ if i < max
then
do
let i0 ← i + (U32.ofInt 1 (by intlit))
let s0 ← s + i0
sum_with_shared_borrows_loop_fwd max i0 s0
else s * (U32.ofInt 2 (by intlit))
-termination_by sum_with_shared_borrows_loop_fwd max i s =>
- sum_with_shared_borrows_loop_terminates max i s
-decreasing_by sum_with_shared_borrows_loop_decreases max i s
/- [loops::sum_with_shared_borrows] -/
def sum_with_shared_borrows_fwd (max : U32) : Result U32 :=
@@ -59,63 +51,57 @@ def sum_with_shared_borrows_fwd (max : U32) : Result U32 :=
(U32.ofInt 0 (by intlit))
/- [loops::clear] -/
-def clear_loop_fwd_back (v : Vec U32) (i : Usize) : (Result (Vec U32)) :=
+divergent def clear_loop_fwd_back
+ (v : Vec U32) (i : Usize) : Result (Vec U32) :=
let i0 := vec_len U32 v
- if h: i < i0
+ if i < i0
then
do
let i1 ← i + (Usize.ofInt 1 (by intlit))
let v0 ← vec_index_mut_back U32 v i (U32.ofInt 0 (by intlit))
clear_loop_fwd_back v0 i1
else Result.ret v
-termination_by clear_loop_fwd_back v i => clear_loop_terminates v i
-decreasing_by clear_loop_decreases v i
/- [loops::clear] -/
def clear_fwd_back (v : Vec U32) : Result (Vec U32) :=
clear_loop_fwd_back v (Usize.ofInt 0 (by intlit))
/- [loops::list_mem] -/
-def list_mem_loop_fwd (x : U32) (ls : list_t U32) : (Result Bool) :=
+divergent def list_mem_loop_fwd (x : U32) (ls : list_t U32) : Result Bool :=
match h: ls with
| list_t.Cons y tl =>
- if h: y = x
+ if y = x
then Result.ret true
else list_mem_loop_fwd x tl
| list_t.Nil => Result.ret false
-termination_by list_mem_loop_fwd x ls => list_mem_loop_terminates x ls
-decreasing_by list_mem_loop_decreases x ls
/- [loops::list_mem] -/
def list_mem_fwd (x : U32) (ls : list_t U32) : Result Bool :=
list_mem_loop_fwd x ls
/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_loop_fwd
- (T : Type) (ls : list_t T) (i : U32) : (Result T) :=
+divergent def list_nth_mut_loop_loop_fwd
+ (T : Type) (ls : list_t T) (i : U32) : Result T :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else
do
let i0 ← i - (U32.ofInt 1 (by intlit))
list_nth_mut_loop_loop_fwd T tl i0
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_loop_fwd ls i =>
- list_nth_mut_loop_loop_terminates T ls i
-decreasing_by list_nth_mut_loop_loop_decreases ls i
/- [loops::list_nth_mut_loop] -/
def list_nth_mut_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T :=
list_nth_mut_loop_loop_fwd T ls i
/- [loops::list_nth_mut_loop] -/
-def list_nth_mut_loop_loop_back
- (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : (Result (list_t T)) :=
+divergent def list_nth_mut_loop_loop_back
+ (T : Type) (ls : list_t T) (i : U32) (ret0 : T) : Result (list_t T) :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl)
else
do
@@ -123,9 +109,6 @@ def list_nth_mut_loop_loop_back
let tl0 ← list_nth_mut_loop_loop_back T tl i0 ret0
Result.ret (list_t.Cons x tl0)
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_loop_back ls i ret0 =>
- list_nth_mut_loop_loop_terminates T ls i
-decreasing_by list_nth_mut_loop_loop_decreases ls i
/- [loops::list_nth_mut_loop] -/
def list_nth_mut_loop_back
@@ -133,35 +116,31 @@ def list_nth_mut_loop_back
list_nth_mut_loop_loop_back T ls i ret0
/- [loops::list_nth_shared_loop] -/
-def list_nth_shared_loop_loop_fwd
- (T : Type) (ls : list_t T) (i : U32) : (Result T) :=
+divergent def list_nth_shared_loop_loop_fwd
+ (T : Type) (ls : list_t T) (i : U32) : Result T :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else
do
let i0 ← i - (U32.ofInt 1 (by intlit))
list_nth_shared_loop_loop_fwd T tl i0
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_loop_loop_fwd ls i =>
- list_nth_shared_loop_loop_terminates T ls i
-decreasing_by list_nth_shared_loop_loop_decreases ls i
/- [loops::list_nth_shared_loop] -/
def list_nth_shared_loop_fwd (T : Type) (ls : list_t T) (i : U32) : Result T :=
list_nth_shared_loop_loop_fwd T ls i
/- [loops::get_elem_mut] -/
-def get_elem_mut_loop_fwd (x : Usize) (ls : list_t Usize) : (Result Usize) :=
+divergent def get_elem_mut_loop_fwd
+ (x : Usize) (ls : list_t Usize) : Result Usize :=
match h: ls with
| list_t.Cons y tl =>
- if h: y = x
+ if y = x
then Result.ret y
else get_elem_mut_loop_fwd x tl
| list_t.Nil => Result.fail Error.panic
-termination_by get_elem_mut_loop_fwd x ls => get_elem_mut_loop_terminates x ls
-decreasing_by get_elem_mut_loop_decreases x ls
/- [loops::get_elem_mut] -/
def get_elem_mut_fwd (slots : Vec (list_t Usize)) (x : Usize) : Result Usize :=
@@ -171,20 +150,17 @@ def get_elem_mut_fwd (slots : Vec (list_t Usize)) (x : Usize) : Result Usize :=
get_elem_mut_loop_fwd x l
/- [loops::get_elem_mut] -/
-def get_elem_mut_loop_back
- (x : Usize) (ls : list_t Usize) (ret0 : Usize) : (Result (list_t Usize)) :=
+divergent def get_elem_mut_loop_back
+ (x : Usize) (ls : list_t Usize) (ret0 : Usize) : Result (list_t Usize) :=
match h: ls with
| list_t.Cons y tl =>
- if h: y = x
+ if y = x
then Result.ret (list_t.Cons ret0 tl)
else
do
let tl0 ← get_elem_mut_loop_back x tl ret0
Result.ret (list_t.Cons y tl0)
| list_t.Nil => Result.fail Error.panic
-termination_by get_elem_mut_loop_back x ls ret0 =>
- get_elem_mut_loop_terminates x ls
-decreasing_by get_elem_mut_loop_decreases x ls
/- [loops::get_elem_mut] -/
def get_elem_mut_back
@@ -198,17 +174,14 @@ def get_elem_mut_back
vec_index_mut_back (list_t Usize) slots (Usize.ofInt 0 (by intlit)) l0
/- [loops::get_elem_shared] -/
-def get_elem_shared_loop_fwd
- (x : Usize) (ls : list_t Usize) : (Result Usize) :=
+divergent def get_elem_shared_loop_fwd
+ (x : Usize) (ls : list_t Usize) : Result Usize :=
match h: ls with
| list_t.Cons y tl =>
- if h: y = x
+ if y = x
then Result.ret y
else get_elem_shared_loop_fwd x tl
| list_t.Nil => Result.fail Error.panic
-termination_by get_elem_shared_loop_fwd x ls =>
- get_elem_shared_loop_terminates x ls
-decreasing_by get_elem_shared_loop_decreases x ls
/- [loops::get_elem_shared] -/
def get_elem_shared_fwd
@@ -231,20 +204,17 @@ def id_shared_fwd (T : Type) (ls : list_t T) : Result (list_t T) :=
Result.ret ls
/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_loop_fwd
- (T : Type) (i : U32) (ls : list_t T) : (Result T) :=
+divergent def list_nth_mut_loop_with_id_loop_fwd
+ (T : Type) (i : U32) (ls : list_t T) : Result T :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else
do
let i0 ← i - (U32.ofInt 1 (by intlit))
list_nth_mut_loop_with_id_loop_fwd T i0 tl
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_with_id_loop_fwd i ls =>
- list_nth_mut_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls
/- [loops::list_nth_mut_loop_with_id] -/
def list_nth_mut_loop_with_id_fwd
@@ -254,11 +224,11 @@ def list_nth_mut_loop_with_id_fwd
list_nth_mut_loop_with_id_loop_fwd T i ls0
/- [loops::list_nth_mut_loop_with_id] -/
-def list_nth_mut_loop_with_id_loop_back
- (T : Type) (i : U32) (ls : list_t T) (ret0 : T) : (Result (list_t T)) :=
+divergent def list_nth_mut_loop_with_id_loop_back
+ (T : Type) (i : U32) (ls : list_t T) (ret0 : T) : Result (list_t T) :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl)
else
do
@@ -266,9 +236,6 @@ def list_nth_mut_loop_with_id_loop_back
let tl0 ← list_nth_mut_loop_with_id_loop_back T i0 tl ret0
Result.ret (list_t.Cons x tl0)
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_with_id_loop_back i ls ret0 =>
- list_nth_mut_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_mut_loop_with_id_loop_decreases i ls
/- [loops::list_nth_mut_loop_with_id] -/
def list_nth_mut_loop_with_id_back
@@ -279,20 +246,17 @@ def list_nth_mut_loop_with_id_back
id_mut_back T ls l
/- [loops::list_nth_shared_loop_with_id] -/
-def list_nth_shared_loop_with_id_loop_fwd
- (T : Type) (i : U32) (ls : list_t T) : (Result T) :=
+divergent def list_nth_shared_loop_with_id_loop_fwd
+ (T : Type) (i : U32) (ls : list_t T) : Result T :=
match h: ls with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else
do
let i0 ← i - (U32.ofInt 1 (by intlit))
list_nth_shared_loop_with_id_loop_fwd T i0 tl
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_loop_with_id_loop_fwd i ls =>
- list_nth_shared_loop_with_id_loop_terminates T i ls
-decreasing_by list_nth_shared_loop_with_id_loop_decreases i ls
/- [loops::list_nth_shared_loop_with_id] -/
def list_nth_shared_loop_with_id_fwd
@@ -302,13 +266,13 @@ def list_nth_shared_loop_with_id_fwd
list_nth_shared_loop_with_id_loop_fwd T i ls0
/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_mut_loop_pair_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -316,9 +280,6 @@ def list_nth_mut_loop_pair_loop_fwd
list_nth_mut_loop_pair_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_loop_pair] -/
def list_nth_mut_loop_pair_fwd
@@ -326,15 +287,15 @@ def list_nth_mut_loop_pair_fwd
list_nth_mut_loop_pair_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_back'a
+divergent def list_nth_mut_loop_pair_loop_back'a
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl0)
else
do
@@ -343,9 +304,6 @@ def list_nth_mut_loop_pair_loop_back'a
Result.ret (list_t.Cons x0 tl00)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_back'a ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_loop_pair] -/
def list_nth_mut_loop_pair_back'a
@@ -355,15 +313,15 @@ def list_nth_mut_loop_pair_back'a
list_nth_mut_loop_pair_loop_back'a T ls0 ls1 i ret0
/- [loops::list_nth_mut_loop_pair] -/
-def list_nth_mut_loop_pair_loop_back'b
+divergent def list_nth_mut_loop_pair_loop_back'b
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl1)
else
do
@@ -372,9 +330,6 @@ def list_nth_mut_loop_pair_loop_back'b
Result.ret (list_t.Cons x1 tl10)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_loop_back'b ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_loop_pair] -/
def list_nth_mut_loop_pair_back'b
@@ -384,13 +339,13 @@ def list_nth_mut_loop_pair_back'b
list_nth_mut_loop_pair_loop_back'b T ls0 ls1 i ret0
/- [loops::list_nth_shared_loop_pair] -/
-def list_nth_shared_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_shared_loop_pair_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -398,9 +353,6 @@ def list_nth_shared_loop_pair_loop_fwd
list_nth_shared_loop_pair_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_loop_pair] -/
def list_nth_shared_loop_pair_fwd
@@ -408,13 +360,13 @@ def list_nth_shared_loop_pair_fwd
list_nth_shared_loop_pair_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_mut_loop_pair_merge_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -422,9 +374,6 @@ def list_nth_mut_loop_pair_merge_loop_fwd
list_nth_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_loop_pair_merge] -/
def list_nth_mut_loop_pair_merge_fwd
@@ -432,15 +381,15 @@ def list_nth_mut_loop_pair_merge_fwd
list_nth_mut_loop_pair_merge_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_loop_pair_merge] -/
-def list_nth_mut_loop_pair_merge_loop_back
+divergent def list_nth_mut_loop_pair_merge_loop_back
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : (T × T)) :
- (Result ((list_t T) × (list_t T)))
+ Result ((list_t T) × (list_t T))
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then
let (t, t0) := ret0
Result.ret (list_t.Cons t tl0, list_t.Cons t0 tl1)
@@ -452,9 +401,6 @@ def list_nth_mut_loop_pair_merge_loop_back
Result.ret (list_t.Cons x0 tl00, list_t.Cons x1 tl10)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_loop_pair_merge] -/
def list_nth_mut_loop_pair_merge_back
@@ -464,13 +410,13 @@ def list_nth_mut_loop_pair_merge_back
list_nth_mut_loop_pair_merge_loop_back T ls0 ls1 i ret0
/- [loops::list_nth_shared_loop_pair_merge] -/
-def list_nth_shared_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_shared_loop_pair_merge_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -478,9 +424,6 @@ def list_nth_shared_loop_pair_merge_loop_fwd
list_nth_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_loop_pair_merge] -/
def list_nth_shared_loop_pair_merge_fwd
@@ -488,13 +431,13 @@ def list_nth_shared_loop_pair_merge_fwd
list_nth_shared_loop_pair_merge_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_mut_shared_loop_pair_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -502,9 +445,6 @@ def list_nth_mut_shared_loop_pair_loop_fwd
list_nth_mut_shared_loop_pair_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair] -/
def list_nth_mut_shared_loop_pair_fwd
@@ -512,15 +452,15 @@ def list_nth_mut_shared_loop_pair_fwd
list_nth_mut_shared_loop_pair_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair] -/
-def list_nth_mut_shared_loop_pair_loop_back
+divergent def list_nth_mut_shared_loop_pair_loop_back
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl0)
else
do
@@ -530,9 +470,6 @@ def list_nth_mut_shared_loop_pair_loop_back
Result.ret (list_t.Cons x0 tl00)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_shared_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair] -/
def list_nth_mut_shared_loop_pair_back
@@ -542,13 +479,13 @@ def list_nth_mut_shared_loop_pair_back
list_nth_mut_shared_loop_pair_loop_back T ls0 ls1 i ret0
/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_mut_shared_loop_pair_merge_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -556,9 +493,6 @@ def list_nth_mut_shared_loop_pair_merge_loop_fwd
list_nth_mut_shared_loop_pair_merge_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair_merge] -/
def list_nth_mut_shared_loop_pair_merge_fwd
@@ -566,15 +500,15 @@ def list_nth_mut_shared_loop_pair_merge_fwd
list_nth_mut_shared_loop_pair_merge_loop_fwd T ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair_merge] -/
-def list_nth_mut_shared_loop_pair_merge_loop_back
+divergent def list_nth_mut_shared_loop_pair_merge_loop_back
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl0)
else
do
@@ -584,9 +518,6 @@ def list_nth_mut_shared_loop_pair_merge_loop_back
Result.ret (list_t.Cons x0 tl00)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_mut_shared_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_mut_shared_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_mut_shared_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_mut_shared_loop_pair_merge] -/
def list_nth_mut_shared_loop_pair_merge_back
@@ -596,13 +527,13 @@ def list_nth_mut_shared_loop_pair_merge_back
list_nth_mut_shared_loop_pair_merge_loop_back T ls0 ls1 i ret0
/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_shared_mut_loop_pair_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -610,9 +541,6 @@ def list_nth_shared_mut_loop_pair_loop_fwd
list_nth_shared_mut_loop_pair_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_loop_fwd ls0 ls1 i =>
- list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair] -/
def list_nth_shared_mut_loop_pair_fwd
@@ -620,15 +548,15 @@ def list_nth_shared_mut_loop_pair_fwd
list_nth_shared_mut_loop_pair_loop_fwd T ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair] -/
-def list_nth_shared_mut_loop_pair_loop_back
+divergent def list_nth_shared_mut_loop_pair_loop_back
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl1)
else
do
@@ -638,9 +566,6 @@ def list_nth_shared_mut_loop_pair_loop_back
Result.ret (list_t.Cons x1 tl10)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_loop_back ls0 ls1 i ret0 =>
- list_nth_shared_mut_loop_pair_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair] -/
def list_nth_shared_mut_loop_pair_back
@@ -650,13 +575,13 @@ def list_nth_shared_mut_loop_pair_back
list_nth_shared_mut_loop_pair_loop_back T ls0 ls1 i ret0
/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_loop_fwd
- (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : (Result (T × T)) :=
+divergent def list_nth_shared_mut_loop_pair_merge_loop_fwd
+ (T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) : Result (T × T) :=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (x0, x1)
else
do
@@ -664,9 +589,6 @@ def list_nth_shared_mut_loop_pair_merge_loop_fwd
list_nth_shared_mut_loop_pair_merge_loop_fwd T tl0 tl1 i0
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_merge_loop_fwd ls0 ls1 i =>
- list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair_merge] -/
def list_nth_shared_mut_loop_pair_merge_fwd
@@ -674,15 +596,15 @@ def list_nth_shared_mut_loop_pair_merge_fwd
list_nth_shared_mut_loop_pair_merge_loop_fwd T ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair_merge] -/
-def list_nth_shared_mut_loop_pair_merge_loop_back
+divergent def list_nth_shared_mut_loop_pair_merge_loop_back
(T : Type) (ls0 : list_t T) (ls1 : list_t T) (i : U32) (ret0 : T) :
- (Result (list_t T))
+ Result (list_t T)
:=
match h: ls0 with
| list_t.Cons x0 tl0 =>
match h: ls1 with
| list_t.Cons x1 tl1 =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl1)
else
do
@@ -692,9 +614,6 @@ def list_nth_shared_mut_loop_pair_merge_loop_back
Result.ret (list_t.Cons x1 tl10)
| list_t.Nil => Result.fail Error.panic
| list_t.Nil => Result.fail Error.panic
-termination_by list_nth_shared_mut_loop_pair_merge_loop_back ls0 ls1 i ret0 =>
- list_nth_shared_mut_loop_pair_merge_loop_terminates T ls0 ls1 i
-decreasing_by list_nth_shared_mut_loop_pair_merge_loop_decreases ls0 ls1 i
/- [loops::list_nth_shared_mut_loop_pair_merge] -/
def list_nth_shared_mut_loop_pair_merge_back
diff --git a/tests/lean/misc-loops/Loops/Types.lean b/tests/lean/Loops/Types.lean
index ca43f4c8..e14f9766 100644
--- a/tests/lean/misc-loops/Loops/Types.lean
+++ b/tests/lean/Loops/Types.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [loops]: type definitions
-import Base.Primitives
+import Base
+open Primitives
/- [loops::List] -/
inductive list_t (T : Type) :=
diff --git a/tests/lean/Makefile b/tests/lean/Makefile
index ed3b3e3b..3ccfbec2 100644
--- a/tests/lean/Makefile
+++ b/tests/lean/Makefile
@@ -1,40 +1,35 @@
ALL_DIRS ?= $(filter-out %~ lean-toolchain% Makefile%, $(wildcard *))
+# TODO: remove
UPDATE_DIRS = $(addprefix update-,$(ALL_DIRS))
+# TODO: remove
VERIFY_DIRS = $(addprefix verif-,$(ALL_DIRS))
+# TODO: remove
CLEAN_DIRS = $(addprefix clean-,$(ALL_DIRS))
+# TODO: remove
COPY_LEAN_TOOLCHAIN = $(addprefix copy-lean-toolchain-,$(ALL_DIRS))
.PHONY: all
all: prepare-projects verify
.PHONY: prepare-projects
-prepare-projects: $(COPY_LEAN_TOOLCHAIN)
+prepare-projects: copy-lean-toolchain
.PHONY: prepare-projects
-copy-lean-toolchain-%:
- cp lean-toolchain $*
+copy-lean-toolchain:
+ cp ../../backends/lean/lean-toolchain .
.PHONY: update
-update: $(UPDATE_DIRS)
-
-.PHONY: update-%
-update-%:
- cd $* && lake update
+update:
+ lake update
.PHONY: verify
-verify: $(VERIFY_DIRS)
-
-.PHONY: verif-%
-verif-%:
- cd $* && lake build
+verify:
+ lake build
.PHONY: clean
-clean: $(CLEAN_DIRS)
-
-.PHONY: clean-%
-clean-%:
- cd $* && lake clean
+clean:
+ lake clean
diff --git a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean b/tests/lean/NoNestedBorrows.lean
index 12c7d8f7..67ef4b20 100644
--- a/tests/lean/misc-no_nested_borrows/NoNestedBorrows.lean
+++ b/tests/lean/NoNestedBorrows.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [no_nested_borrows]
-import Base.Primitives
+import Base
+open Primitives
/- [no_nested_borrows::Pair] -/
structure pair_t (T1 T2 : Type) where
@@ -72,7 +73,7 @@ def test2_fwd : Result Unit :=
/- [no_nested_borrows::get_max] -/
def get_max_fwd (x : U32) (y : U32) : Result U32 :=
- if h: x >= y
+ if x >= y
then Result.ret x
else Result.ret y
@@ -82,7 +83,7 @@ def test3_fwd : Result Unit :=
let x ← get_max_fwd (U32.ofInt 4 (by intlit)) (U32.ofInt 3 (by intlit))
let y ← get_max_fwd (U32.ofInt 10 (by intlit)) (U32.ofInt 11 (by intlit))
let z ← x + y
- if h: not (z = (U32.ofInt 15 (by intlit)))
+ if not (z = (U32.ofInt 15 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -93,7 +94,7 @@ def test3_fwd : Result Unit :=
def test_neg1_fwd : Result Unit :=
do
let y ← - (I32.ofInt 3 (by intlit))
- if h: not (y = (I32.ofInt (-(3:Int)) (by intlit)))
+ if not (y = (I32.ofInt (-(3:Int)) (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -102,7 +103,7 @@ def test_neg1_fwd : Result Unit :=
/- [no_nested_borrows::refs_test1] -/
def refs_test1_fwd : Result Unit :=
- if h: not ((I32.ofInt 1 (by intlit)) = (I32.ofInt 1 (by intlit)))
+ if not ((I32.ofInt 1 (by intlit)) = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -111,16 +112,16 @@ def refs_test1_fwd : Result Unit :=
/- [no_nested_borrows::refs_test2] -/
def refs_test2_fwd : Result Unit :=
- if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
+ if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
then Result.fail Error.panic
else
- if h: not ((I32.ofInt 0 (by intlit)) = (I32.ofInt 0 (by intlit)))
+ if not ((I32.ofInt 0 (by intlit)) = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else
- if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
+ if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
then Result.fail Error.panic
else
- if h: not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
+ if not ((I32.ofInt 2 (by intlit)) = (I32.ofInt 2 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -138,7 +139,7 @@ def test_list1_fwd : Result Unit :=
def test_box1_fwd : Result Unit :=
let b := (I32.ofInt 1 (by intlit))
let x := b
- if h: not (x = (I32.ofInt 1 (by intlit)))
+ if not (x = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -151,13 +152,13 @@ def copy_int_fwd (x : I32) : Result I32 :=
/- [no_nested_borrows::test_unreachable] -/
def test_unreachable_fwd (b : Bool) : Result Unit :=
- if h: b
+ if b
then Result.fail Error.panic
else Result.ret ()
/- [no_nested_borrows::test_panic] -/
def test_panic_fwd (b : Bool) : Result Unit :=
- if h: b
+ if b
then Result.fail Error.panic
else Result.ret ()
@@ -165,7 +166,7 @@ def test_panic_fwd (b : Bool) : Result Unit :=
def test_copy_int_fwd : Result Unit :=
do
let y ← copy_int_fwd (I32.ofInt 0 (by intlit))
- if h: not ((I32.ofInt 0 (by intlit)) = y)
+ if not ((I32.ofInt 0 (by intlit)) = y)
then Result.fail Error.panic
else Result.ret ()
@@ -183,7 +184,7 @@ def test_is_cons_fwd : Result Unit :=
do
let l := list_t.Nil
let b ← is_cons_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l)
- if h: not b
+ if not b
then Result.fail Error.panic
else Result.ret ()
@@ -202,7 +203,7 @@ def test_split_list_fwd : Result Unit :=
let l := list_t.Nil
let p ← split_list_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l)
let (hd, _) := p
- if h: not (hd = (I32.ofInt 0 (by intlit)))
+ if not (hd = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -211,14 +212,14 @@ def test_split_list_fwd : Result Unit :=
/- [no_nested_borrows::choose] -/
def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T :=
- if h: b
+ if b
then Result.ret x
else Result.ret y
/- [no_nested_borrows::choose] -/
def choose_back
(T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) :=
- if h: b
+ if b
then Result.ret (ret0, y)
else Result.ret (x, ret0)
@@ -228,17 +229,17 @@ def choose_test_fwd : Result Unit :=
let z ←
choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit))
let z0 ← z + (I32.ofInt 1 (by intlit))
- if h: not (z0 = (I32.ofInt 1 (by intlit)))
+ if not (z0 = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let (x, y) ←
choose_back I32 true (I32.ofInt 0 (by intlit))
(I32.ofInt 0 (by intlit)) z0
- if h: not (x = (I32.ofInt 1 (by intlit)))
+ if not (x = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
- if h: not (y = (I32.ofInt 0 (by intlit)))
+ if not (y = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -264,7 +265,7 @@ inductive tree_t (T : Type) :=
end
/- [no_nested_borrows::list_length] -/
-def list_length_fwd (T : Type) (l : list_t T) : Result U32 :=
+divergent def list_length_fwd (T : Type) (l : list_t T) : Result U32 :=
match h: l with
| list_t.Cons t l1 =>
do
@@ -273,10 +274,11 @@ def list_length_fwd (T : Type) (l : list_t T) : Result U32 :=
| list_t.Nil => Result.ret (U32.ofInt 0 (by intlit))
/- [no_nested_borrows::list_nth_shared] -/
-def list_nth_shared_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
+divergent def list_nth_shared_fwd
+ (T : Type) (l : list_t T) (i : U32) : Result T :=
match h: l with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else
do
@@ -285,10 +287,11 @@ def list_nth_shared_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
| list_t.Nil => Result.fail Error.panic
/- [no_nested_borrows::list_nth_mut] -/
-def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
+divergent def list_nth_mut_fwd
+ (T : Type) (l : list_t T) (i : U32) : Result T :=
match h: l with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else do
let i0 ← i - (U32.ofInt 1 (by intlit))
@@ -296,11 +299,11 @@ def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
| list_t.Nil => Result.fail Error.panic
/- [no_nested_borrows::list_nth_mut] -/
-def list_nth_mut_back
+divergent def list_nth_mut_back
(T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) :=
match h: l with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl)
else
do
@@ -310,7 +313,7 @@ def list_nth_mut_back
| list_t.Nil => Result.fail Error.panic
/- [no_nested_borrows::list_rev_aux] -/
-def list_rev_aux_fwd
+divergent def list_rev_aux_fwd
(T : Type) (li : list_t T) (lo : list_t T) : Result (list_t T) :=
match h: li with
| list_t.Cons hd tl => list_rev_aux_fwd T tl (list_t.Cons hd lo)
@@ -328,28 +331,28 @@ def test_list_functions_fwd : Result Unit :=
let l0 := list_t.Cons (I32.ofInt 2 (by intlit)) l
let l1 := list_t.Cons (I32.ofInt 1 (by intlit)) l0
let i ← list_length_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1)
- if h: not (i = (U32.ofInt 3 (by intlit)))
+ if not (i = (U32.ofInt 3 (by intlit)))
then Result.fail Error.panic
else
do
let i0 ←
list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit)) l1)
(U32.ofInt 0 (by intlit))
- if h: not (i0 = (I32.ofInt 0 (by intlit)))
+ if not (i0 = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else
do
let i1 ←
list_nth_shared_fwd I32 (list_t.Cons (I32.ofInt 0 (by intlit))
l1) (U32.ofInt 1 (by intlit))
- if h: not (i1 = (I32.ofInt 1 (by intlit)))
+ if not (i1 = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let i2 ←
list_nth_shared_fwd I32 (list_t.Cons
(I32.ofInt 0 (by intlit)) l1) (U32.ofInt 2 (by intlit))
- if h: not (i2 = (I32.ofInt 2 (by intlit)))
+ if not (i2 = (I32.ofInt 2 (by intlit)))
then Result.fail Error.panic
else
do
@@ -359,20 +362,20 @@ def test_list_functions_fwd : Result Unit :=
(I32.ofInt 3 (by intlit))
let i3 ←
list_nth_shared_fwd I32 ls (U32.ofInt 0 (by intlit))
- if h: not (i3 = (I32.ofInt 0 (by intlit)))
+ if not (i3 = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else
do
let i4 ←
list_nth_shared_fwd I32 ls (U32.ofInt 1 (by intlit))
- if h: not (i4 = (I32.ofInt 3 (by intlit)))
+ if not (i4 = (I32.ofInt 3 (by intlit)))
then Result.fail Error.panic
else
do
let i5 ←
list_nth_shared_fwd I32 ls
(U32.ofInt 2 (by intlit))
- if h: not (i5 = (I32.ofInt 2 (by intlit)))
+ if not (i5 = (I32.ofInt 2 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -477,24 +480,24 @@ def test_constants_fwd : Result Unit :=
do
let swt ← new_tuple1_fwd
let (i, _) := swt.struct_with_tuple_p
- if h: not (i = (U32.ofInt 1 (by intlit)))
+ if not (i = (U32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let swt0 ← new_tuple2_fwd
let (i0, _) := swt0.struct_with_tuple_p
- if h: not (i0 = (I16.ofInt 1 (by intlit)))
+ if not (i0 = (I16.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let swt1 ← new_tuple3_fwd
let (i1, _) := swt1.struct_with_tuple_p
- if h: not (i1 = (U64.ofInt 1 (by intlit)))
+ if not (i1 = (U64.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let swp ← new_pair1_fwd
- if h: not (swp.struct_with_pair_p.pair_x =
+ if not (swp.struct_with_pair_p.pair_x =
(U32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -512,13 +515,13 @@ def test_weird_borrows1_fwd : Result Unit :=
/- [no_nested_borrows::test_mem_replace] -/
def test_mem_replace_fwd_back (px : U32) : Result U32 :=
let y := mem_replace_fwd U32 px (U32.ofInt 1 (by intlit))
- if h: not (y = (U32.ofInt 0 (by intlit)))
+ if not (y = (U32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else Result.ret (U32.ofInt 2 (by intlit))
/- [no_nested_borrows::test_shared_borrow_bool1] -/
def test_shared_borrow_bool1_fwd (b : Bool) : Result U32 :=
- if h: b
+ if b
then Result.ret (U32.ofInt 0 (by intlit))
else Result.ret (U32.ofInt 1 (by intlit))
diff --git a/tests/lean/misc-paper/Paper.lean b/tests/lean/Paper.lean
index 0b16fb8e..9019b694 100644
--- a/tests/lean/misc-paper/Paper.lean
+++ b/tests/lean/Paper.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [paper]
-import Base.Primitives
+import Base
+open Primitives
/- [paper::ref_incr] -/
def ref_incr_fwd_back (x : I32) : Result I32 :=
@@ -10,7 +11,7 @@ def ref_incr_fwd_back (x : I32) : Result I32 :=
def test_incr_fwd : Result Unit :=
do
let x ← ref_incr_fwd_back (I32.ofInt 0 (by intlit))
- if h: not (x = (I32.ofInt 1 (by intlit)))
+ if not (x = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -19,14 +20,14 @@ def test_incr_fwd : Result Unit :=
/- [paper::choose] -/
def choose_fwd (T : Type) (b : Bool) (x : T) (y : T) : Result T :=
- if h: b
+ if b
then Result.ret x
else Result.ret y
/- [paper::choose] -/
def choose_back
(T : Type) (b : Bool) (x : T) (y : T) (ret0 : T) : Result (T × T) :=
- if h: b
+ if b
then Result.ret (ret0, y)
else Result.ret (x, ret0)
@@ -36,17 +37,17 @@ def test_choose_fwd : Result Unit :=
let z ←
choose_fwd I32 true (I32.ofInt 0 (by intlit)) (I32.ofInt 0 (by intlit))
let z0 ← z + (I32.ofInt 1 (by intlit))
- if h: not (z0 = (I32.ofInt 1 (by intlit)))
+ if not (z0 = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
do
let (x, y) ←
choose_back I32 true (I32.ofInt 0 (by intlit))
(I32.ofInt 0 (by intlit)) z0
- if h: not (x = (I32.ofInt 1 (by intlit)))
+ if not (x = (I32.ofInt 1 (by intlit)))
then Result.fail Error.panic
else
- if h: not (y = (I32.ofInt 0 (by intlit)))
+ if not (y = (I32.ofInt 0 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
@@ -59,10 +60,11 @@ inductive list_t (T : Type) :=
| Nil : list_t T
/- [paper::list_nth_mut] -/
-def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
+divergent def list_nth_mut_fwd
+ (T : Type) (l : list_t T) (i : U32) : Result T :=
match h: l with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret x
else do
let i0 ← i - (U32.ofInt 1 (by intlit))
@@ -70,11 +72,11 @@ def list_nth_mut_fwd (T : Type) (l : list_t T) (i : U32) : Result T :=
| list_t.Nil => Result.fail Error.panic
/- [paper::list_nth_mut] -/
-def list_nth_mut_back
+divergent def list_nth_mut_back
(T : Type) (l : list_t T) (i : U32) (ret0 : T) : Result (list_t T) :=
match h: l with
| list_t.Cons x tl =>
- if h: i = (U32.ofInt 0 (by intlit))
+ if i = (U32.ofInt 0 (by intlit))
then Result.ret (list_t.Cons ret0 tl)
else
do
@@ -84,7 +86,7 @@ def list_nth_mut_back
| list_t.Nil => Result.fail Error.panic
/- [paper::sum] -/
-def sum_fwd (l : list_t I32) : Result I32 :=
+divergent def sum_fwd (l : list_t I32) : Result I32 :=
match h: l with
| list_t.Cons x tl => do
let i ← sum_fwd tl
@@ -105,7 +107,7 @@ def test_nth_fwd : Result Unit :=
list_nth_mut_back I32 (list_t.Cons (I32.ofInt 1 (by intlit)) l1)
(U32.ofInt 2 (by intlit)) x0
let i ← sum_fwd l2
- if h: not (i = (I32.ofInt 7 (by intlit)))
+ if not (i = (I32.ofInt 7 (by intlit)))
then Result.fail Error.panic
else Result.ret ()
diff --git a/tests/lean/misc-polonius_list/PoloniusList.lean b/tests/lean/PoloniusList.lean
index 79696996..671f54ea 100644
--- a/tests/lean/misc-polonius_list/PoloniusList.lean
+++ b/tests/lean/PoloniusList.lean
@@ -1,6 +1,7 @@
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [polonius_list]
-import Base.Primitives
+import Base
+open Primitives
/- [polonius_list::List] -/
inductive list_t (T : Type) :=
@@ -8,20 +9,21 @@ inductive list_t (T : Type) :=
| Nil : list_t T
/- [polonius_list::get_list_at_x] -/
-def get_list_at_x_fwd (ls : list_t U32) (x : U32) : Result (list_t U32) :=
+divergent def get_list_at_x_fwd
+ (ls : list_t U32) (x : U32) : Result (list_t U32) :=
match h: ls with
| list_t.Cons hd tl =>
- if h: hd = x
+ if hd = x
then Result.ret (list_t.Cons hd tl)
else get_list_at_x_fwd tl x
| list_t.Nil => Result.ret list_t.Nil
/- [polonius_list::get_list_at_x] -/
-def get_list_at_x_back
+divergent def get_list_at_x_back
(ls : list_t U32) (x : U32) (ret0 : list_t U32) : Result (list_t U32) :=
match h: ls with
| list_t.Cons hd tl =>
- if h: hd = x
+ if hd = x
then Result.ret ret0
else
do
diff --git a/tests/lean/Tests.lean b/tests/lean/Tests.lean
new file mode 100644
index 00000000..9b12270e
--- /dev/null
+++ b/tests/lean/Tests.lean
@@ -0,0 +1,9 @@
+import BetreeMain
+import Constants
+import External
+import Hashmap
+import HashmapMain
+import Loops
+import NoNestedBorrows
+import Paper
+import PoloniusList
diff --git a/tests/lean/hashmap/Base/Primitives.lean b/tests/lean/hashmap/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/hashmap/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean b/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean
deleted file mode 100644
index 197b0a6a..00000000
--- a/tests/lean/hashmap/Hashmap/Clauses/Clauses.lean
+++ /dev/null
@@ -1,107 +0,0 @@
--- [hashmap]: templates for the decreases clauses
-import Base.Primitives
-import Hashmap.Types
-
-/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/
-@[simp]
-def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T))
- (n : Usize) :=
- (slots, n)
-
-/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
-syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::clear]: termination measure -/
-@[simp]
-def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T))
- (i : Usize) :=
- (slots, i)
-
-/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/
-syntax "hash_map_clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/
-@[simp]
-def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
- (value : T) (ls : list_t T) :=
- (key, value, ls)
-
-/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/
-syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/
-@[simp]
-def hash_map_move_elements_from_list_loop_terminates (T : Type)
- (ntable : hash_map_t T) (ls : list_t T) :=
- (ntable, ls)
-
-/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/
-syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::move_elements]: termination measure -/
-@[simp]
-def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T)
- (slots : Vec (list_t T)) (i : Usize) :=
- (ntable, slots, i)
-
-/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
-syntax "hash_map_move_elements_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
-@[simp]
-def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
-syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/
-@[simp]
-def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/
-syntax "hash_map_get_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
-@[simp]
-def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T)
- (key : Usize) :=
- (ls, key)
-
-/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
-syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/
-@[simp]
-def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/
-syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
diff --git a/tests/lean/hashmap/Hashmap/Clauses/Template.lean b/tests/lean/hashmap/Hashmap/Clauses/Template.lean
deleted file mode 100644
index 560592c8..00000000
--- a/tests/lean/hashmap/Hashmap/Clauses/Template.lean
+++ /dev/null
@@ -1,108 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [hashmap]: templates for the decreases clauses
-import Base.Primitives
-import Hashmap.Types
-
-/- [hashmap::HashMap::{0}::allocate_slots]: termination measure -/
-@[simp]
-def hash_map_allocate_slots_loop_terminates (T : Type) (slots : Vec (list_t T))
- (n : Usize) :=
- (slots, n)
-
-/- [hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
-syntax "hash_map_allocate_slots_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_allocate_slots_loop_decreases $slots $n) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::clear]: termination measure -/
-@[simp]
-def hash_map_clear_loop_terminates (T : Type) (slots : Vec (list_t T))
- (i : Usize) :=
- (slots, i)
-
-/- [hashmap::HashMap::{0}::clear]: decreases_by tactic -/
-syntax "hash_map_clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::insert_in_list]: termination measure -/
-@[simp]
-def hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
- (value : T) (ls : list_t T) :=
- (key, value, ls)
-
-/- [hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/
-syntax "hash_map_insert_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_insert_in_list_loop_decreases $key $value $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/
-@[simp]
-def hash_map_move_elements_from_list_loop_terminates (T : Type)
- (ntable : hash_map_t T) (ls : list_t T) :=
- (ntable, ls)
-
-/- [hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/
-syntax "hash_map_move_elements_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_move_elements_from_list_loop_decreases $ntable $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::move_elements]: termination measure -/
-@[simp]
-def hash_map_move_elements_loop_terminates (T : Type) (ntable : hash_map_t T)
- (slots : Vec (list_t T)) (i : Usize) :=
- (ntable, slots, i)
-
-/- [hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
-syntax "hash_map_move_elements_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_move_elements_loop_decreases $ntable $slots $i) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
-@[simp]
-def hash_map_contains_key_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
-syntax "hash_map_contains_key_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_contains_key_in_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::get_in_list]: termination measure -/
-@[simp]
-def hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/
-syntax "hash_map_get_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
-@[simp]
-def hash_map_get_mut_in_list_loop_terminates (T : Type) (ls : list_t T)
- (key : Usize) :=
- (ls, key)
-
-/- [hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
-syntax "hash_map_get_mut_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_get_mut_in_list_loop_decreases $ls $key) =>`(tactic| sorry)
-
-/- [hashmap::HashMap::{0}::remove_from_list]: termination measure -/
-@[simp]
-def hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
- (ls : list_t T) :=
- (key, ls)
-
-/- [hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/
-syntax "hash_map_remove_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hash_map_remove_from_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
diff --git a/tests/lean/hashmap/lakefile.lean b/tests/lean/hashmap/lakefile.lean
deleted file mode 100644
index 713785f6..00000000
--- a/tests/lean/hashmap/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «hashmap» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «Hashmap» {}
diff --git a/tests/lean/hashmap/lean-toolchain b/tests/lean/hashmap/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/hashmap/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/hashmap_on_disk/.gitignore b/tests/lean/hashmap_on_disk/.gitignore
deleted file mode 100644
index a1735e7c..00000000
--- a/tests/lean/hashmap_on_disk/.gitignore
+++ /dev/null
@@ -1,5 +0,0 @@
-/build
-/lean_packages/*
-!/lean_packages/manifest.json
-/build
-/lake-packages/*
diff --git a/tests/lean/hashmap_on_disk/Base/Primitives.lean b/tests/lean/hashmap_on_disk/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/hashmap_on_disk/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean
deleted file mode 100644
index a4dc996a..00000000
--- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Clauses.lean
+++ /dev/null
@@ -1,110 +0,0 @@
-import Base.Primitives
-import HashmapMain.Types
-
-/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/
-@[simp]
-def hashmap_hash_map_allocate_slots_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (n : Usize) :=
- (slots, n)
-
-/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
-syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/
-@[simp]
-def hashmap_hash_map_clear_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (i : Usize) :=
- (slots, i)
-
-/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/
-syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
- (value : T) (ls : hashmap_list_t T) :=
- (key, value, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) :=
- (ntable, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable
-$ls) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/
-@[simp]
-def hashmap_hash_map_move_elements_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize)
- :=
- (ntable, slots, i)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
-syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type)
- (key : Usize) (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type)
- (ls : hashmap_list_t T) (key : Usize) :=
- (ls, key)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
- (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean b/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean
deleted file mode 100644
index 33802597..00000000
--- a/tests/lean/hashmap_on_disk/HashmapMain/Clauses/Template.lean
+++ /dev/null
@@ -1,112 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [hashmap_main]: templates for the decreases clauses
-import Base.Primitives
-import HashmapMain.Types
-
-/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: termination measure -/
-@[simp]
-def hashmap_hash_map_allocate_slots_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (n : Usize) :=
- (slots, n)
-
-/- [hashmap_main::hashmap::HashMap::{0}::allocate_slots]: decreases_by tactic -/
-syntax "hashmap_hash_map_allocate_slots_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_allocate_slots_loop_decreases $slots $n) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::clear]: termination measure -/
-@[simp]
-def hashmap_hash_map_clear_loop_terminates (T : Type)
- (slots : Vec (hashmap_list_t T)) (i : Usize) :=
- (slots, i)
-
-/- [hashmap_main::hashmap::HashMap::{0}::clear]: decreases_by tactic -/
-syntax "hashmap_hash_map_clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_clear_loop_decreases $slots $i) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_insert_in_list_loop_terminates (T : Type) (key : Usize)
- (value : T) (ls : hashmap_list_t T) :=
- (key, value, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::insert_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_insert_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_insert_in_list_loop_decreases $key $value $ls) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_move_elements_from_list_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (ls : hashmap_list_t T) :=
- (ntable, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements_from_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_move_elements_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_move_elements_from_list_loop_decreases $ntable
-$ls) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: termination measure -/
-@[simp]
-def hashmap_hash_map_move_elements_loop_terminates (T : Type)
- (ntable : hashmap_hash_map_t T) (slots : Vec (hashmap_list_t T)) (i : Usize)
- :=
- (ntable, slots, i)
-
-/- [hashmap_main::hashmap::HashMap::{0}::move_elements]: decreases_by tactic -/
-syntax "hashmap_hash_map_move_elements_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_move_elements_loop_decreases $ntable $slots $i) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_contains_key_in_list_loop_terminates (T : Type)
- (key : Usize) (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::contains_key_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_contains_key_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_contains_key_in_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_get_in_list_loop_terminates (T : Type) (key : Usize)
- (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_get_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_get_in_list_loop_decreases $key $ls) =>`(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_get_mut_in_list_loop_terminates (T : Type)
- (ls : hashmap_list_t T) (key : Usize) :=
- (ls, key)
-
-/- [hashmap_main::hashmap::HashMap::{0}::get_mut_in_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_get_mut_in_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_get_mut_in_list_loop_decreases $ls $key) =>
- `(tactic| sorry)
-
-/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: termination measure -/
-@[simp]
-def hashmap_hash_map_remove_from_list_loop_terminates (T : Type) (key : Usize)
- (ls : hashmap_list_t T) :=
- (key, ls)
-
-/- [hashmap_main::hashmap::HashMap::{0}::remove_from_list]: decreases_by tactic -/
-syntax "hashmap_hash_map_remove_from_list_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| hashmap_hash_map_remove_from_list_loop_decreases $key $ls) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean b/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean
deleted file mode 100644
index a5103acc..00000000
--- a/tests/lean/hashmap_on_disk/HashmapMain/ExternalFuns.lean
+++ /dev/null
@@ -1,5 +0,0 @@
-import Base.Primitives
-import HashmapMain.Types
-import HashmapMain.Opaque
-
-def opaque_defs : OpaqueDefs := by sorry
diff --git a/tests/lean/hashmap_on_disk/lake-manifest.json b/tests/lean/hashmap_on_disk/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/hashmap_on_disk/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/hashmap_on_disk/lakefile.lean b/tests/lean/hashmap_on_disk/lakefile.lean
deleted file mode 100644
index 70daf427..00000000
--- a/tests/lean/hashmap_on_disk/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «hashmap_main» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «HashmapMain» {}
diff --git a/tests/lean/hashmap_on_disk/lean-toolchain b/tests/lean/hashmap_on_disk/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/hashmap_on_disk/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/hashmap/lake-manifest.json b/tests/lean/lake-manifest.json
index 88e446e5..1397c6f0 100644
--- a/tests/lean/hashmap/lake-manifest.json
+++ b/tests/lean/lake-manifest.json
@@ -1,27 +1,34 @@
{"version": 4,
- "packagesDir": "./lake-packages",
+ "packagesDir": "lake-packages",
"packages":
[{"git":
+ {"url": "https://github.com/EdAyers/ProofWidgets4",
+ "subDir?": null,
+ "rev": "c43db94a8f495dad37829e9d7ad65483d68c86b8",
+ "name": "proofwidgets",
+ "inputRev?": "v0.0.11"}},
+ {"path": {"name": "Base", "dir": "./../../backends/lean"}},
+ {"git":
{"url": "https://github.com/leanprover-community/mathlib4.git",
"subDir?": null,
- "rev": "1c5ed7840906e29e1f8ca7dbf088cf155e5397e9",
+ "rev": "cb02d09e1d5611d22efc2b406e7893f246b2f51e",
"name": "mathlib",
"inputRev?": null}},
{"git":
{"url": "https://github.com/gebner/quote4",
"subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
+ "rev": "c71f94e34c1cda52eef5c93dc9da409ab2727420",
"name": "Qq",
"inputRev?": "master"}},
{"git":
{"url": "https://github.com/JLimperg/aesop",
"subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
+ "rev": "ca73109cc40837bc61df8024c9016da4b4f99d4c",
"name": "aesop",
"inputRev?": "master"}},
{"git":
{"url": "https://github.com/leanprover/std4",
"subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
+ "rev": "e68aa8f5fe47aad78987df45f99094afbcb5e936",
"name": "std",
"inputRev?": "main"}}]}
diff --git a/tests/lean/misc-external/lakefile.lean b/tests/lean/lakefile.lean
index 6cc4aae4..da4293dd 100644
--- a/tests/lean/misc-external/lakefile.lean
+++ b/tests/lean/lakefile.lean
@@ -4,9 +4,11 @@ open Lake DSL
require mathlib from git
"https://github.com/leanprover-community/mathlib4.git"
-package «external» {}
+require Base from "../../backends/lean"
-lean_lib «Base» {}
+package «tests» {}
@[default_target]
-lean_lib «External» {}
+lean_lib «Tests» {}
+
+lean_lib hashmap
diff --git a/tests/lean/lean-toolchain b/tests/lean/lean-toolchain
index bbf57f10..42e7d786 100644
--- a/tests/lean/lean-toolchain
+++ b/tests/lean/lean-toolchain
@@ -1 +1 @@
-leanprover/lean4:nightly-2023-01-21
+leanprover/lean4:nightly-2023-06-20 \ No newline at end of file
diff --git a/tests/lean/misc-constants/Base/Primitives.lean b/tests/lean/misc-constants/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-constants/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-constants/lake-manifest.json b/tests/lean/misc-constants/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-constants/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-constants/lakefile.lean b/tests/lean/misc-constants/lakefile.lean
deleted file mode 100644
index 01aacb90..00000000
--- a/tests/lean/misc-constants/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «constants» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «Constants» {}
diff --git a/tests/lean/misc-constants/lean-toolchain b/tests/lean/misc-constants/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-constants/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/misc-external/Base/Primitives.lean b/tests/lean/misc-external/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-external/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-external/External/ExternalFuns.lean b/tests/lean/misc-external/External/ExternalFuns.lean
deleted file mode 100644
index 6bd4f4a9..00000000
--- a/tests/lean/misc-external/External/ExternalFuns.lean
+++ /dev/null
@@ -1,5 +0,0 @@
-import Base.Primitives
-import External.Types
-import External.Opaque
-
-def opaque_defs : OpaqueDefs := sorry
diff --git a/tests/lean/misc-external/lake-manifest.json b/tests/lean/misc-external/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-external/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-external/lean-toolchain b/tests/lean/misc-external/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-external/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/misc-loops/Base/Primitives.lean b/tests/lean/misc-loops/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-loops/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean b/tests/lean/misc-loops/Loops/Clauses/Clauses.lean
deleted file mode 100644
index 89a7ce34..00000000
--- a/tests/lean/misc-loops/Loops/Clauses/Clauses.lean
+++ /dev/null
@@ -1,205 +0,0 @@
--- [loops]: decreases clauses
-import Base.Primitives
-import Loops.Types
-
-/- [loops::sum]: termination measure -/
-@[simp]
-def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s)
-
-syntax "sum_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::sum_with_mut_borrows]: termination measure -/
-@[simp]
-def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) :=
- (max, mi, ms)
-
-syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry)
-
-/- [loops::sum_with_shared_borrows]: termination measure -/
-@[simp]
-def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) :=
- (max, i, s)
-
-syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::clear]: termination measure -/
-@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i)
-
-syntax "clear_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry)
-
-/- [loops::list_mem]: termination measure -/
-@[simp]
-def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls)
-
-syntax "list_mem_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop]: termination measure -/
-@[simp]
-def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) :=
- (ls, i)
-
-syntax "list_nth_mut_loop_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop]: termination measure -/
-@[simp]
-def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) :=
- (ls, i)
-
-syntax "list_nth_shared_loop_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::get_elem_mut]: termination measure -/
-@[simp]
-def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls)
-
-syntax "get_elem_mut_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::get_elem_shared]: termination measure -/
-@[simp]
-def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls)
-
-syntax "get_elem_shared_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32)
- (ls : list_t T) :=
- (i, ls)
-
-syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32)
- (ls : list_t T) :=
- (i, ls)
-
-syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic
-
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/misc-loops/Loops/Clauses/Template.lean b/tests/lean/misc-loops/Loops/Clauses/Template.lean
deleted file mode 100644
index 2e28a6c0..00000000
--- a/tests/lean/misc-loops/Loops/Clauses/Template.lean
+++ /dev/null
@@ -1,205 +0,0 @@
--- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
--- [loops]: templates for the decreases clauses
-import Base.Primitives
-import Loops.Types
-
-/- [loops::sum]: termination measure -/
-@[simp] def sum_loop_terminates (max : U32) (i : U32) (s : U32) := (max, i, s)
-
-/- [loops::sum]: decreases_by tactic -/
-syntax "sum_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::sum_with_mut_borrows]: termination measure -/
-@[simp]
-def sum_with_mut_borrows_loop_terminates (max : U32) (mi : U32) (ms : U32) :=
- (max, mi, ms)
-
-/- [loops::sum_with_mut_borrows]: decreases_by tactic -/
-syntax "sum_with_mut_borrows_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_with_mut_borrows_loop_decreases $max $mi $ms) =>`(tactic| sorry)
-
-/- [loops::sum_with_shared_borrows]: termination measure -/
-@[simp]
-def sum_with_shared_borrows_loop_terminates (max : U32) (i : U32) (s : U32) :=
- (max, i, s)
-
-/- [loops::sum_with_shared_borrows]: decreases_by tactic -/
-syntax "sum_with_shared_borrows_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| sum_with_shared_borrows_loop_decreases $max $i $s) =>`(tactic| sorry)
-
-/- [loops::clear]: termination measure -/
-@[simp] def clear_loop_terminates (v : Vec U32) (i : Usize) := (v, i)
-
-/- [loops::clear]: decreases_by tactic -/
-syntax "clear_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| clear_loop_decreases $v $i) =>`(tactic| sorry)
-
-/- [loops::list_mem]: termination measure -/
-@[simp] def list_mem_loop_terminates (x : U32) (ls : list_t U32) := (x, ls)
-
-/- [loops::list_mem]: decreases_by tactic -/
-syntax "list_mem_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_mem_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop]: termination measure -/
-@[simp]
-def list_nth_mut_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32) :=
- (ls, i)
-
-/- [loops::list_nth_mut_loop]: decreases_by tactic -/
-syntax "list_nth_mut_loop_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop]: termination measure -/
-@[simp]
-def list_nth_shared_loop_loop_terminates (T : Type) (ls : list_t T) (i : U32)
- :=
- (ls, i)
-
-/- [loops::list_nth_shared_loop]: decreases_by tactic -/
-syntax "list_nth_shared_loop_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_loop_decreases $ls $i) =>`(tactic| sorry)
-
-/- [loops::get_elem_mut]: termination measure -/
-@[simp]
-def get_elem_mut_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls)
-
-/- [loops::get_elem_mut]: decreases_by tactic -/
-syntax "get_elem_mut_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| get_elem_mut_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::get_elem_shared]: termination measure -/
-@[simp]
-def get_elem_shared_loop_terminates (x : Usize) (ls : list_t Usize) := (x, ls)
-
-/- [loops::get_elem_shared]: decreases_by tactic -/
-syntax "get_elem_shared_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| get_elem_shared_loop_decreases $x $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_mut_loop_with_id_loop_terminates (T : Type) (i : U32)
- (ls : list_t T) :=
- (i, ls)
-
-/- [loops::list_nth_mut_loop_with_id]: decreases_by tactic -/
-syntax "list_nth_mut_loop_with_id_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_with_id]: termination measure -/
-@[simp]
-def list_nth_shared_loop_with_id_loop_terminates (T : Type) (i : U32)
- (ls : list_t T) :=
- (i, ls)
-
-/- [loops::list_nth_shared_loop_with_id]: decreases_by tactic -/
-syntax "list_nth_shared_loop_with_id_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_with_id_loop_decreases $i $ls) =>`(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_loop_pair]: decreases_by tactic -/
-syntax "list_nth_mut_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>`(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_loop_pair]: decreases_by tactic -/
-syntax "list_nth_shared_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_mut_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_loop_pair_merge_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_shared_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_shared_loop_pair]: decreases_by tactic -/
-syntax "list_nth_mut_shared_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_mut_shared_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_mut_shared_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_mut_shared_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_mut_shared_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_loop_terminates (T : Type) (ls0 : list_t T)
- (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_mut_loop_pair]: decreases_by tactic -/
-syntax "list_nth_shared_mut_loop_pair_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: termination measure -/
-@[simp]
-def list_nth_shared_mut_loop_pair_merge_loop_terminates (T : Type)
- (ls0 : list_t T) (ls1 : list_t T) (i : U32) :=
- (ls0, ls1, i)
-
-/- [loops::list_nth_shared_mut_loop_pair_merge]: decreases_by tactic -/
-syntax "list_nth_shared_mut_loop_pair_merge_loop_decreases" term+ : tactic
-macro_rules
-| `(tactic| list_nth_shared_mut_loop_pair_merge_loop_decreases $ls0 $ls1 $i) =>
- `(tactic| sorry)
-
diff --git a/tests/lean/misc-loops/lake-manifest.json b/tests/lean/misc-loops/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-loops/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-loops/lakefile.lean b/tests/lean/misc-loops/lakefile.lean
deleted file mode 100644
index 097c0a7d..00000000
--- a/tests/lean/misc-loops/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «loops» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «Loops» {}
diff --git a/tests/lean/misc-loops/lean-toolchain b/tests/lean/misc-loops/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-loops/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean b/tests/lean/misc-no_nested_borrows/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-no_nested_borrows/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-no_nested_borrows/lake-manifest.json b/tests/lean/misc-no_nested_borrows/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-no_nested_borrows/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-no_nested_borrows/lakefile.lean b/tests/lean/misc-no_nested_borrows/lakefile.lean
deleted file mode 100644
index 58619110..00000000
--- a/tests/lean/misc-no_nested_borrows/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «no_nested_borrows» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «NoNestedBorrows» {}
diff --git a/tests/lean/misc-no_nested_borrows/lean-toolchain b/tests/lean/misc-no_nested_borrows/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-no_nested_borrows/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/misc-paper/Base/Primitives.lean b/tests/lean/misc-paper/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-paper/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-paper/lake-manifest.json b/tests/lean/misc-paper/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-paper/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-paper/lakefile.lean b/tests/lean/misc-paper/lakefile.lean
deleted file mode 100644
index 75d7208e..00000000
--- a/tests/lean/misc-paper/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «paper» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «Paper» {}
diff --git a/tests/lean/misc-paper/lean-toolchain b/tests/lean/misc-paper/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-paper/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21
diff --git a/tests/lean/misc-polonius_list/Base/Primitives.lean b/tests/lean/misc-polonius_list/Base/Primitives.lean
deleted file mode 100644
index 4a66a453..00000000
--- a/tests/lean/misc-polonius_list/Base/Primitives.lean
+++ /dev/null
@@ -1,583 +0,0 @@
-import Lean
-import Lean.Meta.Tactic.Simp
-import Init.Data.List.Basic
-import Mathlib.Tactic.RunCmd
-
---------------------
--- ASSERT COMMAND --
---------------------
-
-open Lean Elab Command Term Meta
-
-syntax (name := assert) "#assert" term: command
-
-@[command_elab assert]
-unsafe
-def assertImpl : CommandElab := fun (_stx: Syntax) => do
- runTermElabM (fun _ => do
- let r ← evalTerm Bool (mkConst ``Bool) _stx[1]
- if not r then
- logInfo "Assertion failed for: "
- logInfo _stx[1]
- logError "Expression reduced to false"
- pure ())
-
-#eval 2 == 2
-#assert (2 == 2)
-
--------------
--- PRELUDE --
--------------
-
--- Results & monadic combinators
-
-inductive Error where
- | assertionFailure: Error
- | integerOverflow: Error
- | divisionByZero: Error
- | arrayOutOfBounds: Error
- | maximumSizeExceeded: Error
- | panic: Error
-deriving Repr, BEq
-
-open Error
-
-inductive Result (α : Type u) where
- | ret (v: α): Result α
- | fail (e: Error): Result α
-deriving Repr, BEq
-
-open Result
-
-instance Result_Inhabited (α : Type u) : Inhabited (Result α) :=
- Inhabited.mk (fail panic)
-
-/- HELPERS -/
-
-def ret? {α: Type} (r: Result α): Bool :=
- match r with
- | Result.ret _ => true
- | Result.fail _ => false
-
-def massert (b:Bool) : Result Unit :=
- if b then .ret () else fail assertionFailure
-
-def eval_global {α: Type} (x: Result α) (_: ret? x): α :=
- match x with
- | Result.fail _ => by contradiction
- | Result.ret x => x
-
-/- DO-DSL SUPPORT -/
-
-def bind (x: Result α) (f: α -> Result β) : Result β :=
- match x with
- | ret v => f v
- | fail v => fail v
-
--- Allows using Result in do-blocks
-instance : Bind Result where
- bind := bind
-
--- Allows using return x in do-blocks
-instance : Pure Result where
- pure := fun x => ret x
-
-/- CUSTOM-DSL SUPPORT -/
-
--- Let-binding the Result of a monadic operation is oftentimes not sufficient,
--- because we may need a hypothesis for equational reasoning in the scope. We
--- rely on subtype, and a custom let-binding operator, in effect recreating our
--- own variant of the do-dsl
-
-def Result.attach {α: Type} (o : Result α): Result { x : α // o = ret x } :=
- match o with
- | .ret x => .ret ⟨x, rfl⟩
- | .fail e => .fail e
-
-macro "let" e:term " ⟵ " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- TODO: any way to factorize both definitions?
-macro "let" e:term " <-- " f:term : doElem =>
- `(doElem| let ⟨$e, h⟩ ← Result.attach $f)
-
--- We call the hypothesis `h`, in effect making it unavailable to the user
--- (because too much shadowing). But in practice, once can use the French single
--- quote notation (input with f< and f>), where `‹ h ›` finds a suitable
--- hypothesis in the context, this is equivalent to `have x: h := by assumption in x`
-#eval do
- let y <-- .ret (0: Nat)
- let _: y = 0 := by cases ‹ ret 0 = ret y › ; decide
- let r: { x: Nat // x = 0 } := ⟨ y, by assumption ⟩
- .ret r
-
-----------------------
--- MACHINE INTEGERS --
-----------------------
-
--- We redefine our machine integers types.
-
--- For Isize/Usize, we reuse `getNumBits` from `USize`. You cannot reduce `getNumBits`
--- using the simplifier, meaning that proofs do not depend on the compile-time value of
--- USize.size. (Lean assumes 32 or 64-bit platforms, and Rust doesn't really support, at
--- least officially, 16-bit microcontrollers, so this seems like a fine design decision
--- for now.)
-
--- Note from Chris Bailey: "If there's more than one salient property of your
--- definition then the subtyping strategy might get messy, and the property part
--- of a subtype is less discoverable by the simplifier or tactics like
--- library_search." So, we will not add refinements on the return values of the
--- operations defined on Primitives, but will rather rely on custom lemmas to
--- invert on possible return values of the primitive operations.
-
--- Machine integer constants, done via `ofNatCore`, which requires a proof that
--- the `Nat` fits within the desired integer type. We provide a custom tactic.
-
-open System.Platform.getNumBits
-
--- TODO: is there a way of only importing System.Platform.getNumBits?
---
-@[simp] def size_num_bits : Nat := (System.Platform.getNumBits ()).val
-
--- Remark: Lean seems to use < for the comparisons with the upper bounds by convention.
--- We keep the F* convention for now.
-@[simp] def Isize.min : Int := - (HPow.hPow 2 (size_num_bits - 1))
-@[simp] def Isize.max : Int := (HPow.hPow 2 (size_num_bits - 1)) - 1
-@[simp] def I8.min : Int := - (HPow.hPow 2 7)
-@[simp] def I8.max : Int := HPow.hPow 2 7 - 1
-@[simp] def I16.min : Int := - (HPow.hPow 2 15)
-@[simp] def I16.max : Int := HPow.hPow 2 15 - 1
-@[simp] def I32.min : Int := -(HPow.hPow 2 31)
-@[simp] def I32.max : Int := HPow.hPow 2 31 - 1
-@[simp] def I64.min : Int := -(HPow.hPow 2 63)
-@[simp] def I64.max : Int := HPow.hPow 2 63 - 1
-@[simp] def I128.min : Int := -(HPow.hPow 2 127)
-@[simp] def I128.max : Int := HPow.hPow 2 127 - 1
-@[simp] def Usize.min : Int := 0
-@[simp] def Usize.max : Int := HPow.hPow 2 size_num_bits - 1
-@[simp] def U8.min : Int := 0
-@[simp] def U8.max : Int := HPow.hPow 2 8 - 1
-@[simp] def U16.min : Int := 0
-@[simp] def U16.max : Int := HPow.hPow 2 16 - 1
-@[simp] def U32.min : Int := 0
-@[simp] def U32.max : Int := HPow.hPow 2 32 - 1
-@[simp] def U64.min : Int := 0
-@[simp] def U64.max : Int := HPow.hPow 2 64 - 1
-@[simp] def U128.min : Int := 0
-@[simp] def U128.max : Int := HPow.hPow 2 128 - 1
-
-#assert (I8.min == -128)
-#assert (I8.max == 127)
-#assert (I16.min == -32768)
-#assert (I16.max == 32767)
-#assert (I32.min == -2147483648)
-#assert (I32.max == 2147483647)
-#assert (I64.min == -9223372036854775808)
-#assert (I64.max == 9223372036854775807)
-#assert (I128.min == -170141183460469231731687303715884105728)
-#assert (I128.max == 170141183460469231731687303715884105727)
-#assert (U8.min == 0)
-#assert (U8.max == 255)
-#assert (U16.min == 0)
-#assert (U16.max == 65535)
-#assert (U32.min == 0)
-#assert (U32.max == 4294967295)
-#assert (U64.min == 0)
-#assert (U64.max == 18446744073709551615)
-#assert (U128.min == 0)
-#assert (U128.max == 340282366920938463463374607431768211455)
-
-inductive ScalarTy :=
-| Isize
-| I8
-| I16
-| I32
-| I64
-| I128
-| Usize
-| U8
-| U16
-| U32
-| U64
-| U128
-
-def Scalar.min (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.min
- | .I8 => I8.min
- | .I16 => I16.min
- | .I32 => I32.min
- | .I64 => I64.min
- | .I128 => I128.min
- | .Usize => Usize.min
- | .U8 => U8.min
- | .U16 => U16.min
- | .U32 => U32.min
- | .U64 => U64.min
- | .U128 => U128.min
-
-def Scalar.max (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => Isize.max
- | .I8 => I8.max
- | .I16 => I16.max
- | .I32 => I32.max
- | .I64 => I64.max
- | .I128 => I128.max
- | .Usize => Usize.max
- | .U8 => U8.max
- | .U16 => U16.max
- | .U32 => U32.max
- | .U64 => U64.max
- | .U128 => U128.max
-
--- "Conservative" bounds
--- We use those because we can't compare to the isize bounds (which can't
--- reduce at compile-time). Whenever we perform an arithmetic operation like
--- addition we need to check that the result is in bounds: we first compare
--- to the conservative bounds, which reduce, then compare to the real bounds.
--- This is useful for the various #asserts that we want to reduce at
--- type-checking time.
-def Scalar.cMin (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.min
- | _ => Scalar.min ty
-
-def Scalar.cMax (ty : ScalarTy) : Int :=
- match ty with
- | .Isize => I32.max
- | .Usize => U32.max
- | _ => Scalar.max ty
-
-theorem Scalar.cMin_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-theorem Scalar.cMax_bound ty : Scalar.min ty <= Scalar.cMin ty := by sorry
-
-structure Scalar (ty : ScalarTy) where
- val : Int
- hmin : Scalar.min ty <= val
- hmax : val <= Scalar.max ty
-
-theorem Scalar.bound_suffices (ty : ScalarTy) (x : Int) :
- Scalar.cMin ty <= x && x <= Scalar.cMax ty ->
- (decide (Scalar.min ty ≤ x) && decide (x ≤ Scalar.max ty)) = true
- := by sorry
-
-def Scalar.ofIntCore {ty : ScalarTy} (x : Int)
- (hmin : Scalar.min ty <= x) (hmax : x <= Scalar.max ty) : Scalar ty :=
- { val := x, hmin := hmin, hmax := hmax }
-
-def Scalar.ofInt {ty : ScalarTy} (x : Int)
- (h : Scalar.min ty <= x && x <= Scalar.max ty) : Scalar ty :=
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- Scalar.ofIntCore x hmin hmax
-
--- Further thoughts: look at what has been done here:
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/Fin/Basic.lean
--- and
--- https://github.com/leanprover-community/mathlib4/blob/master/Mathlib/Data/UInt.lean
--- which both contain a fair amount of reasoning already!
-def Scalar.tryMk (ty : ScalarTy) (x : Int) : Result (Scalar ty) :=
- -- TODO: write this with only one if then else
- if hmin_cons: Scalar.cMin ty <= x || Scalar.min ty <= x then
- if hmax_cons: x <= Scalar.cMax ty || x <= Scalar.max ty then
- let hmin: Scalar.min ty <= x := by sorry
- let hmax: x <= Scalar.max ty := by sorry
- return Scalar.ofIntCore x hmin hmax
- else fail integerOverflow
- else fail integerOverflow
-
-def Scalar.neg {ty : ScalarTy} (x : Scalar ty) : Result (Scalar ty) := Scalar.tryMk ty (- x.val)
-
-def Scalar.div {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val / y.val) else fail divisionByZero
-
--- Checking that the % operation in Lean computes the same as the remainder operation in Rust
-#assert 1 % 2 = (1:Int)
-#assert (-1) % 2 = -1
-#assert 1 % (-2) = 1
-#assert (-1) % (-2) = -1
-
-def Scalar.rem {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- if y.val != 0 then Scalar.tryMk ty (x.val % y.val) else fail divisionByZero
-
-def Scalar.add {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val + y.val)
-
-def Scalar.sub {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val - y.val)
-
-def Scalar.mul {ty : ScalarTy} (x : Scalar ty) (y : Scalar ty) : Result (Scalar ty) :=
- Scalar.tryMk ty (x.val * y.val)
-
--- TODO: instances of +, -, * etc. for scalars
-
--- Cast an integer from a [src_ty] to a [tgt_ty]
--- TODO: check the semantics of casts in Rust
-def Scalar.cast {src_ty : ScalarTy} (tgt_ty : ScalarTy) (x : Scalar src_ty) : Result (Scalar tgt_ty) :=
- Scalar.tryMk tgt_ty x.val
-
--- The scalar types
--- We declare the definitions as reducible so that Lean can unfold them (useful
--- for type class resolution for instance).
-@[reducible] def Isize := Scalar .Isize
-@[reducible] def I8 := Scalar .I8
-@[reducible] def I16 := Scalar .I16
-@[reducible] def I32 := Scalar .I32
-@[reducible] def I64 := Scalar .I64
-@[reducible] def I128 := Scalar .I128
-@[reducible] def Usize := Scalar .Usize
-@[reducible] def U8 := Scalar .U8
-@[reducible] def U16 := Scalar .U16
-@[reducible] def U32 := Scalar .U32
-@[reducible] def U64 := Scalar .U64
-@[reducible] def U128 := Scalar .U128
-
--- TODO: below: not sure this is the best way.
--- Should we rather overload operations like +, -, etc.?
--- Also, it is possible to automate the generation of those definitions
--- with macros (but would it be a good idea? It would be less easy to
--- read the file, which is not supposed to change a lot)
-
--- Negation
-
-/--
-Remark: there is no heterogeneous negation in the Lean prelude: we thus introduce
-one here.
-
-The notation typeclass for heterogeneous addition.
-This enables the notation `- a : β` where `a : α`.
--/
-class HNeg (α : Type u) (β : outParam (Type v)) where
- /-- `- a` computes the negation of `a`.
- The meaning of this notation is type-dependent. -/
- hNeg : α → β
-
-prefix:75 "-" => HNeg.hNeg
-
-instance : HNeg Isize (Result Isize) where hNeg x := Scalar.neg x
-instance : HNeg I8 (Result I8) where hNeg x := Scalar.neg x
-instance : HNeg I16 (Result I16) where hNeg x := Scalar.neg x
-instance : HNeg I32 (Result I32) where hNeg x := Scalar.neg x
-instance : HNeg I64 (Result I64) where hNeg x := Scalar.neg x
-instance : HNeg I128 (Result I128) where hNeg x := Scalar.neg x
-
--- Addition
-instance {ty} : HAdd (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hAdd x y := Scalar.add x y
-
--- Substraction
-instance {ty} : HSub (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hSub x y := Scalar.sub x y
-
--- Multiplication
-instance {ty} : HMul (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMul x y := Scalar.mul x y
-
--- Division
-instance {ty} : HDiv (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hDiv x y := Scalar.div x y
-
--- Remainder
-instance {ty} : HMod (Scalar ty) (Scalar ty) (Result (Scalar ty)) where
- hMod x y := Scalar.rem x y
-
--- ofIntCore
--- TODO: typeclass?
-def Isize.ofIntCore := @Scalar.ofIntCore .Isize
-def I8.ofIntCore := @Scalar.ofIntCore .I8
-def I16.ofIntCore := @Scalar.ofIntCore .I16
-def I32.ofIntCore := @Scalar.ofIntCore .I32
-def I64.ofIntCore := @Scalar.ofIntCore .I64
-def I128.ofIntCore := @Scalar.ofIntCore .I128
-def Usize.ofIntCore := @Scalar.ofIntCore .Usize
-def U8.ofIntCore := @Scalar.ofIntCore .U8
-def U16.ofIntCore := @Scalar.ofIntCore .U16
-def U32.ofIntCore := @Scalar.ofIntCore .U32
-def U64.ofIntCore := @Scalar.ofIntCore .U64
-def U128.ofIntCore := @Scalar.ofIntCore .U128
-
--- ofInt
--- TODO: typeclass?
-def Isize.ofInt := @Scalar.ofInt .Isize
-def I8.ofInt := @Scalar.ofInt .I8
-def I16.ofInt := @Scalar.ofInt .I16
-def I32.ofInt := @Scalar.ofInt .I32
-def I64.ofInt := @Scalar.ofInt .I64
-def I128.ofInt := @Scalar.ofInt .I128
-def Usize.ofInt := @Scalar.ofInt .Usize
-def U8.ofInt := @Scalar.ofInt .U8
-def U16.ofInt := @Scalar.ofInt .U16
-def U32.ofInt := @Scalar.ofInt .U32
-def U64.ofInt := @Scalar.ofInt .U64
-def U128.ofInt := @Scalar.ofInt .U128
-
--- Comparisons
-instance {ty} : LT (Scalar ty) where
- lt a b := LT.lt a.val b.val
-
-instance {ty} : LE (Scalar ty) where le a b := LE.le a.val b.val
-
-instance Scalar.decLt {ty} (a b : Scalar ty) : Decidable (LT.lt a b) := Int.decLt ..
-instance Scalar.decLe {ty} (a b : Scalar ty) : Decidable (LE.le a b) := Int.decLe ..
-
-theorem Scalar.eq_of_val_eq {ty} : ∀ {i j : Scalar ty}, Eq i.val j.val → Eq i j
- | ⟨_, _, _⟩, ⟨_, _, _⟩, rfl => rfl
-
-theorem Scalar.val_eq_of_eq {ty} {i j : Scalar ty} (h : Eq i j) : Eq i.val j.val :=
- h ▸ rfl
-
-theorem Scalar.ne_of_val_ne {ty} {i j : Scalar ty} (h : Not (Eq i.val j.val)) : Not (Eq i j) :=
- fun h' => absurd (val_eq_of_eq h') h
-
-instance (ty : ScalarTy) : DecidableEq (Scalar ty) :=
- fun i j =>
- match decEq i.val j.val with
- | isTrue h => isTrue (Scalar.eq_of_val_eq h)
- | isFalse h => isFalse (Scalar.ne_of_val_ne h)
-
-def Scalar.toInt {ty} (n : Scalar ty) : Int := n.val
-
--- Tactic to prove that integers are in bounds
-syntax "intlit" : tactic
-
-macro_rules
- | `(tactic| intlit) => `(tactic| apply Scalar.bound_suffices ; decide)
-
--- -- We now define a type class that subsumes the various machine integer types, so
--- -- as to write a concise definition for scalar_cast, rather than exhaustively
--- -- enumerating all of the possible pairs. We remark that Rust has sane semantics
--- -- and fails if a cast operation would involve a truncation or modulo.
-
--- class MachineInteger (t: Type) where
--- size: Nat
--- val: t -> Fin size
--- ofNatCore: (n:Nat) -> LT.lt n size -> t
-
--- set_option hygiene false in
--- run_cmd
--- for typeName in [`UInt8, `UInt16, `UInt32, `UInt64, `USize].map Lean.mkIdent do
--- Lean.Elab.Command.elabCommand (← `(
--- namespace $typeName
--- instance: MachineInteger $typeName where
--- size := size
--- val := val
--- ofNatCore := ofNatCore
--- end $typeName
--- ))
-
--- -- Aeneas only instantiates the destination type (`src` is implicit). We rely on
--- -- Lean to infer `src`.
-
--- def scalar_cast { src: Type } (dst: Type) [ MachineInteger src ] [ MachineInteger dst ] (x: src): Result dst :=
--- if h: MachineInteger.val x < MachineInteger.size dst then
--- .ret (MachineInteger.ofNatCore (MachineInteger.val x).val h)
--- else
--- .fail integerOverflow
-
--------------
--- VECTORS --
--------------
-
-def Vec (α : Type u) := { l : List α // List.length l <= Usize.max }
-
-def vec_new (α : Type u): Vec α := ⟨ [], by sorry ⟩
-
-def vec_len (α : Type u) (v : Vec α) : Usize :=
- let ⟨ v, l ⟩ := v
- Usize.ofIntCore (List.length v) (by sorry) l
-
-def vec_push_fwd (α : Type u) (_ : Vec α) (_ : α) : Unit := ()
-
-def vec_push_back (α : Type u) (v : Vec α) (x : α) : Result (Vec α)
- :=
- if h : List.length v.val <= U32.max || List.length v.val <= Usize.max then
- return ⟨ List.concat v.val x, by sorry ⟩
- else
- fail maximumSizeExceeded
-
-def vec_insert_fwd (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_insert_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- -- TODO: maybe we should redefine a list library which uses integers
- -- (instead of natural numbers)
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-def vec_index_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_back (α : Type u) (v: Vec α) (i: Usize) (_: α): Result Unit :=
- if i.val < List.length v.val then
- .ret ()
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_fwd (α : Type u) (v: Vec α) (i: Usize): Result α :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- let h: i < List.length v.val := by sorry
- .ret (List.get v.val ⟨i.val, h⟩)
- else
- .fail arrayOutOfBounds
-
-def vec_index_mut_back (α : Type u) (v: Vec α) (i: Usize) (x: α): Result (Vec α) :=
- if i.val < List.length v.val then
- let i : Nat :=
- match i.val with
- | .ofNat n => n
- | .negSucc n => by sorry -- TODO: we can't get here
- let isLt: i < USize.size := by sorry
- let i : Fin USize.size := { val := i, isLt := isLt }
- .ret ⟨ List.set v.val i.val x, by
- have h: List.length v.val <= Usize.max := v.property
- rewrite [ List.length_set v.val i.val x ]
- assumption
- ⟩
- else
- .fail arrayOutOfBounds
-
-----------
--- MISC --
-----------
-
-def mem_replace_fwd (a : Type) (x : a) (_ : a) : a :=
- x
-
-def mem_replace_back (a : Type) (_ : a) (y : a) : a :=
- y
-
-/-- Aeneas-translated function -- useful to reduce non-recursive definitions.
- Use with `simp [ aeneas ]` -/
-register_simp_attr aeneas
diff --git a/tests/lean/misc-polonius_list/lake-manifest.json b/tests/lean/misc-polonius_list/lake-manifest.json
deleted file mode 100644
index 57b071ca..00000000
--- a/tests/lean/misc-polonius_list/lake-manifest.json
+++ /dev/null
@@ -1,27 +0,0 @@
-{"version": 4,
- "packagesDir": "./lake-packages",
- "packages":
- [{"git":
- {"url": "https://github.com/leanprover-community/mathlib4.git",
- "subDir?": null,
- "rev": "4037792ead804d7bfa8868e2c4684d4223c15ece",
- "name": "mathlib",
- "inputRev?": null}},
- {"git":
- {"url": "https://github.com/gebner/quote4",
- "subDir?": null,
- "rev": "2412c4fdf4a8b689f4467618e5e7b371ae5014aa",
- "name": "Qq",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/JLimperg/aesop",
- "subDir?": null,
- "rev": "7fe9ecd9339b0e1796e89d243b776849c305c690",
- "name": "aesop",
- "inputRev?": "master"}},
- {"git":
- {"url": "https://github.com/leanprover/std4",
- "subDir?": null,
- "rev": "24897887905b3a1254b244369f5dd2cf6174b0ee",
- "name": "std",
- "inputRev?": "main"}}]}
diff --git a/tests/lean/misc-polonius_list/lakefile.lean b/tests/lean/misc-polonius_list/lakefile.lean
deleted file mode 100644
index e89d4259..00000000
--- a/tests/lean/misc-polonius_list/lakefile.lean
+++ /dev/null
@@ -1,12 +0,0 @@
-import Lake
-open Lake DSL
-
-require mathlib from git
- "https://github.com/leanprover-community/mathlib4.git"
-
-package «polonius_list» {}
-
-lean_lib «Base» {}
-
-@[default_target]
-lean_lib «PoloniusList» {}
diff --git a/tests/lean/misc-polonius_list/lean-toolchain b/tests/lean/misc-polonius_list/lean-toolchain
deleted file mode 100644
index bbf57f10..00000000
--- a/tests/lean/misc-polonius_list/lean-toolchain
+++ /dev/null
@@ -1 +0,0 @@
-leanprover/lean4:nightly-2023-01-21